/* Copyright 2016 SINTEF ICT, Applied Mathematics. Copyright 2016 - 2017 Statoil ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { BlackoilWellModelGeneric:: BlackoilWellModelGeneric(Schedule& schedule, const SummaryState& summaryState, const EclipseState& eclState, const PhaseUsage& phase_usage, const Comm& comm) : schedule_(schedule) , summaryState_(summaryState) , eclState_(eclState) , comm_(comm) , phase_usage_(phase_usage) , guideRate_(schedule) , active_wgstate_(phase_usage) , last_valid_wgstate_(phase_usage) , nupcol_wgstate_(phase_usage) { const auto numProcs = comm_.size(); this->not_on_process_ = [this, numProcs](const Well& well) { if (numProcs == decltype(numProcs){1}) return false; // Recall: false indicates NOT active! const auto value = std::make_pair(well.name(), true); auto candidate = std::lower_bound(this->parallel_well_info_.begin(), this->parallel_well_info_.end(), value); return (candidate == this->parallel_well_info_.end()) || (*candidate != value); }; } int BlackoilWellModelGeneric:: numLocalWells() const { return wells_ecl_.size(); } int BlackoilWellModelGeneric:: numPhases() const { return phase_usage_.num_phases; } bool BlackoilWellModelGeneric:: hasWell(const std::string& wname) { auto iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(), [&wname](const Well& well) { return well.name() == wname; }); return (iter != this->wells_ecl_.end()); } bool BlackoilWellModelGeneric:: wellsActive() const { return wells_active_; } bool BlackoilWellModelGeneric:: localWellsActive() const { return numLocalWells() > 0; } bool BlackoilWellModelGeneric:: anyMSWellOpenLocal() const { for (const auto& well : wells_ecl_) { if (well.isMultiSegment()) { return true; } } return false; } const Well& BlackoilWellModelGeneric:: getWellEcl(const std::string& well_name) const { // finding the iterator of the well in wells_ecl auto well_ecl = std::find_if(wells_ecl_.begin(), wells_ecl_.end(), [&well_name](const Well& elem)->bool { return elem.name() == well_name; }); assert(well_ecl != wells_ecl_.end()); return *well_ecl; } void BlackoilWellModelGeneric:: loadRestartData(const data::Wells& rst_wells, const data::GroupAndNetworkValues& grpNwrkValues, const PhaseUsage& phases, const bool handle_ms_well, WellState& well_state) { using GPMode = Group::ProductionCMode; using GIMode = Group::InjectionCMode; using rt = data::Rates::opt; const auto np = phases.num_phases; std::vector< rt > phs( np ); if( phases.phase_used[BlackoilPhases::Aqua] ) { phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat; } if( phases.phase_used[BlackoilPhases::Liquid] ) { phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil; } if( phases.phase_used[BlackoilPhases::Vapour] ) { phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas; } for( std::size_t well_index = 0; well_index < well_state.size(); well_index++) { const auto& well_name = well_state.name(well_index); const auto& rst_well = rst_wells.at(well_name); auto& ws = well_state.well(well_index); ws.bhp = rst_well.bhp; ws.thp = rst_well.thp; ws.temperature = rst_well.temperature; if (rst_well.current_control.isProducer) { ws.production_cmode = rst_well.current_control.prod; } else { ws.injection_cmode = rst_well.current_control.inj; } for( size_t i = 0; i < phs.size(); ++i ) { assert( rst_well.rates.has( phs[ i ] ) ); ws.surface_rates[i] = rst_well.rates.get(phs[i]); } auto& perf_data = ws.perf_data; auto& perf_pressure = perf_data.pressure; auto& perf_rates = perf_data.rates; auto& perf_phase_rates = perf_data.phase_rates; const auto& old_perf_data = this->well_perf_data_[well_index]; for (std::size_t perf_index = 0; perf_index < old_perf_data.size(); perf_index++) { const auto& pd = old_perf_data[perf_index]; const auto& rst_connection = rst_well.connections[pd.ecl_index]; perf_pressure[perf_index] = rst_connection.pressure; perf_rates[perf_index] = rst_connection.reservoir_rate; for (int phase_index = 0; phase_index < np; ++phase_index) perf_phase_rates[perf_index*np + phase_index] = rst_connection.rates.get(phs[phase_index]); } if (handle_ms_well && !rst_well.segments.empty()) { // we need the well_ecl_ information const Well& well_ecl = getWellEcl(well_name); const WellSegments& segment_set = well_ecl.getSegments(); const auto& rst_segments = rst_well.segments; // \Note: eventually we need to handle the situations that some segments are shut assert(0u + segment_set.size() == rst_segments.size()); auto& segments = ws.segments; auto& segment_pressure = segments.pressure; auto& segment_rates = segments.rates; for (const auto& rst_segment : rst_segments) { const int segment_index = segment_set.segmentNumberToIndex(rst_segment.first); // recovering segment rates and pressure from the restart values const auto pres_idx = data::SegmentPressures::Value::Pressure; segment_pressure[segment_index] = rst_segment.second.pressures[pres_idx]; const auto& rst_segment_rates = rst_segment.second.rates; for (int p = 0; p < np; ++p) { segment_rates[segment_index * np + p] = rst_segment_rates.get(phs[p]); } } } } for (const auto& [group, value] : grpNwrkValues.groupData) { const auto cpc = value.currentControl.currentProdConstraint; const auto cgi = value.currentControl.currentGasInjectionConstraint; const auto cwi = value.currentControl.currentWaterInjectionConstraint; if (cpc != GPMode::NONE) { this->groupState().production_control(group, cpc); } if (cgi != GIMode::NONE) { this->groupState().injection_control(group, Phase::GAS, cgi); } if (cwi != GIMode::NONE) { this->groupState().injection_control(group, Phase::WATER, cwi); } } } void BlackoilWellModelGeneric:: initFromRestartFile(const RestartValue& restartValues, const size_t numCells, bool handle_ms_well) { // The restart step value is used to identify wells present at the given // time step. Wells that are added at the same time step as RESTART is initiated // will not be present in a restart file. Use the previous time step to retrieve // wells that have information written to the restart file. const int report_step = std::max(eclState_.getInitConfig().getRestartStep() - 1, 0); // wells_ecl_ should only contain wells on this processor. wells_ecl_ = getLocalWells(report_step); local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_); this->initializeWellProdIndCalculators(); initializeWellPerfData(); const int nw = wells_ecl_.size(); if (nw > 0) { handle_ms_well &= anyMSWellOpenLocal(); this->wellState().resize(wells_ecl_, local_parallel_well_info_, schedule(), handle_ms_well, numCells, well_perf_data_, summaryState_); // Resize for restart step loadRestartData(restartValues.wells, restartValues.grp_nwrk, phase_usage_, handle_ms_well, this->wellState()); } this->commitWGState(); initial_step_ = false; } void BlackoilWellModelGeneric:: setWellsActive(const bool wells_active) { wells_active_ = wells_active; } std::vector BlackoilWellModelGeneric:: getLocalWells(const int timeStepIdx) const { auto w = schedule().getWells(timeStepIdx); w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end()); return w; } std::vector