// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ #include #include #include #include #include #include #include #include #if HAVE_DUNE_FEM #include #include #include #endif // HAVE_DUNE_FEM #if HAVE_DUNE_ALUGRID #include #include #include "alucartesianindexmapper.hh" #endif // HAVE_DUNE_ALUGRID #include #include #include #include #include namespace { std::vector toVector(const std::set& string_set) { return { string_set.begin(), string_set.end() }; } } namespace Opm { // global id class GlobalCellIndex { int globalId_; int localIndex_; bool isInterior_; public: GlobalCellIndex() : globalId_(-1) , localIndex_(-1) , isInterior_(true) {} void setGhost() { isInterior_ = false; } void setId(int globalId) { globalId_ = globalId; } void setIndex(int localIndex) { localIndex_ = localIndex; } int localIndex () const { return localIndex_; } int id () const { return globalId_; } bool isInterior() const { return isInterior_; } }; using IndexMapType = std::vector; using IndexMapStorageType = std::vector; using P2PCommunicatorType = Dune::Point2PointCommunicator; using MessageBufferType = typename P2PCommunicatorType::MessageBufferType; class DistributeIndexMapping : public P2PCommunicatorType::DataHandleInterface { protected: const std::vector& distributedGlobalIndex_; IndexMapType& localIndexMap_; IndexMapStorageType& indexMaps_; std::map globalPosition_; std::set& recv_; std::vector& ranks_; public: DistributeIndexMapping(const std::vector& globalIndex, const std::vector& distributedGlobalIndex, IndexMapType& localIndexMap, IndexMapStorageType& indexMaps, std::vector& ranks, std::set& recv, bool isIORank) : distributedGlobalIndex_(distributedGlobalIndex) , localIndexMap_(localIndexMap) , indexMaps_(indexMaps) , globalPosition_() , recv_(recv) , ranks_(ranks) { size_t size = globalIndex.size(); // create mapping globalIndex --> localIndex if ( isIORank ) // ioRank for (size_t index = 0; index < size; ++index) globalPosition_.insert(std::make_pair(globalIndex[index], index)); // we need to create a mapping from local to global if (!indexMaps_.empty()) { if (isIORank) ranks_.resize(size, -1); // for the ioRank create a localIndex to index in global state map IndexMapType& indexMap = indexMaps_.back(); size_t localSize = localIndexMap_.size(); indexMap.resize(localSize); for (size_t i=0; isecond; // Using max should be backwards compatible ranks_[entry] = std::max(ranks_[entry], rank); } if (rankIt != recv_.end()) ++rankIt; } #ifndef NDEBUG for (const auto& rank: ranks_) assert(rank>=0); #endif } } void pack(int link, MessageBufferType& buffer) { // we should only get one link if (link != 0) throw std::logic_error("link in method pack is not 0 as execpted"); // pack all interior global cell id's int size = localIndexMap_.size(); buffer.write(size); for (int index = 0; index < size; ++index) { int globalIdx = distributedGlobalIndex_[localIndexMap_[index]]; buffer.write(globalIdx); } } void unpack(int link, MessageBufferType& buffer) { // get index map for current link IndexMapType& indexMap = indexMaps_[link]; assert(!globalPosition_.empty()); // unpack all interior global cell id's int numCells = 0; buffer.read(numCells); indexMap.resize(numCells); for (int index = 0; index < numCells; ++index) { buffer.read(indexMap[index]); } } }; /// \brief Communication handle to scatter the global index template class ElementIndexScatterHandle { public: ElementIndexScatterHandle(const EquilMapper& sendMapper, const Mapper& recvMapper, std::vector& elementIndices) : sendMapper_(sendMapper), recvMapper_(recvMapper), elementIndices_(elementIndices) {} using DataType = int; #if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7) bool fixedSize(int /*dim*/, int /*codim*/) #else bool fixedsize(int /*dim*/, int /*codim*/) #endif { return true; } template std::size_t size(const T&) { return 1; } template void gather(B& buffer, const T& t) { buffer.write(sendMapper_.index(t)); } template