/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 NTNU
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_INITSTATEEQUIL_HEADER_INCLUDED
#define OPM_INITSTATEEQUIL_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/**
* \file
* Facilities for an ECLIPSE-style equilibration-based
* initialisation scheme (keyword 'EQUIL').
*/
struct UnstructuredGrid;
namespace Opm
{
/**
* Compute initial state by an equilibration procedure.
*
* The following state fields are modified:
* pressure(),
* saturation(),
* surfacevol(),
* gasoilratio(),
* rv().
*
* \param[in] grid Grid.
* \param[in] props Property object, pvt and capillary properties are used.
* \param[in] deck Simulation deck, used to obtain EQUIL and related data.
* \param[in] gravity Acceleration of gravity, assumed to be in Z direction.
*/
template
void initStateEquil(const Grid& grid,
const BlackoilPropertiesInterface& props,
const Opm::DeckConstPtr deck,
const Opm::EclipseStateConstPtr eclipseState,
const double gravity,
BlackoilState& state);
/**
* Types and routines that collectively implement a basic
* ECLIPSE-style equilibration-based initialisation scheme.
*
* This namespace is intentionally nested to avoid name clashes
* with other parts of OPM.
*/
namespace Equil {
/**
* Compute initial phase pressures by means of equilibration.
*
* This function uses the information contained in an
* equilibration record (i.e., depths and pressurs) as well as
* a density calculator and related data to vertically
* integrate the phase pressure ODE
* \f[
* \frac{\mathrm{d}p_{\alpha}}{\mathrm{d}z} =
* \rho_{\alpha}(z,p_{\alpha})\cdot g
* \f]
* in which \f$\rho_{\alpha}$ denotes the fluid density of
* fluid phase \f$\alpha\f$, \f$p_{\alpha}\f$ is the
* corresponding phase pressure, \f$z\f$ is the depth and
* \f$g\f$ is the acceleration due to gravity (assumed
* directed downwords, in the positive \f$z\f$ direction).
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] G Grid.
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] grav Acceleration of gravity.
*
* \return Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
*/
template
std::vector< std::vector >
phasePressures(const Grid& G,
const Region& reg,
const CellRange& cells,
const double grav = unit::gravity);
/**
* Compute initial phase saturations by means of equilibration.
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] props Property object, needed for capillary functions.
* \param[in] phase_pressures Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
* \return Phase saturations, one vector for each phase, each containing
* one saturation value per cell in the region.
*/
template
std::vector< std::vector >
phaseSaturations(const Grid& grid,
const Region& reg,
const CellRange& cells,
BlackoilPropertiesInterface& props,
const std::vector swat_init,
std::vector< std::vector >& phase_pressures);
/**
* Compute initial Rs values.
*
* \tparam CellRangeType Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] grid Grid.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] oil_pressure Oil pressure for each cell in range.
* \param[in] temperature Temperature for each cell in range.
* \param[in] rs_func Rs as function of pressure and depth.
* \return Rs values, one for each cell in the 'cells' range.
*/
template
std::vector computeRs(const Grid& grid,
const CellRangeType& cells,
const std::vector oil_pressure,
const std::vector& temperature,
const Miscibility::RsFunction& rs_func,
const std::vector gas_saturation);
namespace DeckDependent {
inline
std::vector
getEquil(const Opm::DeckConstPtr deck)
{
if (deck->hasKeyword("EQUIL")) {
Opm::EquilWrapper eql(deck->getKeyword("EQUIL"));
const int nrec = eql.numRegions();
std::vector ret;
ret.reserve(nrec);
for (int r = 0; r < nrec; ++r) {
EquilRecord record =
{
{ eql.datumDepth(r) ,
eql.datumDepthPressure(r) }
,
{ eql.waterOilContactDepth(r) ,
eql.waterOilContactCapillaryPressure(r) }
,
{ eql.gasOilContactDepth(r) ,
eql.gasOilContactCapillaryPressure(r) }
,
eql.liveOilInitProceedure(r)
,
eql.wetGasInitProceedure(r)
,
eql.initializationTargetAccuracy(r)
};
if (record.N != 0) {
OPM_THROW(std::domain_error,
"kw EQUIL, item 9: Only N=0 supported.");
}
ret.push_back(record);
}
return ret;
}
else {
OPM_THROW(std::domain_error,
"Deck does not provide equilibration data.");
}
}
template
inline
std::vector
equilnum(const Opm::DeckConstPtr deck,
const Opm::EclipseStateConstPtr eclipseState,
const Grid& G )
{
std::vector eqlnum;
if (deck->hasKeyword("EQLNUM")) {
const int nc = UgGridHelpers::numCells(G);
eqlnum.resize(nc);
const std::vector& e =
eclipseState->getIntGridProperty("EQLNUM")->getData();
const int* gc = UgGridHelpers::globalCell(G);
for (int cell = 0; cell < nc; ++cell) {
const int deck_pos = (gc == NULL) ? cell : gc[cell];
eqlnum[cell] = e[deck_pos] - 1;
}
}
else {
// No explicit equilibration region.