BlackoilWellModelGeneric:: createLocalParallelWellInfo(const std::vector& wells) { std::vector local_parallel_well_info; local_parallel_well_info.reserve(wells.size()); for (const auto& well : wells) { auto wellPair = std::make_pair(well.name(), true); auto pwell = std::lower_bound(parallel_well_info_.begin(), parallel_well_info_.end(), wellPair); assert(pwell != parallel_well_info_.end() && *pwell == wellPair); local_parallel_well_info.push_back(&(*pwell)); } return local_parallel_well_info; } void BlackoilWellModelGeneric:: initializeWellProdIndCalculators() { this->prod_index_calc_.clear(); this->prod_index_calc_.reserve(this->wells_ecl_.size()); for (const auto& well : this->wells_ecl_) { this->prod_index_calc_.emplace_back(well); } } void BlackoilWellModelGeneric:: initializeWellPerfData() { well_perf_data_.resize(wells_ecl_.size()); int well_index = 0; for (const auto& well : wells_ecl_) { int completion_index = 0; // INVALID_ECL_INDEX marks no above perf available int completion_index_above = ParallelWellInfo::INVALID_ECL_INDEX; well_perf_data_[well_index].clear(); well_perf_data_[well_index].reserve(well.getConnections().size()); CheckDistributedWellConnections checker(well, *local_parallel_well_info_[well_index]); bool hasFirstPerforation = false; bool firstOpenCompletion = true; auto& parallelWellInfo = *local_parallel_well_info_[well_index]; parallelWellInfo.beginReset(); for (const auto& completion : well.getConnections()) { const int active_index = cartesian_to_compressed_[completion.global_index()]; if (completion.state() == Connection::State::OPEN) { if (active_index >= 0) { if (firstOpenCompletion) { hasFirstPerforation = true; } checker.connectionFound(completion_index); PerforationData pd; pd.cell_index = active_index; pd.connection_transmissibility_factor = completion.CF(); pd.satnum_id = completion.satTableId(); pd.ecl_index = completion_index; well_perf_data_[well_index].push_back(pd); parallelWellInfo.pushBackEclIndex(completion_index_above, completion_index); } firstOpenCompletion = false; // Next time this index is the one above as each open completion is // is stored somehwere. completion_index_above = completion_index; } else { checker.connectionFound(completion_index); if (completion.state() != Connection::State::SHUT) { OPM_THROW(std::runtime_error, "Completion state: " << Connection::State2String(completion.state()) << " not handled"); } } // Note: we rely on the connections being filtered! I.e. there are only connections // to active cells in the global grid. ++completion_index; } parallelWellInfo.endReset(); checker.checkAllConnectionsFound(); parallelWellInfo.communicateFirstPerforation(hasFirstPerforation); ++well_index; } } bool BlackoilWellModelGeneric:: checkGroupConstraints(const Group& group, const int reportStepIdx, DeferredLogger& deferred_logger) const { if (group.isInjectionGroup()) { const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS}; for (Phase phase : all) { if (!group.hasInjectionControl(phase)) { continue; } const auto& check = checkGroupInjectionConstraints(group, reportStepIdx, phase); if (check.first != Group::InjectionCMode::NONE) { return true; } } } if (group.isProductionGroup()) { const auto& check = checkGroupProductionConstraints(group, reportStepIdx, deferred_logger); if (check.first != Group::ProductionCMode::NONE) { return true; } } // call recursively down the group hiearchy bool violated = false; for (const std::string& groupName : group.groups()) { violated = violated || checkGroupConstraints( schedule().getGroup(groupName, reportStepIdx), reportStepIdx, deferred_logger); } return violated; } std::pair BlackoilWellModelGeneric:: checkGroupInjectionConstraints(const Group& group, const int reportStepIdx, const Phase& phase) const { const auto& well_state = this->wellState(); int phasePos; if (phase == Phase::GAS && phase_usage_.phase_used[BlackoilPhases::Vapour] ) phasePos = phase_usage_.phase_pos[BlackoilPhases::Vapour]; else if (phase == Phase::OIL && phase_usage_.phase_used[BlackoilPhases::Liquid]) phasePos = phase_usage_.phase_pos[BlackoilPhases::Liquid]; else if (phase == Phase::WATER && phase_usage_.phase_used[BlackoilPhases::Aqua] ) phasePos = phase_usage_.phase_pos[BlackoilPhases::Aqua]; else OPM_THROW(std::runtime_error, "Unknown phase" ); auto currentControl = this->groupState().injection_control(group.name(), phase); if (group.has_control(phase, Group::InjectionCMode::RATE)) { if (currentControl != Group::InjectionCMode::RATE) { double current_rate = 0.0; current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true); // sum over all nodes current_rate = comm_.sum(current_rate); const auto& controls = group.injectionControls(phase, this->summaryState_); double target = controls.surface_max_rate; if (group.has_gpmaint_control(phase, Group::InjectionCMode::RATE) && this->groupState().has_gpmaint_target(group.name())) target = this->groupState().gpmaint_target(group.name()); if (target < current_rate) { double scale = 1.0; if (current_rate > 1e-12) scale = target / current_rate; return std::make_pair(Group::InjectionCMode::RATE, scale); } } } if (group.has_control(phase, Group::InjectionCMode::RESV)) { if (currentControl != Group::InjectionCMode::RESV) { double current_rate = 0.0; current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true); // sum over all nodes current_rate = comm_.sum(current_rate); const auto& controls = group.injectionControls(phase, this->summaryState_); double target = controls.resv_max_rate; if (group.has_gpmaint_control(phase, Group::InjectionCMode::RESV) && this->groupState().has_gpmaint_target(group.name())) target = this->groupState().gpmaint_target(group.name()); if (target < current_rate) { double scale = 1.0; if (current_rate > 1e-12) scale = target / current_rate; return std::make_pair(Group::InjectionCMode::RESV, scale); } } } if (group.has_control(phase, Group::InjectionCMode::REIN)) { if (currentControl != Group::InjectionCMode::REIN) { double production_Rate = 0.0; const auto& controls = group.injectionControls(phase, this->summaryState_); const Group& groupRein = schedule().getGroup(controls.reinj_group, reportStepIdx); production_Rate += WellGroupHelpers::sumWellSurfaceRates(groupRein, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/false); // sum over all nodes production_Rate = comm_.sum(production_Rate); double current_rate = 0.0; current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phasePos, /*isInjector*/true); // sum over all nodes current_rate = comm_.sum(current_rate); if (controls.target_reinj_fraction*production_Rate < current_rate) { double scale = 1.0; if (current_rate > 1e-12) scale = controls.target_reinj_fraction*production_Rate / current_rate; return std::make_pair(Group::InjectionCMode::REIN, scale); } } } if (group.has_control(phase, Group::InjectionCMode::VREP)) { if (currentControl != Group::InjectionCMode::VREP) { double voidage_rate = 0.0; const auto& controls = group.injectionControls(phase, this->summaryState_); const Group& groupVoidage = schedule().getGroup(controls.voidage_group, reportStepIdx); voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false); voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false); voidage_rate += WellGroupHelpers::sumWellResRates(groupVoidage, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false); // sum over all nodes voidage_rate = comm_.sum(voidage_rate); double total_rate = 0.0; total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true); total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true); total_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true); // sum over all nodes total_rate = comm_.sum(total_rate); if (controls.target_void_fraction*voidage_rate < total_rate) { double scale = 1.0; if (total_rate > 1e-12) scale = controls.target_void_fraction*voidage_rate / total_rate; return std::make_pair(Group::InjectionCMode::VREP, scale); } } } return std::make_pair(Group::InjectionCMode::NONE, 1.0); } std::pair BlackoilWellModelGeneric:: checkGroupProductionConstraints(const Group& group, const int reportStepIdx, DeferredLogger& deferred_logger) const { const auto& well_state = this->wellState(); const auto controls = group.productionControls(summaryState_); const Group::ProductionCMode& currentControl = this->groupState().production_control(group.name()); if (group.has_control(Group::ProductionCMode::ORAT)) { if (currentControl != Group::ProductionCMode::ORAT) { double current_rate = 0.0; current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false); // sum over all nodes current_rate = comm_.sum(current_rate); if (controls.oil_target < current_rate ) { double scale = 1.0; if (current_rate > 1e-12) scale = controls.oil_target / current_rate; return std::make_pair(Group::ProductionCMode::ORAT, scale); } } } if (group.has_control(Group::ProductionCMode::WRAT)) { if (currentControl != Group::ProductionCMode::WRAT) { double current_rate = 0.0; current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false); // sum over all nodes current_rate = comm_.sum(current_rate); if (controls.water_target < current_rate ) { double scale = 1.0; if (current_rate > 1e-12) scale = controls.water_target / current_rate; return std::make_pair(Group::ProductionCMode::WRAT, scale); } } } if (group.has_control(Group::ProductionCMode::GRAT)) { if (currentControl != Group::ProductionCMode::GRAT) { double current_rate = 0.0; current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], false); // sum over all nodes current_rate = comm_.sum(current_rate); if (controls.gas_target < current_rate ) { double scale = 1.0; if (current_rate > 1e-12) scale = controls.gas_target / current_rate; return std::make_pair(Group::ProductionCMode::GRAT, scale); } } } if (group.has_control(Group::ProductionCMode::LRAT)) { if (currentControl != Group::ProductionCMode::LRAT) { double current_rate = 0.0; current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], false); current_rate += WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], false); // sum over all nodes current_rate = comm_.sum(current_rate); if (controls.liquid_target < current_rate ) { double scale = 1.0; if (current_rate > 1e-12) scale = controls.liquid_target / current_rate; return std::make_pair(Group::ProductionCMode::LRAT, scale); } } } if (group.has_control(Group::ProductionCMode::CRAT)) { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "CRAT control for production groups not implemented" , deferred_logger); } if (group.has_control(Group::ProductionCMode::RESV)) { if (currentControl != Group::ProductionCMode::RESV) { double current_rate = 0.0; current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Aqua], true); current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Liquid], true); current_rate += WellGroupHelpers::sumWellResRates(group, schedule(), well_state, reportStepIdx, phase_usage_.phase_pos[BlackoilPhases::Vapour], true); // sum over all nodes current_rate = comm_.sum(current_rate); double target = controls.resv_target; if (group.has_gpmaint_control(Group::ProductionCMode::RESV) && this->groupState().has_gpmaint_target(group.name())) target = this->groupState().gpmaint_target(group.name()); if ( target < current_rate ) { double scale = 1.0; if (current_rate > 1e-12) scale = target / current_rate; return std::make_pair(Group::ProductionCMode::RESV, scale); } } } if (group.has_control(Group::ProductionCMode::PRBL)) { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "PRBL control for production groups not implemented", deferred_logger); } return std::make_pair(Group::ProductionCMode::NONE, 1.0); } void BlackoilWellModelGeneric:: checkGconsaleLimits(const Group& group, WellState& well_state, const int reportStepIdx, DeferredLogger& deferred_logger) { // call recursively down the group hiearchy for (const std::string& groupName : group.groups()) { checkGconsaleLimits( schedule().getGroup(groupName, reportStepIdx), well_state, reportStepIdx, deferred_logger); } // only for groups with gas injection controls if (!group.hasInjectionControl(Phase::GAS)) { return; } // check if gconsale is used for this group if (!schedule()[reportStepIdx].gconsale().has(group.name())) return; std::ostringstream ss; const auto& gconsale = schedule()[reportStepIdx].gconsale().get(group.name(), summaryState_); const Group::ProductionCMode& oldProductionControl = this->groupState().production_control(group.name()); int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour]; double production_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/false); double injection_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/true); // sum over all nodes injection_rate = comm_.sum(injection_rate); production_rate = comm_.sum(production_rate); double sales_rate = production_rate - injection_rate; double production_target = gconsale.sales_target + injection_rate; // add import rate and substract consumption rate for group for gas if (schedule()[reportStepIdx].gconsump().has(group.name())) { const auto& gconsump = schedule()[reportStepIdx].gconsump().get(group.name(), summaryState_); if (phase_usage_.phase_used[BlackoilPhases::Vapour]) { sales_rate += gconsump.import_rate; sales_rate -= gconsump.consumption_rate; production_target -= gconsump.import_rate; production_target += gconsump.consumption_rate; } } if (sales_rate > gconsale.max_sales_rate) { switch(gconsale.max_proc) { case GConSale::MaxProcedure::NONE: { if (oldProductionControl != Group::ProductionCMode::GRAT && oldProductionControl != Group::ProductionCMode::NONE) { ss << "Group sales exceed maximum limit, but the action is NONE for " + group.name() + ". Nothing happens"; } break; } case GConSale::MaxProcedure::CON: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON not implemented", deferred_logger); break; } case GConSale::MaxProcedure::CON_P: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON_P not implemented", deferred_logger); break; } case GConSale::MaxProcedure::WELL: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit WELL not implemented", deferred_logger); break; } case