/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
template
GravityColumnSolverPolymer::GravityColumnSolverPolymer(FluxModel& fmodel,
const Model& model,
const UnstructuredGrid& grid,
const double tol,
const int maxit)
: fmodel_(fmodel), model_(model), grid_(grid), tol_(tol), maxit_(maxit)
{
}
namespace {
struct ZeroVec
{
double operator[](int) const { return 0.0; }
};
struct StateWithZeroFlux
{
StateWithZeroFlux(std::vector& s, std::vector& c, std::vector& cmax_arg) : sat(s), cpoly(c), cmax(cmax_arg) {}
const ZeroVec& faceflux() const { return zv; }
const std::vector& saturation() const { return sat; }
std::vector& saturation() { return sat; }
const std::vector& concentration() const { return cpoly; }
std::vector& concentration() { return cpoly; }
const std::vector& maxconcentration() const { return cmax; }
std::vector& maxconcentration() { return cmax; }
ZeroVec zv;
std::vector& sat;
std::vector& cpoly;
std::vector& cmax;
};
struct Vecs
{
Vecs(int sz) : sol(sz, 0.0) {}
const std::vector& solution() const { return sol; }
std::vector& writableSolution() { return sol; }
std::vector sol;
};
struct JacSys
{
JacSys(int sz) : v(sz) {}
const Vecs& vector() const { return v; }
Vecs& vector() { return v; }
Vecs v;
typedef std::vector vector_type;
};
struct BandMatrixCoeff
{
BandMatrixCoeff(int N, int ku, int kl) : N_(N), ku_(ku), kl_(kl), nrow_(2*kl + ku + 1) {
}
// compute the position where to store the coefficient of a matrix A_{i,j} (i,j=0,...,N-1)
// in a array which is sent to the band matrix solver of LAPACK.
int operator ()(int i, int j) const {
return kl_ + ku_ + i - j + j*nrow_;
}
const int N_;
const int ku_;
const int kl_;
const int nrow_;
};
} // anon namespace
/// \param[in] columns for each column col, columns[col]
/// contains the cells on which to solve the segregation
/// problem. For each column, its cells must be in a single
/// vertical column, connected and ordered
/// (direction doesn't matter).
template
void GravityColumnSolverPolymer::solve(const std::vector >& columns,
const double dt,
std::vector& s,
std::vector& c,
std::vector& cmax
)
{
// Initialize model. These things are done for the whole grid!
StateWithZeroFlux state(s, c, cmax); // This holds s, c and cmax by reference.
JacSys sys(2*grid_.number_of_cells);
std::vector increment(2*grid_.number_of_cells, 0.0);
fmodel_.initStep(state, grid_, sys);
int iter = 0;
double max_delta = 1e100;
const double cmax_cell = 2.0*model_.cMax();
const double tol_c_cell = 1e-2*cmax_cell;
while (iter < maxit_) {
fmodel_.initIteration(state, grid_, sys);
int size = columns.size();
for(int i = 0; i < size; ++i) {
solveSingleColumn(columns[i], dt, s, c, cmax, increment);
}
for (int cell = 0; cell < grid_.number_of_cells; ++cell) {
double& s_cell = sys.vector().writableSolution()[2*cell + 0];
double& c_cell = sys.vector().writableSolution()[2*cell + 1];
s_cell += increment[2*cell + 0];
c_cell += increment[2*cell + 1];
if (s_cell < 0.) {
double& incr = increment[2*cell + 0];
s_cell -= incr;
if (std::fabs(incr) < 1e-2) {
incr = -s_cell;
s_cell = 0.;
} else {
incr = -s_cell/2.0;
s_cell = s_cell/2.0;
}
}
if (s_cell > 1.) {
double& incr = increment[2*cell + 0];
s_cell -= incr;
if (std::fabs(incr) < 1e-2) {
incr = 1. - s_cell;
s_cell = 1.;
} else {
incr = (1 - s_cell)/2.0;
s_cell = (1 + s_cell)/2.0;
}
}
if (c_cell < 0.) {
double& incr = increment[2*cell + 1];
c_cell -= incr;
if (std::fabs(incr) < tol_c_cell) {
incr = -c_cell;
c_cell = 0.;
} else {
incr = -c_cell/2.0;
c_cell = c_cell/2.0;
}
}
if (c_cell > cmax_cell) {
double& incr = increment[2*cell + 1];
c_cell -= incr;
if (std::fabs(incr) < tol_c_cell) {
incr = cmax_cell - c_cell;
c_cell = cmax_cell;
} else {
incr = (cmax_cell - c_cell)/2.0;
c_cell = (cmax_cell + c_cell)/2.0;
}
}
// if (s_cell < 0.) {
// increment[2*cell + 0] = increment[2*cell + 0] - s_cell;
// s_cell = 0.;
// } else if (s_cell > 1.) {
// increment[2*cell + 0] = increment[2*cell + 0] - s_cell + 1.;
// s_cell = 1.;
// }
// if (c_cell < 0) {
// increment[2*cell + 1] = increment[2*cell + 1] - c_cell;
// c_cell = 0.;
// } else if (c_cell > cmax_cell) {
// increment[2*cell + 1] = increment[2*cell + 1] - c_cell + cmax_cell;
// c_cell = cmax_cell;
// }
}
const double maxelem = *std::max_element(increment.begin(), increment.end());
const double minelem = *std::min_element(increment.begin(), increment.end());
max_delta = std::max(maxelem, -minelem);
std::cout << "Iteration " << iter << " max_delta = " << max_delta << std::endl;
if (max_delta < tol_) {
break;
}
++iter;
}
if (max_delta >= tol_) {
OPM_THROW(std::runtime_error, "Failed to converge!");
}
// Finalize.