void scatter(B& buffer, const T& t, std::size_t) { buffer.read(elementIndices_[recvMapper_.index(t)]); } bool contains(int dim, int codim) { return dim==3 && codim==0; } private: const EquilMapper& sendMapper_; const Mapper& recvMapper_; std::vector& elementIndices_; }; /// \brief Communication handle to scatter the global index template class ElementIndexHandle { public: ElementIndexHandle(const Mapper& mapper, std::vector& elementIndices) : mapper_(mapper), elementIndices_(elementIndices) {} using DataType = int; #if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7) bool fixedSize(int /*dim*/, int /*codim*/) #else bool fixedsize(int /*dim*/, int /*codim*/) #endif { return true; } template std::size_t size(const T&) { return 1; } template void gather(B& buffer, const T& t) { buffer.write(elementIndices_[mapper_.index(t)]); } template void scatter(B& buffer, const T& t, std::size_t) { buffer.read(elementIndices_[mapper_.index(t)]); } bool contains(int dim, int codim) { return dim==3 && codim==0; } private: const Mapper& mapper_; std::vector& elementIndices_; }; class PackUnPackCellData : public P2PCommunicatorType::DataHandleInterface { const data::Solution& localCellData_; data::Solution& globalCellData_; const IndexMapType& localIndexMap_; const IndexMapStorageType& indexMaps_; public: PackUnPackCellData(const data::Solution& localCellData, data::Solution& globalCellData, const IndexMapType& localIndexMap, const IndexMapStorageType& indexMaps, size_t globalSize, bool isIORank) : localCellData_(localCellData) , globalCellData_(globalCellData) , localIndexMap_(localIndexMap) , indexMaps_(indexMaps) { if (isIORank) { // add missing data to global cell data for (const auto& pair : localCellData_) { const std::string& key = pair.first; std::size_t containerSize = globalSize; [[maybe_unused]] auto ret = globalCellData_.insert(key, pair.second.dim, std::vector(containerSize), pair.second.target); assert(ret.second); } MessageBufferType buffer; pack(0, buffer); // the last index map is the local one doUnpack(indexMaps.back(), buffer); } } // pack all data associated with link void pack(int link, MessageBufferType& buffer) { // we should only get one link if (link != 0) throw std::logic_error("link in method pack is not 0 as expected"); // write all cell data registered in local state for (const auto& pair : localCellData_) { const auto& data = pair.second.data; // write all data from local data to buffer write(buffer, localIndexMap_, data); } } void doUnpack(const IndexMapType& indexMap, MessageBufferType& buffer) { // we loop over the data as // its order governs the order the data got received. for (auto& pair : localCellData_) { const std::string& key = pair.first; auto& data = globalCellData_.data(key); //write all data from local cell data to buffer read(buffer, indexMap, data); } } // unpack all data associated with link void unpack(int link, MessageBufferType& buffer) { doUnpack(indexMaps_[link], buffer); } protected: template void write(MessageBufferType& buffer, const IndexMapType& localIndexMap, const Vector& vector, unsigned int offset = 0, unsigned int stride = 1) const { unsigned int size = localIndexMap.size(); buffer.write(size); assert(vector.size() >= stride * size); for (unsigned int i=0; i void read(MessageBufferType& buffer, const IndexMapType& indexMap, Vector& vector, unsigned int offset = 0, unsigned int stride = 1) const { unsigned int size = 0; buffer.read(size); assert(size == indexMap.size()); for (unsigned int i=0; ipack(0, buffer); // pass a dummy_link to satisfy virtual class const int dummyLink = -1; this->unpack(dummyLink, buffer); } // pack all data associated with link void pack(int link, MessageBufferType& buffer) { // we should only get one link if (link != 0) { throw std::logic_error { "link in method pack is not 0 as expected" }; } // write all group and network (node/branch) data