GConSale::MaxProcedure::PLUG: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit PLUG not implemented", deferred_logger); break; } case GConSale::MaxProcedure::MAXR: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit MAXR not implemented", deferred_logger); break; } case GConSale::MaxProcedure::END: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit END not implemented", deferred_logger); break; } case GConSale::MaxProcedure::RATE: { this->groupState().production_control(group.name(), Group::ProductionCMode::GRAT); ss << "Maximum GCONSALE limit violated for " << group.name() << ". The group is switched from "; ss << Group::ProductionCMode2String(oldProductionControl) << " to " << Group::ProductionCMode2String(Group::ProductionCMode::GRAT); ss << " and limited by the maximum sales rate after consumption and import are considered" ; this->groupState().update_grat_sales_target(group.name(), production_target); break; } default: throw("Invalid procedure for maximum rate limit selected for group" + group.name()); } } if (sales_rate < gconsale.min_sales_rate) { const Group::ProductionCMode& currentProductionControl = this->groupState().production_control(group.name()); if ( currentProductionControl == Group::ProductionCMode::GRAT ) { ss << "Group " + group.name() + " has sale rate less then minimum permitted value and is under GRAT control. \n"; ss << "The GRAT is increased to meet the sales minimum rate. \n"; this->groupState().update_grat_sales_target(group.name(), production_target); //} else if () {//TODO add action for WGASPROD //} else if () {//TODO add action for drilling queue } else { ss << "Group " + group.name() + " has sale rate less then minimum permitted value but cannot increase the group production rate \n"; ss << "or adjust gas production using WGASPROD or drill new wells to meet the sales target. \n"; ss << "Note that WGASPROD and drilling queues are not implemented in Flow. No action is taken. \n "; } } if (gconsale.sales_target < 0.0) { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + " has sale rate target less then zero. Not implemented in Flow" , deferred_logger); } if (!ss.str().empty() && comm_.rank() == 0) deferred_logger.info(ss.str()); } void BlackoilWellModelGeneric:: checkGroupHigherConstraints(const Group& group, DeferredLogger& deferred_logger, const int reportStepIdx, std::set& switched_groups) { // Set up coefficients for RESV <-> surface rate conversion. // Use the pvtRegionIdx from the top cell of the first well. // TODO fix this! // This is only used for converting RESV rates. // What is the proper approach? const int fipnum = 0; int pvtreg = well_perf_data_.empty() || well_perf_data_[0].empty() ? pvt_region_idx_[0] : pvt_region_idx_[well_perf_data_[0][0].cell_index]; if ( comm_.size() > 1) { // Just like in the sequential case the pvtregion is determined // by the first cell of the first well. What is the first well // is decided by the order in the Schedule using Well::seqIndex() int firstWellIndex = well_perf_data_.empty() ? std::numeric_limits::max() : wells_ecl_[0].seqIndex(); auto regIndexPair = std::make_pair(pvtreg, firstWellIndex); std::vector pairs(comm_.size()); comm_.allgather(®IndexPair, 1, pairs.data()); pvtreg = std::min_element(pairs.begin(), pairs.end(), [](const auto& p1, const auto& p2){ return p1.second < p2.second;}) ->first; } std::vector rates(phase_usage_.num_phases, 0.0); const bool skip = switched_groups.count(group.name()) || group.name() == "FIELD"; if (!skip && group.isInjectionGroup()) { // Obtain rates for group. std::vector resv_coeff_inj(phase_usage_.num_phases, 0.0); calcInjRates(fipnum, pvtreg, resv_coeff_inj); for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) { const double local_current_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ true); // Sum over all processes rates[phasePos] = comm_.sum(local_current_rate); } const Phase all[] = { Phase::WATER, Phase::OIL, Phase::GAS }; for (Phase phase : all) { // Check higher up only if under individual (not FLD) control. auto currentControl = this->groupState().injection_control(group.name(), phase); if (currentControl != Group::InjectionCMode::FLD && group.injectionGroupControlAvailable(phase)) { const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx); const std::pair changed = WellGroupHelpers::checkGroupConstraintsInj( group.name(), group.parent(), parentGroup, this->wellState(), this->groupState(), reportStepIdx, &guideRate_, rates.data(), phase, phase_usage_, group.getGroupEfficiencyFactor(), schedule(), summaryState_, resv_coeff_inj, deferred_logger); if (changed.first) { switched_groups.insert(group.name()); actionOnBrokenConstraints(group, Group::InjectionCMode::FLD, phase, deferred_logger); WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed.second, group, schedule(), reportStepIdx, /* isInjector */ true, this->groupState(), this->wellState()); } } } } if (!skip && group.isProductionGroup()) { // Obtain rates for group. for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) { const double local_current_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ false); // Sum over all processes rates[phasePos] = -comm_.sum(local_current_rate); } std::vector resv_coeff(phase_usage_.num_phases, 0.0); calcRates(fipnum, pvtreg, resv_coeff); // Check higher up only if under individual (not FLD) control. const Group::ProductionCMode& currentControl = this->groupState().production_control(group.name()); if (currentControl != Group::ProductionCMode::FLD && group.productionGroupControlAvailable()) { const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx); const std::pair changed = WellGroupHelpers::checkGroupConstraintsProd( group.name(), group.parent(), parentGroup, this->wellState(), this->groupState(), reportStepIdx, &guideRate_, rates.data(), phase_usage_, group.getGroupEfficiencyFactor(), schedule(), summaryState_, resv_coeff, deferred_logger); if (changed.first) { switched_groups.insert(group.name()); const auto exceed_action = group.productionControls(summaryState_).exceed_action; actionOnBrokenConstraints(group, exceed_action, Group::ProductionCMode::FLD, deferred_logger); WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState()); } } } // call recursively down the group hiearchy for (const std::string& groupName : group.groups()) { checkGroupHigherConstraints( schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx, switched_groups); } } void BlackoilWellModelGeneric:: updateGroupIndividualControl(const Group& group, DeferredLogger& deferred_logger, const int reportStepIdx, std::set& switched_groups) { const bool skip = switched_groups.count(group.name()); if (!skip && group.isInjectionGroup()) { const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS}; for (Phase phase : all) { if (!group.hasInjectionControl(phase)) { continue; } const auto& changed = checkGroupInjectionConstraints(group, reportStepIdx, phase); if (changed.first != Group::InjectionCMode::NONE) { switched_groups.insert(group.name()); actionOnBrokenConstraints(group, changed.first, phase, deferred_logger); WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState()); } } } if (!skip && group.isProductionGroup()) { const auto& changed = checkGroupProductionConstraints(group, reportStepIdx, deferred_logger); const auto controls = group.productionControls(summaryState_); if (changed.first != Group::ProductionCMode::NONE) { switched_groups.insert(group.name()); actionOnBrokenConstraints(group, controls.exceed_action, changed.first, deferred_logger); WellGroupHelpers::updateWellRatesFromGroupTargetScale(changed.second, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState()); } } // call recursively down the group hiearchy for (const std::string& groupName : group.groups()) { updateGroupIndividualControl( schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx, switched_groups); } } void BlackoilWellModelGeneric:: updateGroupIndividualControls(DeferredLogger& deferred_logger, std::set& switched_groups, const int reportStepIdx, const int iterationIdx) { const int nupcol = schedule()[reportStepIdx].nupcol(); // don't switch group control when iterationIdx > nupcol // to avoid oscilations between group controls if (iterationIdx > nupcol) return; const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); updateGroupIndividualControl(fieldGroup, deferred_logger, reportStepIdx, switched_groups); } void BlackoilWellModelGeneric:: updateGroupHigherControls(DeferredLogger& deferred_logger, const int reportStepIdx, std::set& switched_groups) { const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); checkGroupHigherConstraints(fieldGroup, deferred_logger, reportStepIdx, switched_groups); } void BlackoilWellModelGeneric:: actionOnBrokenConstraints(const Group& group, const Group::ExceedAction& exceed_action, const Group::ProductionCMode& newControl, DeferredLogger& deferred_logger) { const Group::ProductionCMode oldControl = this->groupState().production_control(group.name()); std::ostringstream ss; switch(exceed_action) { case Group::ExceedAction::NONE: { if (oldControl != newControl && oldControl != Group::ProductionCMode::NONE) { ss << "Group production exceed action is NONE for group " + group.name() + ". Nothing happens."; } break; } case Group::ExceedAction::CON: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON not implemented", deferred_logger); break; } case Group::ExceedAction::CON_PLUS: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit CON_PLUS not implemented", deferred_logger); break; } case Group::ExceedAction::WELL: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit WELL not implemented", deferred_logger); break; } case Group::ExceedAction::PLUG: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GroupProductionExceedLimit PLUG not implemented", deferred_logger); break; } case Group::ExceedAction::RATE: { if (oldControl != newControl) { this->groupState().production_control(group.name(), newControl); ss << "Switching production control mode for group "<< group.name() << " from " << Group::ProductionCMode2String(oldControl) << " to " << Group::ProductionCMode2String(newControl); } break; } default: throw("Invalid procedure for maximum rate limit selected for group" + group.name()); } auto cc = Dune::MPIHelper::getCollectiveCommunication(); if (!ss.str().empty() && cc.rank() == 0) deferred_logger.info(ss.str()); } void BlackoilWellModelGeneric:: actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& controlPhase, DeferredLogger& deferred_logger) { auto oldControl = this->groupState().injection_control(group.name(), controlPhase); std::ostringstream ss; if (oldControl != newControl) { const std::string from = Group::InjectionCMode2String(oldControl); ss << "Switching injection control mode for group "<< group.name() << " from " << Group::InjectionCMode2String(oldControl) << " to " << Group::InjectionCMode2String(newControl); this->groupState().injection_control(group.name(), controlPhase, newControl); } auto cc = Dune::MPIHelper::getCollectiveCommunication(); if (!ss.str().empty() && cc.rank() == 0) deferred_logger.info(ss.str()); } void BlackoilWellModelGeneric:: updateEclWells(const int timeStepIdx, const std::unordered_set& wells) { for (const auto& wname : wells) { auto well_iter = std::find_if( this->wells_ecl_.begin(), this->wells_ecl_.end(), [wname] (const auto& well) -> bool { return well.name() == wname;}); if (well_iter != this->wells_ecl_.end()) { auto well_index = std::distance( this->wells_ecl_.begin(), well_iter ); this->wells_ecl_[well_index] = schedule_.getWell(wname, timeStepIdx); const auto& well = this->wells_ecl_[well_index]; auto& pd = this->well_perf_data_[well_index]; auto pdIter = pd.begin(); for (const auto& conn : well.getConnections()) { if (conn.state() != Connection::State::SHUT) { pdIter->connection_transmissibility_factor = conn.CF(); ++pdIter; } } this->wellState().updateStatus(well_index, well.getStatus()); this->wellState().resetConnectionTransFactors(well_index, pd); this->prod_index_calc_[well_index].reInit(well); } } } double BlackoilWellModelGeneric:: wellPI(const int well_index) const { const auto& pu = this->phase_usage_; const auto& pi = this->wellState().well(well_index).productivity_index; const auto preferred = this->wells_ecl_[well_index].getPreferredPhase(); switch (preferred) { // Should really have LIQUID = OIL + WATER here too... case Phase::WATER: return pu.phase_used[BlackoilPhases::PhaseIndex::Aqua] ? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Aqua]] : 0.0; case Phase::OIL: return pu.phase_used[BlackoilPhases::PhaseIndex::Liquid] ? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Liquid]] : 0.0; case Phase::GAS: return pu.phase_used[BlackoilPhases::PhaseIndex::Vapour] ? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Vapour]] : 0.0; default: throw std::invalid_argument { "Unsupported preferred phase " + std::to_string(static_cast(preferred)) }; } } double BlackoilWellModelGeneric:: wellPI(const std::string& well_name) const { auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(), [&well_name](const Well& well) { return well.name() == well_name; }); if (well_iter == this->wells_ecl_.end()) { throw std::logic_error { "Could not find well: " + well_name }; } auto well_index = std::distance(this->wells_ecl_.begin(), well_iter); return this->wellPI(well_index); } bool BlackoilWellModelGeneric:: wasDynamicallyShutThisTimeStep(const int well_index) const { return this->closed_this_step_.find(this->wells_ecl_[well_index].name()) != this->closed_this_step_.end(); } void BlackoilWellModelGeneric:: updateWsolvent(const Group& group, const int reportStepIdx, const WellState& wellState) { for (const std::string& groupName : group.groups()) { const Group& groupTmp = schedule_.getGroup(groupName, reportStepIdx); updateWsolvent(groupTmp, reportStepIdx, wellState); } if (group.isProductionGroup()) return; auto currentGroupControl = this->groupState().injection_control(group.name(), Phase::GAS); if( currentGroupControl == Group::InjectionCMode::REIN ) { int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour]; const auto& controls = group.injectionControls(Phase::GAS, summaryState_); const Group& groupRein = schedule_.getGroup(controls.reinj_group, reportStepIdx); double gasProductionRate = WellGroupHelpers::sumWellSurfaceRates(groupRein, schedule_, wellState, reportStepIdx, gasPos, /*isInjector*/false); double solventProductionRate = WellGroupHelpers::sumSolventRates(groupRein, schedule_, wellState, reportStepIdx, /*isInjector*/false); solventProductionRate = comm_.sum(solventProductionRate); gasProductionRate = comm_.sum(gasProductionRate); double wsolvent = 0.0; if (std::abs(gasProductionRate) > 1e-6) wsolvent = solventProductionRate / gasProductionRate; setWsolvent(group, reportStepIdx, wsolvent); } } void BlackoilWellModelGeneric:: setWsolvent(const Group& group, const int reportStepIdx, double wsolvent) { for (const std::string& groupName : group.groups()) { const Group& groupTmp = schedule_.getGroup(groupName, reportStepIdx); setWsolvent(groupTmp, reportStepIdx, wsolvent); } for (const std::string& wellName : group.wells()) { const auto& wellTmp = schedule_.getWell(wellName, reportStepIdx); if (wellTmp.getStatus() == Well::Status::SHUT) continue; getGenWell(wellName)->setWsolvent(wsolvent); } } data::GuideRateValue BlackoilWellModelGeneric:: getGuideRateValues(const Well& well) const { auto grval = data::GuideRateValue{}; const auto& wname = well.name(); if (!this->wellState().has(wname)) { // No flow rates for 'wname' -- might be before well comes // online (e.g., for the initial condition before simulation // starts). return grval; } if (!this->guideRate_.has(wname)) { // No guiderates exist for 'wname'. return grval; } const auto qs = WellGroupHelpers:: getWellRateVector(this->wellState(), this->phase_usage_, wname); this->getGuideRateValues(qs, well.isInjector(), wname, grval); return grval; } void BlackoilWellModelGeneric:: getGuideRateValues(const GuideRate::RateVector& qs, const bool is_inj, const std::string& wgname, data::GuideRateValue& grval) const { auto getGR = [this, &wgname, &qs](const GuideRateModel::Target t) { return this->guideRate_.getSI(wgname, t, qs); }; // Note: GuideRate does currently (2020-07-20) not support Target::RES. grval.set(data::GuideRateValue::Item::Gas, getGR(GuideRateModel::Target::GAS)); grval.set(data::GuideRateValue::Item::Water, getGR(GuideRateModel::Target::WAT)); if (!is_inj) { // Producer. Extract "all" guiderate values. grval.set(data::GuideRateValue::Item::Oil, getGR(GuideRateModel::Target::OIL)); } } data::GuideRateValue BlackoilWellModelGeneric:: getGuideRateValues(const Group& group) const { auto grval = data::GuideRateValue{}; const auto& gname = group.name(); if (!this->groupState().has_production_rates(gname)) { // No flow rates for production group 'gname' -- might be before group comes // online (e.g., for the initial condition before simulation // starts). return grval; } if (!this->guideRate_.has(gname)) { // No guiderates exist for 'gname'. return grval; } const auto qs = WellGroupHelpers::getProductionGroupRateVector(this->groupState(), this->phase_usage_, gname); const auto is_inj = false; // This procedure only applies to G*PGR. this->getGuideRateValues(qs, is_inj, gname, grval); return grval; } data::GuideRateValue BlackoilWellModelGeneric:: getGuideRateInjectionGroupValues(const Group& group) const { auto grval = data::GuideRateValue{}; const auto& gname = group.name(); if (this->guideRate_.has(gname, Phase::GAS)) { grval.set(data::GuideRateValue::Item::Gas, this->guideRate_.get(gname, Phase::GAS)); } if (this->guideRate_.has(gname, Phase::WATER)) { grval.set(data::GuideRateValue::Item::Water, this->guideRate_.get(gname, Phase::WATER)); } return grval; } void BlackoilWellModelGeneric:: assignWellGuideRates(data::Wells& wsrpt) const { for (const auto& well : this->wells_ecl_) { auto xwPos = wsrpt.find(well.name()); if (xwPos == wsrpt.end()) { // No well results. Unexpected. continue; } xwPos->second.guide_rates = this->getGuideRateValues(well); } } void BlackoilWellModelGeneric:: assignShutConnections(data::Wells& wsrpt, const int reportStepIndex) const { auto wellID = 0; for (const auto& well : this->wells_ecl_) { auto& xwel = wsrpt[well.name()]; // data::Wells is a std::map<> xwel.dynamicStatus = this->schedule() .getWell(well.name(), reportStepIndex).getStatus(); const auto wellIsOpen = xwel.dynamicStatus == Well::Status::OPEN; auto skip = [wellIsOpen](const Connection& conn) { return wellIsOpen && (conn.state() != Connection::State::SHUT); }; if (this->wellTestState().hasWellClosed(well.name()) && !this->wasDynamicallyShutThisTimeStep(wellID)) { xwel.dynamicStatus = well.getAutomaticShutIn() ? Well::Status::SHUT : Well::Status::STOP; } auto& xcon = xwel.connections; for (const auto& conn : well.getConnections()) { if (skip(conn)) { continue; } auto& xc = xcon.emplace_back(); xc.index = conn.global_index(); xc.pressure = xc.reservoir_rate = 0.0; xc.effective_Kh = conn.Kh(); xc.trans_factor = conn.CF(); } ++wellID; } } std::unordered_map BlackoilWellModelGeneric:: calculateAllGroupGuiderates(const int reportStepIdx) const { auto gr = std::unordered_map{}; auto up = std::vector{}; // Start at well level, accumulate contributions towards root of // group tree (FIELD group). for (const auto& wname : schedule_.wellNames(reportStepIdx)) { if (! (this->wellState().has(wname) && this->guideRate_.has(wname))) { continue; } const auto& well = schedule_.getWell(wname, reportStepIdx); const auto& parent = well.groupName(); if (parent == "FIELD") { // Well parented directly to "FIELD". Inadvisable and // unexpected, but nothing to do about that here. Just skip // this guide rate contribution. continue; } auto& grval = well.isInjector() ? gr[parent].injection : gr[parent].production; grval += this->getGuideRateValues(well); up.push_back(parent); } // Propagate accumulated guide rates up towards root of group tree. // Override accumulation if there is a GUIDERAT specification that // applies to a group. std::sort(up.begin(), up.end()); auto start = 0*up.size(); auto u = std::unique(up.begin(), up.end()); auto nu = std::distance(up.begin(), u); while (nu > 0) { const auto ntot = up.size(); for (auto gi = 0*nu; gi < nu; ++gi) { const auto& gname = up[start + gi]; const auto& group = schedule_.getGroup(gname, reportStepIdx); if (this->guideRate_.has(gname)) { gr[gname].production = this->getGuideRateValues(group); } if (this->guideRate_.has(gname, Phase::WATER) || this->guideRate_.has(gname, Phase::GAS)) { gr[gname].injection = this->getGuideRateInjectionGroupValues(group); } const auto parent = group.parent(); if (parent == "FIELD") { continue; } gr[parent].injection += gr[gname].injection; gr[parent].production += gr[gname].production; up.push_back(parent); } start = ntot; auto begin = up.begin() + ntot; std::sort(begin, up.end()); u = std::unique(begin, up.end()); nu = std::distance(begin, u); } return gr; } void BlackoilWellModelGeneric:: assignGroupControl(const Group& group, data::GroupData& gdata) const { const auto& gname = group.name(); const auto grup_type = group.getGroupType(); auto& cgc = gdata.currentControl; cgc.currentProdConstraint = Group::ProductionCMode::NONE; cgc.currentGasInjectionConstraint = cgc.currentWaterInjectionConstraint = Group::InjectionCMode::NONE; if (this->groupState().has_production_control(gname)) { cgc.currentProdConstraint = this->groupState().production_control(gname); } if ((grup_type == ::Opm::Group::GroupType::INJECTION) || (grup_type == ::Opm::Group::GroupType::MIXED)) { if (this->groupState().has_injection_control(gname, Phase::WATER)) { cgc.currentWaterInjectionConstraint = this->groupState().injection_control(gname, Phase::WATER); } if (this->groupState().has_injection_control(gname, Phase::GAS)) { cgc.currentGasInjectionConstraint = this->groupState().injection_control(gname, Phase::GAS); } } } void BlackoilWellModelGeneric:: assignGroupGuideRates(const Group& group, const std::unordered_map& groupGuideRates, data::GroupData& gdata) const { auto& prod = gdata.guideRates.production; prod.clear(); auto& inj = gdata.guideRates.injection; inj .clear(); auto xgrPos = groupGuideRates.find(group.name()); if ((xgrPos == groupGuideRates.end()) || !this->guideRate_.has(group.name())) { // No guiderates defined for this group. return; } const auto& xgr = xgrPos->second; prod = xgr.production; inj = xgr.injection; } void BlackoilWellModelGeneric:: assignGroupValues(const int reportStepIdx, std::map& gvalues) const { const auto groupGuideRates = this->calculateAllGroupGuiderates(reportStepIdx); for (const auto& gname : schedule_.groupNames(reportStepIdx)) { const auto& grup = schedule_.getGroup(gname, reportStepIdx); auto& gdata = gvalues[gname]; this->assignGroupControl(grup, gdata); this->assignGroupGuideRates(grup, groupGuideRates, gdata); } } void BlackoilWellModelGeneric:: assignNodeValues(std::map& nodevalues) const { nodevalues.clear(); for (const auto& [node, pressure] : node_pressures_) { nodevalues.emplace(node, data::NodeData{pressure}); } } data::GroupAndNetworkValues BlackoilWellModelGeneric:: groupAndNetworkData(const int reportStepIdx) const { auto grp_nwrk_values = data::GroupAndNetworkValues{}; this->assignGroupValues(reportStepIdx, grp_nwrk_values.groupData); this->assignNodeValues(grp_nwrk_values.nodeData); return grp_nwrk_values; } void BlackoilWellModelGeneric:: updateAndCommunicateGroupData(const int reportStepIdx, const int iterationIdx) { const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); const int nupcol = schedule()[reportStepIdx].nupcol(); // This builds some necessary lookup structures, so it must be called // before we copy to well_state_nupcol_. this->wellState().updateGlobalIsGrup(comm_); if (iterationIdx < nupcol) { this->updateNupcolWGState(); } auto& well_state = this->wellState(); const auto& well_state_nupcol = this->nupcolWellState(); // the group target reduction rates needs to be update since wells may have switched to/from GRUP control // The group target reduction does not honor NUPCOL. std::vector groupTargetReduction(numPhases(), 0.0); WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ false, phase_usage_, guideRate_, well_state, this->groupState(), groupTargetReduction); std::vector groupTargetReductionInj(numPhases(), 0.0); WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ true, phase_usage_, guideRate_, well_state, this->groupState(), groupTargetReductionInj); WellGroupHelpers::updateREINForGroups(fieldGroup, schedule(), reportStepIdx, phase_usage_, summaryState_, well_state_nupcol, this->groupState()); WellGroupHelpers::updateVREPForGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState()); WellGroupHelpers::updateReservoirRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState()); WellGroupHelpers::updateSurfaceRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState()); WellGroupHelpers::updateGroupProductionRates(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState()); // We use the rates from the previous time-step to reduce oscillations WellGroupHelpers::updateWellRates(fieldGroup, schedule(), reportStepIdx, this->prevWellState(), well_state); // Set ALQ for off-process wells to zero for (const auto& wname : schedule().wellNames(reportStepIdx)) { const bool is_producer = schedule().getWell(wname, reportStepIdx).isProducer(); const bool not_on_this_process = !well_state.has(wname); if (is_producer && not_on_this_process) { well_state.setALQ(wname, 0.0); } } well_state.communicateGroupRates(comm_); this->groupState().communicate_rates(comm_); // compute wsolvent fraction for REIN wells updateWsolvent(fieldGroup, reportStepIdx, well_state_nupcol); } bool BlackoilWellModelGeneric:: hasTHPConstraints() const { int local_result = false; for (const auto& well : well_container_generic_) { if (well->wellHasTHPConstraints(summaryState_)) { local_result=true; } } return comm_.max(local_result); } bool BlackoilWellModelGeneric:: forceShutWellByNameIfPredictionMode(const std::string& wellname, const double simulation_time) { // Only add the well to the closed list on the // process that owns it. int well_was_shut = 0; for (const auto& well : well_container_generic_) { if (well->name() == wellname && !well->wellIsStopped()) { if (well->underPredictionMode()) { wellTestState().closeWell(wellname, WellTestConfig::Reason::PHYSICAL, simulation_time); well_was_shut = 1; } break; } } // Communicate across processes if a well was shut. well_was_shut = comm_.max(well_was_shut); // Only log a message on the output rank. if (terminal_output_ && well_was_shut) { const std::string msg = "Well " + wellname + " will be shut because it cannot get converged."; OpmLog::info(msg); } return (well_was_shut == 1); } void BlackoilWellModelGeneric:: inferLocalShutWells() { this->local_shut_wells_.clear(); const auto nw = this->numLocalWells(); auto used = std::vector(nw, false); for (const auto& wellPtr : this->well_container_generic_) { used[wellPtr->indexOfWell()] = true; } for (auto wellID = 0; wellID < nw; ++wellID) { if (! used[wellID]) { this->local_shut_wells_.push_back(wellID); } } } void BlackoilWellModelGeneric:: updateNetworkPressures(const int reportStepIdx) { // Get the network and return if inactive. const auto& network = schedule()[reportStepIdx].network(); if (!network.active()) { return; } node_pressures_ = WellGroupHelpers::computeNetworkPressures(network, this->wellState(), this->groupState(), *(vfp_properties_->getProd()), schedule(), reportStepIdx); // Set the thp limits of wells for (auto& well : well_container_generic_) { // Producers only, since we so far only support the // "extended" network model (properties defined by // BRANPROP and NODEPROP) which only applies to producers. if (well->isProducer()) { const auto it = node_pressures_.find(well->wellEcl().groupName()); if (it != node_pressures_.end()) { // The well belongs to a group with has a network pressure constraint, // set the dynamic THP constraint of the well accordingly. well->setDynamicThpLimit(it->second); } } } } void