// All cells in region zero.
eqlnum.assign(UgGridHelpers::numCells(G), 0);
}
return eqlnum;
}
class InitialStateComputer {
public:
template
InitialStateComputer(BlackoilPropertiesInterface& props,
const Opm::DeckConstPtr deck,
const Opm::EclipseStateConstPtr eclipseState,
const Grid& G ,
const double grav = unit::gravity)
: pp_(props.numPhases(),
std::vector(UgGridHelpers::numCells(G))),
sat_(props.numPhases(),
std::vector(UgGridHelpers::numCells(G))),
rs_(UgGridHelpers::numCells(G)),
rv_(UgGridHelpers::numCells(G))
{
// Get the equilibration records.
const std::vector rec = getEquil(deck);
std::shared_ptr tables = eclipseState->getTableManager();
// Create (inverse) region mapping.
const RegionMapping<> eqlmap(equilnum(deck, eclipseState, G));
// Create Rs functions.
rs_func_.reserve(rec.size());
if (deck->hasKeyword("DISGAS")) {
const TableContainer& rsvdTables = tables->getRsvdTables();
for (size_t i = 0; i < rec.size(); ++i) {
const int cell = *(eqlmap.cells(i).begin());
if (rec[i].live_oil_table_index > 0) {
if (rsvdTables.size() > 0 && size_t(rec[i].live_oil_table_index) <= rsvdTables.size()) {
const RsvdTable& rsvdTable = rsvdTables.getTable(i);
std::vector depthColumn = rsvdTable.getColumn("DEPTH").vectorCopy();
std::vector rsColumn = rsvdTable.getColumn("RS").vectorCopy();
rs_func_.push_back(std::make_shared(props,
cell,
depthColumn , rsColumn));
} else {
OPM_THROW(std::runtime_error, "Cannot initialise: RSVD table " << (rec[i].live_oil_table_index) << " not available.");
}
} else {
if (rec[i].goc.depth != rec[i].main.depth) {
OPM_THROW(std::runtime_error,
"Cannot initialise: when no explicit RSVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
}
const double p_contact = rec[i].main.press;
const double T_contact = 273.15 + 20; // standard temperature for now
rs_func_.push_back(std::make_shared(props, cell, p_contact, T_contact));
}
}
} else {
for (size_t i = 0; i < rec.size(); ++i) {
rs_func_.push_back(std::make_shared());
}
}
rv_func_.reserve(rec.size());
if (deck->hasKeyword("VAPOIL")) {
const TableContainer& rvvdTables = tables->getRvvdTables();
for (size_t i = 0; i < rec.size(); ++i) {
const int cell = *(eqlmap.cells(i).begin());
if (rec[i].wet_gas_table_index > 0) {
if (rvvdTables.size() > 0 && size_t(rec[i].wet_gas_table_index) <= rvvdTables.size()) {
const RvvdTable& rvvdTable = rvvdTables.getTable(i);
std::vector depthColumn = rvvdTable.getColumn("DEPTH").vectorCopy();
std::vector rvColumn = rvvdTable.getColumn("RV").vectorCopy();
rv_func_.push_back(std::make_shared(props,
cell,
depthColumn , rvColumn));
} else {
OPM_THROW(std::runtime_error, "Cannot initialise: RVVD table " << (rec[i].wet_gas_table_index) << " not available.");
}
} else {
if (rec[i].goc.depth != rec[i].main.depth) {
OPM_THROW(std::runtime_error,
"Cannot initialise: when no explicit RVVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region " << (i + 1) << " (counting from 1), this does not hold.");
}
const double p_contact = rec[i].main.press + rec[i].goc.press;