// fmodel_.finishIteration(); //
// finishStep() writes to state, which holds s by reference.
// This will update the entire grid's state... cmax is updated here.
fmodel_.finishStep(grid_, sys.vector().solution(), state);
}
/// \param[in] column_cells the cells on which to solve the segregation
/// problem. Must be in a single vertical column,
/// and ordered (direction doesn't matter).
template
void GravityColumnSolverPolymer::solveSingleColumn(const std::vector& column_cells,
const double dt,
std::vector& s,
std::vector& c,
std::vector& cmax,
std::vector& sol_vec)
{
// This is written only to work with SinglePointUpwindTwoPhase,
// not with arbitrary problem models.
int col_size = column_cells.size();
// if (col_size == 1) {
// sol_vec[2*column_cells[0] + 0] = 0.0;
// sol_vec[2*column_cells[0] + 1] = 0.0;
// return;
// }
StateWithZeroFlux state(s, c, cmax); // This holds s by reference.
// Assemble.
const int kl = 3;
const int ku = 3;
const int nrow = 2*kl + ku + 1;
const int N = 2*col_size; // N unknowns: s and c for each cell.
std::vector hm(nrow*N, 0.0); // band matrix with 3 upper and 3 lower diagonals.
std::vector rhs(N, 0.0);
const BandMatrixCoeff bmc(N, ku, kl);
for (int ci = 0; ci < col_size; ++ci) {
std::vector F(2, 0.);
std::vector dFd1(4, 0.);
std::vector dFd2(4, 0.);
std::vector dF(4, 0.);
const int cell = column_cells[ci];
const int prev_cell = (ci == 0) ? -999 : column_cells[ci - 1];
const int next_cell = (ci == col_size - 1) ? -999 : column_cells[ci + 1];
// model_.initResidual(cell, F);
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
const int face = grid_.cell_faces[j];
const int c1 = grid_.face_cells[2*face + 0];
const int c2 = grid_.face_cells[2*face + 1];
if (c1 == prev_cell || c2 == prev_cell || c1 == next_cell || c2 == next_cell) {
F.assign(2, 0.);
dFd1.assign(4, 0.);
dFd2.assign(4, 0.);
fmodel_.fluxConnection(state, grid_, dt, cell, face, &F[0], &dFd1[0], &dFd2[0]);
if (c1 == prev_cell || c2 == prev_cell) {
hm[bmc(2*ci + 0, 2*(ci - 1) + 0)] += dFd2[0];
hm[bmc(2*ci + 0, 2*(ci - 1) + 1)] += dFd2[1];
hm[bmc(2*ci + 1, 2*(ci - 1) + 0)] += dFd2[2];
hm[bmc(2*ci + 1, 2*(ci - 1) + 1)] += dFd2[3];
} else {
assert(c1 == next_cell || c2 == next_cell);
hm[bmc(2*ci + 0, 2*(ci + 1) + 0)] += dFd2[0];
hm[bmc(2*ci + 0, 2*(ci + 1) + 1)] += dFd2[1];
hm[bmc(2*ci + 1, 2*(ci + 1) + 0)] += dFd2[2];
hm[bmc(2*ci + 1, 2*(ci + 1) + 1)] += dFd2[3];
}
hm[bmc(2*ci + 0, 2*ci + 0)] += dFd1[0];
hm[bmc(2*ci + 0, 2*ci + 1)] += dFd1[1];
hm[bmc(2*ci + 1, 2*ci + 0)] += dFd1[2];
hm[bmc(2*ci + 1, 2*ci + 1)] += dFd1[3];
rhs[2*ci + 0] += F[0];
rhs[2*ci + 1] += F[1];
}
}
F.assign(2, 0.);
dF.assign(4, 0.);
fmodel_.accumulation(grid_, cell, &F[0], &dF[0]);
hm[bmc(2*ci + 0, 2*ci + 0)] += dF[0];
hm[bmc(2*ci + 0, 2*ci + 1)] += dF[1];
hm[bmc(2*ci + 1, 2*ci + 0)] += dF[2];
if (std::abs(dF[3]) < 1e-12) {
hm[bmc(2*ci + 1, 2*ci + 1)] += 1e-12;
} else {
hm[bmc(2*ci + 1, 2*ci + 1)] += dF[3];
}
rhs[2*ci + 0] += F[0];
rhs[2*ci + 1] += F[1];
}
// model_.sourceTerms(); // Not needed
// Solve.
const int num_rhs = 1;
int info = 0;
std::vector ipiv(N, 0);
// Solution will be written to rhs.
dgbsv_(&N, &kl, &ku, &num_rhs, &hm[0], &nrow, &ipiv[0], &rhs[0], &N, &info);
if (info != 0) {
std::cerr << "Failed column cells: ";
std::copy(column_cells.begin(), column_cells.end(), std::ostream_iterator(std::cerr, " "));
std::cerr << "\n";
OPM_THROW(std::runtime_error, "Lapack reported error in dgtsv: " << info);
}
for (int ci = 0; ci < col_size; ++ci) {
sol_vec[2*column_cells[ci] + 0] = -rhs[2*ci + 0];
sol_vec[2*column_cells[ci] + 1] = -rhs[2*ci + 1];
}
}
} // namespace Opm