this->localGroupAndNetworkData_.write(buffer); } // unpack all data associated with link void unpack(int /*link*/, MessageBufferType& buffer) { this->globalGroupAndNetworkData_.read(buffer); } }; class PackUnPackBlockData : public P2PCommunicatorType::DataHandleInterface { const std::map, double>& localBlockData_; std::map, double>& globalBlockValues_; public: PackUnPackBlockData(const std::map, double>& localBlockData, std::map, double>& globalBlockValues, bool isIORank) : localBlockData_(localBlockData) , globalBlockValues_(globalBlockValues) { if (isIORank) { MessageBufferType buffer; pack(0, buffer); // pass a dummyLink to satisfy virtual class int dummyLink = -1; unpack(dummyLink, buffer); } } // pack all data associated with link void pack(int link, MessageBufferType& buffer) { // we should only get one link if (link != 0) throw std::logic_error("link in method pack is not 0 as expected"); // write all block data unsigned int size = localBlockData_.size(); buffer.write(size); for (const auto& map : localBlockData_) { buffer.write(map.first.first); buffer.write(map.first.second); buffer.write(map.second); } } // unpack all data associated with link void unpack(int /*link*/, MessageBufferType& buffer) { // read all block data unsigned int size = 0; buffer.read(size); for (size_t i = 0; i < size; ++i) { std::string name; int idx; double data; buffer.read(name); buffer.read(idx); buffer.read(data); globalBlockValues_[std::make_pair(name, idx)] = data; } } }; class PackUnPackWBPData : public P2PCommunicatorType::DataHandleInterface { const std::map& localWBPData_; std::map& globalWBPValues_; public: PackUnPackWBPData(const std::map& localWBPData, std::map& globalWBPValues, bool isIORank) : localWBPData_(localWBPData) , globalWBPValues_(globalWBPValues) { if (isIORank) { MessageBufferType buffer; pack(0, buffer); // pass a dummyLink to satisfy virtual class int dummyLink = -1; unpack(dummyLink, buffer); } } // pack all data associated with link void pack(int link, MessageBufferType& buffer) { // we should only get one link if (link != 0) throw std::logic_error("link in method pack is not 0 as expected"); // write all block data unsigned int size = localWBPData_.size(); buffer.write(size); for (const auto& [global_index, wbp_value] : localWBPData_) { buffer.write(global_index); buffer.write(wbp_value); } } // unpack all data associated with link void unpack(int /*link*/, MessageBufferType& buffer) { // read all block data unsigned int size = 0; buffer.read(size); for (size_t i = 0; i < size; ++i) { std::size_t idx; double data; buffer.read(idx); buffer.read(data); globalWBPValues_[idx] = data; } } }; class PackUnPackWellTestState : public P2PCommunicatorType::DataHandleInterface { public: PackUnPackWellTestState(const WellTestState& localWTestState, WellTestState& globalWTestState, bool isIORank) : local_(localWTestState) , global_(globalWTestState) { if (isIORank) { MessageBufferType buffer; pack(0, buffer); // pass a dummyLink to satisfy virtual class int dummyLink = -1; unpack(dummyLink, buffer); } } void pack(int link, MessageBufferType& buffer) { if (link != 0) throw std::logic_error("link in method pack is not 0 as expected"); this->local_.pack(buffer); } void unpack(int, MessageBufferType& buffer) { this->global_.unpack(buffer); } private: const WellTestState& local_; WellTestState& global_; }; class PackUnPackAquiferData : public P2PCommunicatorType::DataHandleInterface { const data::Aquifers& localAquiferData_; data::Aquifers& globalAquiferData_; public: PackUnPackAquiferData(const data::Aquifers& localAquiferData, data::Aquifers& globalAquiferData, bool isIORank) : localAquiferData_(localAquiferData) , globalAquiferData_(globalAquiferData) { if (isIORank) { MessageBufferType buffer; pack(0, buffer); // pass a dummyLink to satisfy virtual class int dummyLink = -1; unpack(dummyLink, buffer); } } // pack all data associated with