const double T_contact = 273.15 + 20; // standard temperature for now
rv_func_.push_back(std::make_shared(props, cell, p_contact, T_contact));
}
}
} else {
for (size_t i = 0; i < rec.size(); ++i) {
rv_func_.push_back(std::make_shared());
}
}
// Check for presence of kw SWATINIT
if (deck->hasKeyword("SWATINIT")) {
const std::vector& swat_init = eclipseState->getDoubleGridProperty("SWATINIT")->getData();
const int nc = UgGridHelpers::numCells(G);
swat_init_.resize(nc);
const int* gc = UgGridHelpers::globalCell(G);
for (int c = 0; c < nc; ++c) {
const int deck_pos = (gc == NULL) ? c : gc[c];
swat_init_[c] = swat_init[deck_pos];
}
}
// Compute pressures, saturations, rs and rv factors.
calcPressSatRsRv(eqlmap, rec, props, G, grav);
// Modify oil pressure in no-oil regions so that the pressures of present phases can
// be recovered from the oil pressure and capillary relations.
}
typedef std::vector Vec;
typedef std::vector PVec; // One per phase.
const PVec& press() const { return pp_; }
const PVec& saturation() const { return sat_; }
const Vec& rs() const { return rs_; }
const Vec& rv() const { return rv_; }
private:
typedef DensityCalculator RhoCalc;
typedef EquilReg EqReg;
std::vector< std::shared_ptr > rs_func_;
std::vector< std::shared_ptr > rv_func_;
PVec pp_;
PVec sat_;
Vec rs_;
Vec rv_;
Vec swat_init_;
template
void
calcPressSatRsRv(const RMap& reg ,
const std::vector< EquilRecord >& rec ,
Opm::BlackoilPropertiesInterface& props,
const Grid& G ,
const double grav)
{
for (const auto& r : reg.activeRegions()) {
const auto& cells = reg.cells(r);
const int repcell = *cells.begin();
const RhoCalc calc(props, repcell);
const EqReg eqreg(rec[r], calc,
rs_func_[r], rv_func_[r],
props.phaseUsage());
PVec pressures = phasePressures(G, eqreg, cells, grav);
const std::vector& temp = temperature(G, eqreg, cells);
const PVec sat = phaseSaturations(G, eqreg, cells, props, swat_init_, pressures);
const int np = props.numPhases();
for (int p = 0; p < np; ++p) {
copyFromRegion(pressures[p], cells, pp_[p]);
copyFromRegion(sat[p], cells, sat_[p]);
}
if (props.phaseUsage().phase_used[BlackoilPhases::Liquid]
&& props.phaseUsage().phase_used[BlackoilPhases::Vapour]) {
const int oilpos = props.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gaspos = props.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const Vec rs_vals = computeRs(G, cells, pressures[oilpos], temp, *(rs_func_[r]), sat[gaspos]);
const Vec rv_vals = computeRs(G, cells, pressures[gaspos], temp, *(rv_func_[r]), sat[oilpos]);
copyFromRegion(rs_vals, cells, rs_);
copyFromRegion(rv_vals, cells, rv_);
}
}
}
template
void copyFromRegion(const Vec& source,
const CellRangeType& cells,
Vec& destination)
{
auto s = source.begin();
auto c = cells.begin();
const auto e = cells.end();
for (; c != e; ++c, ++s) {
destination[*c] = *s;
}
}
};
} // namespace DeckDependent
} // namespace Equil
} // namespace Opm
#include
#endif // OPM_INITSTATEEQUIL_HEADER_INCLUDED