BlackoilWellModelGeneric:: calculateEfficiencyFactors(const int reportStepIdx) { if ( !localWellsActive() ) { return; } for (auto& well : well_container_generic_) { const Well& wellEcl = well->wellEcl(); double well_efficiency_factor = wellEcl.getEfficiencyFactor(); WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), reportStepIdx), schedule(), reportStepIdx, well_efficiency_factor); well->setWellEfficiencyFactor(well_efficiency_factor); } } WellInterfaceGeneric* BlackoilWellModelGeneric:: getGenWell(const std::string& well_name) { // finding the iterator of the well in wells_ecl auto well = std::find_if(well_container_generic_.begin(), well_container_generic_.end(), [&well_name](const WellInterfaceGeneric* elem)->bool { return elem->name() == well_name; }); assert(well != well_container_generic_.end()); return *well; } void BlackoilWellModelGeneric:: setRepRadiusPerfLength() { for (const auto& well : well_container_generic_) { well->setRepRadiusPerfLength(cartesian_to_compressed_); } } void BlackoilWellModelGeneric:: gliftDebug(const std::string& msg, DeferredLogger& deferred_logger) const { if (this->glift_debug) { const std::string message = fmt::format( " GLIFT (DEBUG) : BlackoilWellModel : {}", msg); deferred_logger.info(message); } } void BlackoilWellModelGeneric:: gliftDebugShowALQ(DeferredLogger& deferred_logger) { for (auto& well : this->well_container_generic_) { if (well->isProducer()) { auto alq = this->wellState().getALQ(well->name()); const std::string msg = fmt::format("ALQ_REPORT : {} : {}", well->name(), alq); gliftDebug(msg, deferred_logger); } } } // If a group has any production rate constraints, and/or a limit // on its total rate of lift gas supply, allocate lift gas // preferentially to the wells that gain the most benefit from // it. Lift gas increments are allocated in turn to the well that // currently has the largest weighted incremental gradient. The // procedure takes account of any limits on the group production // rate or lift gas supply applied to any level of group. void BlackoilWellModelGeneric:: gasLiftOptimizationStage2(DeferredLogger& deferred_logger, GLiftProdWells& prod_wells, GLiftOptWells& glift_wells, GLiftWellStateMap& glift_well_state_map, const int episodeIndex) { GasLiftStage2 glift {episodeIndex, comm_, schedule_, summaryState_, deferred_logger, this->wellState(), prod_wells, glift_wells, glift_well_state_map}; glift.runOptimize(); } void BlackoilWellModelGeneric:: updateWellPotentials(const int reportStepIdx, const bool onlyAfterEvent, const SummaryConfig& summaryConfig, DeferredLogger& deferred_logger) { auto well_state_copy = this->wellState(); const bool write_restart_file = schedule().write_rst_file(reportStepIdx); auto exc_type = ExceptionType::NONE; std::string exc_msg; size_t widx = 0; for (const auto& well : well_container_generic_) { const bool needed_for_summary = ((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) || summaryConfig.hasSummaryKey( "WOPI:" + well->name()) || summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->isInjector()) || ((summaryConfig.hasKeyword( "GWPI") || summaryConfig.hasKeyword( "GOPI") || summaryConfig.hasKeyword( "GGPI")) && well->isInjector()) || ((summaryConfig.hasKeyword( "FWPI") || summaryConfig.hasKeyword( "FOPI") || summaryConfig.hasKeyword( "FGPI")) && well->isInjector()) || ((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) || summaryConfig.hasSummaryKey( "WOPP:" + well->name()) || summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->isProducer()) || ((summaryConfig.hasKeyword( "GWPP") || summaryConfig.hasKeyword( "GOPP") || summaryConfig.hasKeyword( "GGPP")) && well->isProducer()) || ((summaryConfig.hasKeyword( "FWPP") || summaryConfig.hasKeyword( "FOPP") || summaryConfig.hasKeyword( "FGPP")) && well->isProducer()); // At the moment, the following events are considered // for potentials update const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::COMPLETION_CHANGE + ScheduleEvents::WELL_PRODUCTIVITY_INDEX + ScheduleEvents::WELL_WELSPECS_UPDATE + ScheduleEvents::WELLGROUP_EFFICIENCY_UPDATE + ScheduleEvents::NEW_WELL + ScheduleEvents::PRODUCTION_UPDATE + ScheduleEvents::INJECTION_UPDATE; const auto& events = schedule()[reportStepIdx].wellgroup_events(); const bool event = events.hasEvent(well->name(), ScheduleEvents::ACTIONX_WELL_EVENT) || (report_step_starts_ && events.hasEvent(well->name(), effective_events_mask)); const bool needPotentialsForGuideRates = well->underPredictionMode() && (!onlyAfterEvent || event); const bool needPotentialsForOutput = !onlyAfterEvent && (needed_for_summary || write_restart_file); const bool compute_potential = needPotentialsForOutput || needPotentialsForGuideRates; if (compute_potential) { this->computePotentials(widx, well_state_copy, exc_msg, exc_type, deferred_logger); } ++widx; } logAndCheckForExceptionsAndThrow(deferred_logger, exc_type, "computeWellPotentials() failed: " + exc_msg, terminal_output_); } void BlackoilWellModelGeneric:: runWellPIScaling(const int timeStepIdx, DeferredLogger& local_deferredLogger) { if (this->last_run_wellpi_.has_value() && (*this->last_run_wellpi_ == timeStepIdx)) { // We've already run WELPI scaling for this report step. Most // common for the very first report step. Don't redo WELPI scaling. return; } auto hasWellPIEvent = [this, timeStepIdx](const int well_index) -> bool { return this->schedule()[timeStepIdx].wellgroup_events() .hasEvent(this->wells_ecl_[well_index].name(), ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX); }; auto updateEclWell = [this, timeStepIdx](const int well_index) -> void { const auto& schedule = this->schedule(); const auto& wname = this->wells_ecl_[well_index].name(); this->wells_ecl_[well_index] = schedule.getWell(wname, timeStepIdx); const auto& well = this->wells_ecl_[well_index]; auto& pd = this->well_perf_data_[well_index]; auto pdIter = pd.begin(); for (const auto& conn : well.getConnections()) { if (conn.state() != Connection::State::SHUT) { pdIter->connection_transmissibility_factor = conn.CF(); ++pdIter; } } this->wellState().resetConnectionTransFactors(well_index, pd); this->prod_index_calc_[well_index].reInit(well); }; auto rescaleWellPI = [this, timeStepIdx](const int well_index, const double newWellPI) -> void { const auto& wname = this->wells_ecl_[well_index].name(); schedule_.applyWellProdIndexScaling(wname, timeStepIdx, newWellPI); }; // Minimal well setup to compute PI/II values { auto saved_previous_wgstate = this->prevWGState(); this->commitWGState(); this->createWellContainer(timeStepIdx); this->inferLocalShutWells(); this->initWellContainer(); this->calculateProductivityIndexValues(local_deferredLogger); this->calculateProductivityIndexValuesShutWells(timeStepIdx, local_deferredLogger); this->commitWGState(std::move(saved_previous_wgstate)); } const auto nw = this->numLocalWells(); for (auto wellID = 0*nw; wellID < nw; ++wellID) { if (hasWellPIEvent(wellID)) { rescaleWellPI(wellID, this->wellPI(wellID)); updateEclWell(wellID); } } this->last_run_wellpi_ = timeStepIdx; } }