link void pack(int link, MessageBufferType& buffer) { // we should only get one link if (link != 0) throw std::logic_error("link in method pack is not 0 as expected"); int size = localAquiferData_.size(); buffer.write(size); for (const auto& [key, data] : localAquiferData_) { buffer.write(key); data.write(buffer); } } // unpack all data associated with link void unpack(int /*link*/, MessageBufferType& buffer) { int size; buffer.read(size); for (int i = 0; i < size; ++i) { int key; buffer.read(key); data::AquiferData data; data.read(buffer); auto& aq = this->globalAquiferData_[key]; this->unpackCommon(data, aq); if (auto const* aquFet = data.typeData.get(); aquFet != nullptr) { this->unpackAquFet(*aquFet, aq); } else if (auto const* aquCT = data.typeData.get(); aquCT != nullptr) { this->unpackCarterTracy(*aquCT, aq); } else if (auto const* aquNum = data.typeData.get(); aquNum != nullptr) { this->unpackNumericAquifer(*aquNum, aq); } } } private: void unpackCommon(const data::AquiferData& data, data::AquiferData& aq) { aq.aquiferID = std::max(aq.aquiferID, data.aquiferID); aq.pressure = std::max(aq.pressure, data.pressure); aq.initPressure = std::max(aq.initPressure, data.initPressure); aq.datumDepth = std::max(aq.datumDepth, data.datumDepth); aq.fluxRate += data.fluxRate; aq.volume += data.volume; } void unpackAquFet(const data::FetkovichData& aquFet, data::AquiferData& aq) { if (! aq.typeData.is()) { auto* tData = aq.typeData.create(); *tData = aquFet; } else { const auto& src = aquFet; auto& dst = *aq.typeData.getMutable(); dst.initVolume = std::max(dst.initVolume , src.initVolume); dst.prodIndex = std::max(dst.prodIndex , src.prodIndex); dst.timeConstant = std::max(dst.timeConstant, src.timeConstant); } } void unpackCarterTracy(const data::CarterTracyData& aquCT, data::AquiferData& aq) { if (! aq.typeData.is()) { auto* tData = aq.typeData.create(); *tData = aquCT; } else { const auto& src = aquCT; auto& dst = *aq.typeData.getMutable(); dst.timeConstant = std::max(dst.timeConstant , src.timeConstant); dst.influxConstant = std::max(dst.influxConstant, src.influxConstant); dst.waterDensity = std::max(dst.waterDensity , src.waterDensity); dst.waterViscosity = std::max(dst.waterViscosity, src.waterViscosity); dst.dimensionless_time = std::max(dst.dimensionless_time , src.dimensionless_time); dst.dimensionless_pressure = std::max(dst.dimensionless_pressure, src.dimensionless_pressure); } } void unpackNumericAquifer(const data::NumericAquiferData& aquNum, data::AquiferData& aq) { if (! aq.typeData.is()) { auto* tData = aq.typeData.create(); *tData = aquNum; } else { const auto& src = aquNum; auto& dst = *aq.typeData.getMutable(); std::transform(src.initPressure.begin(), src.initPressure.end(), dst.initPressure.begin(), dst.initPressure.begin(), [](const double p0_1, const double p0_2) { return std::max(p0_1, p0_2); }); } } }; class PackUnpackInterRegFlows : public P2PCommunicatorType::DataHandleInterface { const EclInterRegFlowMap& localInterRegFlows_; EclInterRegFlowMap& globalInterRegFlows_; public: PackUnpackInterRegFlows(const EclInterRegFlowMap& localInterRegFlows, EclInterRegFlowMap& globalInterRegFlows, const bool isIORank) : localInterRegFlows_ (localInterRegFlows) , globalInterRegFlows_(globalInterRegFlows) { if (! isIORank) { return; } MessageBufferType buffer; this->pack(0, buffer); // pass a dummy_link to satisfy virtual class const int dummyLink = -1; this->unpack(dummyLink, buffer); } // pack all data associated with link void pack(int link, MessageBufferType& buffer) { // we should only get one link if (link != 0) { throw std::logic_error { "link in method pack is not 0 as expected" }; } // write all inter-region flow data this->localInterRegFlows_.write(buffer); } // unpack all data associated with link void unpack(int /*link*/, MessageBufferType& buffer) { this->globalInterRegFlows_.read(buffer); } }; template