/* Copyright 2014 IRIS AS Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 Statoil AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_TIMESTEPCONTROL_HEADER_INCLUDED #define OPM_TIMESTEPCONTROL_HEADER_INCLUDED #include #include namespace Opm { /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// /// A simple iteration count based adaptive time step control. // /////////////////////////////////////////////////////////////////////////////////////////////////////////////// class SimpleIterationCountTimeStepControl : public TimeStepControlInterface { public: /// \brief constructor /// \param target_iterations number of desired iterations (e.g. Newton iterations) per time step in one time step // \param decayrate decayrate of time step when target iterations are not met (should be <= 1) // \param growthrate growthrate of time step when target iterations are not met (should be >= 1) /// \param verbose if true get some output (default = false) SimpleIterationCountTimeStepControl( const int target_iterations, const double decayrate, const double growthrate, const bool verbose = false); /// \brief \copydoc TimeStepControlInterface::computeTimeStepSize double computeTimeStepSize( const double dt, const int iterations, const RelativeChangeInterface& /* relativeChange */, const double /*simulationTimeElapsed */ ) const; protected: const int target_iterations_; const double decayrate_; const double growthrate_; const bool verbose_; }; /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// /// PID controller based adaptive time step control as suggested in: /// Turek and Kuzmin. Algebraic Flux Correction III. Incompressible Flow Problems. Uni Dortmund. /// /// See also: /// D. Kuzmin and S.Turek. Numerical simulation of turbulent bubbly flows. Techreport Uni Dortmund. 2004 /// /// and the original article: /// Valli, Coutinho, and Carey. Adaptive Control for Time Step Selection in Finite Element /// Simulation of Coupled Viscous Flow and Heat Transfer. Proc of the 10th /// International Conference on Numerical Methods in Fluids. 1998. /// /////////////////////////////////////////////////////////////////////////////////////////////////////////////// class PIDTimeStepControl : public TimeStepControlInterface { public: /// \brief constructor /// \param tol tolerance for the relative changes of the numerical solution to be accepted /// in one time step (default is 1e-3) /// \param verbose if true get some output (default = false) PIDTimeStepControl( const double tol = 1e-3, const bool verbose = false ); /// \brief \copydoc TimeStepControlInterface::computeTimeStepSize double computeTimeStepSize( const double dt, const int /* iterations */, const RelativeChangeInterface& relativeChange, const double /*simulationTimeElapsed */ ) const; protected: const double tol_; mutable std::vector< double > errors_; const bool verbose_; }; /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// /// PID controller based adaptive time step control as above that also takes /// an target iteration into account. // /////////////////////////////////////////////////////////////////////////////////////////////////////////////// class PIDAndIterationCountTimeStepControl : public PIDTimeStepControl { typedef PIDTimeStepControl BaseType; public: /// \brief constructor /// \param target_iterations number of desired iterations per time step /// \param tol tolerance for the relative changes of the numerical solution to be accepted /// in one time step (default is 1e-3) /// \param verbose if true get some output (default = false) PIDAndIterationCountTimeStepControl( const int target_iterations = 20, const double decayDampingFactor = 1.0, const double growthDampingFactor = 1.0/1.2, const double tol = 1e-3, const double minTimeStepBasedOnIterations = 0., const bool verbose = false); /// \brief \copydoc TimeStepControlInterface::computeTimeStepSize double computeTimeStepSize( const double dt, const int iterations, const RelativeChangeInterface& relativeChange, const double /*simulationTimeElapsed */ ) const; protected: const int target_iterations_; const double decayDampingFactor_; const double growthDampingFactor_; const double minTimeStepBasedOnIterations_; }; /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// /// HardcodedTimeStepControl /// Input generated from summary file using the ert application: /// /// ecl_summary DECK TIME > filename /// /// Assumes time is given in days /////////////////////////////////////////////////////////////////////////////////////////////////////////////// class HardcodedTimeStepControl : public TimeStepControlInterface { public: /// \brief constructor /// \param filename filename contaning the timesteps explicit HardcodedTimeStepControl( const std::string& filename); /// \brief \copydoc TimeStepControlInterface::computeTimeStepSize double computeTimeStepSize( const double dt, const int /* iterations */, const RelativeChangeInterface& /*relativeChange */, const double simulationTimeElapsed) const; protected: // store the time (in days) of the substeps the simulator should use std::vector subStepTime_; }; } // end namespace Opm #endif