CollectDataToIORank:: CollectDataToIORank(const Grid& grid, const EquilGrid* equilGrid, const GridView& localGridView, const Dune::CartesianIndexMapper& cartMapper, const Dune::CartesianIndexMapper* equilCartMapper, const std::set& fipRegionsInterregFlow) : toIORankComm_(grid.comm()) , globalInterRegFlows_(EclInterRegFlowMap::createMapFromNames(toVector(fipRegionsInterregFlow))) { // index maps only have to be build when reordering is needed if (!needsReordering && !isParallel()) return; const CollectiveCommunication& comm = grid.comm(); { std::set send, recv; using EquilGridView = typename EquilGrid::LeafGridView; typename std::is_same::type isSameGrid; typedef Dune::MultipleCodimMultipleGeomTypeMapper ElementMapper; ElementMapper elemMapper(localGridView, Dune::mcmgElementLayout()); sortedCartesianIdx_.reserve(localGridView.size(0)); for(const auto& elem: elements(localGridView)) { auto idx = elemMapper.index(elem); sortedCartesianIdx_.push_back(cartMapper.cartesianIndex(idx)); } std::sort(sortedCartesianIdx_.begin(), sortedCartesianIdx_.end()); localIdxToGlobalIdx_.resize(localGridView.size(0), -1); // the I/O rank receives from all other ranks if (isIORank()) { // We need a mapping from local to global grid, here we // use equilGrid which represents a view on the global grid // reserve memory const size_t globalSize = equilGrid->leafGridView().size(0); globalCartesianIndex_.resize(globalSize, -1); const EquilGridView equilGridView = equilGrid->leafGridView(); using EquilElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper; EquilElementMapper equilElemMapper(equilGridView, Dune::mcmgElementLayout()); // Scatter the global index to local index for lookup during restart if constexpr (isSameGrid) { ElementIndexScatterHandle handle(equilElemMapper, elemMapper, localIdxToGlobalIdx_); grid.scatterData(handle); } // loop over all elements (global grid) and store Cartesian index auto elemIt = equilGrid->leafGridView().template begin<0>(); const auto& elemEndIt = equilGrid->leafGridView().template end<0>(); for (; elemIt != elemEndIt; ++elemIt) { int elemIdx = equilElemMapper.index(*elemIt); int cartElemIdx = equilCartMapper->cartesianIndex(elemIdx); globalCartesianIndex_[elemIdx] = cartElemIdx; } for (int i = 0; i < comm.size(); ++i) { if (i != ioRank) recv.insert(i); } } else { // all other simply send to the I/O rank send.insert(ioRank); // Scatter the global index to local index for lookup during restart // This is a bit hacky since the type differs from the iorank. // But should work since we only receive, i.e. use the second parameter. if constexpr (isSameGrid) { ElementIndexScatterHandle handle(elemMapper, elemMapper, localIdxToGlobalIdx_); grid.scatterData(handle); } } // Sync the global element indices if constexpr (isSameGrid) { ElementIndexHandle handle(elemMapper, localIdxToGlobalIdx_); grid.communicate(handle, Dune::InteriorBorder_All_Interface, Dune::ForwardCommunication); } localIndexMap_.clear(); const size_t gridSize = grid.size(0); localIndexMap_.reserve(gridSize); // store the local Cartesian index IndexMapType distributedCartesianIndex; distributedCartesianIndex.resize(gridSize, -1); // A mapping for the whole grid (including the ghosts) is needed for restarts auto eIt = localGridView.template begin<0>(); const auto& eEndIt = localGridView.template end<0>(); for (; eIt != eEndIt; ++eIt) { const auto element = *eIt; int elemIdx = elemMapper.index(element); distributedCartesianIndex[elemIdx] = cartMapper.cartesianIndex(elemIdx); // only store interior element for collection //assert(element.partitionType() == Dune::InteriorEntity); localIndexMap_.push_back(elemIdx); } // insert send and recv linkage to communicator toIORankComm_.insertRequest(send, recv); // need an index map for each rank indexMaps_.clear(); indexMaps_.resize(comm.size()); // distribute global id's to io rank for later association of dof's DistributeIndexMapping distIndexMapping(globalCartesianIndex_, distributedCartesianIndex, localIndexMap_, indexMaps_, globalRanks_, recv, isIORank()); toIORankComm_.exchange(distIndexMapping); } } template void CollectDataToIORank:: collect(const data::Solution& localCellData, const std::map, double>& localBlockData, const std::map& localWBPData, const data::Wells& localWellData, const data::GroupAndNetworkValues& localGroupAndNetworkData, const data::Aquifers& localAquiferData, const WellTestState& localWellTestState, const EclInterRegFlowMap& localInterRegFlows) { globalCellData_ = {}; globalBlockData_.clear(); globalWBPData_.clear(); globalWellData_.clear(); globalGroupAndNetworkData_.clear(); globalAquiferData_.clear(); globalWellTestState_.clear(); this->globalInterRegFlows_.clear(); // index maps only have to be build when reordering is needed if(!needsReordering && !isParallel()) return; // this also linearises the local buffers on ioRank PackUnPackCellData packUnpackCellData { localCellData, this->globalCellData_, this->localIndexMap_, this->indexMaps_, this->numCells(), this->isIORank() }; if (! isParallel()) { // no need to collect anything. return; } PackUnPackWellData packUnpackWellData { localWellData, this->globalWellData_, this->isIORank() }; PackUnPackGroupAndNetworkValues packUnpackGroupAndNetworkData { localGroupAndNetworkData, this->globalGroupAndNetworkData_, this->isIORank() }; PackUnPackBlockData packUnpackBlockData { localBlockData, this->globalBlockData_, this->isIORank() }; PackUnPackWBPData packUnpackWBPData { localWBPData, this->globalWBPData_, this->isIORank() }; PackUnPackAquiferData packUnpackAquiferData { localAquiferData, this->globalAquiferData_, this->isIORank() }; PackUnPackWellTestState packUnpackWellTestState { localWellTestState, this->globalWellTestState_, this->isIORank() }; PackUnpackInterRegFlows packUnpackInterRegFlows { localInterRegFlows, this->globalInterRegFlows_, this->isIORank() }; toIORankComm_.exchange(packUnpackCellData); toIORankComm_.exchange(packUnpackWellData); toIORankComm_.exchange(packUnpackGroupAndNetworkData); toIORankComm_.exchange(packUnpackBlockData); toIORankComm_.exchange(packUnpackWBPData); toIORankComm_.exchange(packUnpackAquiferData); toIORankComm_.exchange(packUnpackWellTestState); toIORankComm_.exchange(packUnpackInterRegFlows); #ifndef NDEBUG // make sure every process is on the same page toIORankComm_.barrier(); #endif } template int CollectDataToIORank:: localIdxToGlobalIdx(unsigned localIdx) const { if (!isParallel()) return localIdx; if (localIdxToGlobalIdx_.empty()) throw std::logic_error("index map is not created on this rank"); if (localIdx > localIdxToGlobalIdx_.size()) throw std::logic_error("local index is outside map range"); return localIdxToGlobalIdx_[localIdx]; } template bool CollectDataToIORank:: isCartIdxOnThisRank(int cartIdx) const { if (!isParallel()) return true; assert(!needsReordering); auto candidate = std::lower_bound(sortedCartesianIdx_.begin(), sortedCartesianIdx_.end(), cartIdx); return (candidate != sortedCartesianIdx_.end() && *candidate == cartIdx); } #if HAVE_DUNE_FEM template class CollectDataToIORank>>>; template class CollectDataToIORank > >; #ifdef HAVE_DUNE_ALUGRID #if HAVE_MPI using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>; #else using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>; #endif //HAVE_MPI template class CollectDataToIORank>>>; template class CollectDataToIORank>>; #endif //HAVE_DUNE_ALUGRID #else // ! HAVE_DUNE_FEM template class CollectDataToIORank>>; #ifdef HAVE_DUNE_ALUGRID #if HAVE_MPI using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>; #else using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>; #endif //HAVE_MPI template class CollectDataToIORank>>; #endif //HAVE_DUNE_ALUGRID #endif // ! HAVE_DUNE_FEM template class CollectDataToIORank, Dune::PolyhedralGrid<3,3,double>, Dune::GridView>>; } // end namespace Opm