/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template WellInterfaceFluidSystem:: WellInterfaceFluidSystem(const Well& well, const ParallelWellInfo& parallel_well_info, const int time_step, const RateConverterType& rate_converter, const int pvtRegionIdx, const int num_components, const int num_phases, const int index_of_well, const std::vector& perf_data) : WellInterfaceGeneric(well, parallel_well_info, time_step, pvtRegionIdx, num_components, num_phases, index_of_well, perf_data) , rateConverter_(rate_converter) { } template void WellInterfaceFluidSystem:: calculateReservoirRates(SingleWellState& ws) const { const int fipreg = 0; // not considering the region for now const int np = number_of_phases_; std::vector surface_rates(np, 0.0); for (int p = 0; p < np; ++p) { surface_rates[p] = ws.surface_rates[p]; } std::vector voidage_rates(np, 0.0); rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates); ws.reservoir_rates = voidage_rates; } template Well::ProducerCMode WellInterfaceFluidSystem:: activeProductionConstraint(const SingleWellState& ws, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { const PhaseUsage& pu = this->phaseUsage(); const auto controls = this->well_ecl_.productionControls(summaryState); const auto currentControl = ws.production_cmode; if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP) { const double bhp_limit = controls.bhp_limit; double current_bhp = ws.bhp; if (bhp_limit > current_bhp) return Well::ProducerCMode::BHP; } if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) { double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]]; if (controls.oil_rate < current_rate) return Well::ProducerCMode::ORAT; } if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT) { double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]]; if (controls.water_rate < current_rate) return Well::ProducerCMode::WRAT; } if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT) { double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Vapour]]; if (controls.gas_rate < current_rate) return Well::ProducerCMode::GRAT; } if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) { double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]]; current_rate -= ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]]; bool skip = false; if (controls.liquid_rate == controls.oil_rate) { const double current_water_rate = ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]]; if (std::abs(current_water_rate) < 1e-12) { skip = true; deferred_logger.debug("LRAT_ORAT_WELL", "Well " + this->name() + " The LRAT target is equal the ORAT target and the water rate is zero, skip checking LRAT"); } } if (!skip && controls.liquid_rate < current_rate) return Well::ProducerCMode::LRAT; } if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV) { double current_rate = 0.0; if (pu.phase_used[BlackoilPhases::Aqua]) current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Aqua]]; if (pu.phase_used[BlackoilPhases::Liquid]) current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Liquid]]; if (pu.phase_used[BlackoilPhases::Vapour]) current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Vapour]]; if (controls.prediction_mode && controls.resv_rate < current_rate) return Well::ProducerCMode::RESV; if (!controls.prediction_mode) { const int fipreg = 0; // not considering the region for now const int np = number_of_phases_; std::vector surface_rates(np, 0.0); if (pu.phase_used[BlackoilPhases::Aqua]) surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate; if (pu.phase_used[BlackoilPhases::Liquid]) surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate; if (pu.phase_used[BlackoilPhases::Vapour]) surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate; std::vector voidage_rates(np, 0.0); rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates); double resv_rate = 0.0; for (int p = 0; p < np; ++p) resv_rate += voidage_rates[p]; if (resv_rate < current_rate) return Well::ProducerCMode::RESV; } } if (controls.hasControl(Well::ProducerCMode::THP) && currentControl != Well::ProducerCMode::THP) { const auto& thp = getTHPConstraint(summaryState); double current_thp = ws.thp; if (thp > current_thp && !ws.trivial_target) { // If WVFPEXP item 4 is set to YES1 or YES2 // switching to THP is prevented if the well will // produce at a higher rate with THP control const auto& wvfpexp = this->well_ecl_.getWVFPEXP(); bool rate_less_than_potential = true; if (wvfpexp.prevent()) { for (int p = 0; p < number_of_phases_; ++p) { // Currently we use the well potentials here computed before the iterations. // We may need to recompute the well potentials to get a more // accurate check here. rate_less_than_potential = rate_less_than_potential && (-ws.surface_rates[p]) <= ws.well_potentials[p]; } } if(!wvfpexp.prevent() || !rate_less_than_potential) { this->operability_status_.thp_limit_violated_but_not_switched = false; return Well::ProducerCMode::THP; } else { this->operability_status_.thp_limit_violated_but_not_switched = true; deferred_logger.info("NOT_SWITCHING_TO_THP", "The THP limit is violated for producer " + this->name() + ". But the rate will increase if switched to THP. " + "The well is therefore kept at " + Well::ProducerCMode2String(currentControl)); } } } return currentControl; } template Well::InjectorCMode WellInterfaceFluidSystem:: activeInjectionConstraint(const SingleWellState& ws, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { const PhaseUsage& pu = this->phaseUsage(); const auto controls = this->well_ecl_.injectionControls(summaryState); const auto currentControl = ws.injection_cmode; if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP) { const auto& bhp = controls.bhp_limit; double current_bhp = ws.bhp; if (bhp < current_bhp) return Well::InjectorCMode::BHP; } if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE) { InjectorType injectorType = controls.injector_type; double current_rate = 0.0; switch (injectorType) { case InjectorType::WATER: { current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Aqua] ]; break; } case InjectorType::OIL: { current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Liquid] ]; break; } case InjectorType::GAS: { current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Vapour] ]; break; } default: throw("Expected WATER, OIL or GAS as type for injectors " + this->well_ecl_.name()); } if (controls.surface_rate < current_rate) return Well::InjectorCMode::RATE; } if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV) { double current_rate = 0.0; if( pu.phase_used[BlackoilPhases::Aqua] ) current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Aqua] ]; if( pu.phase_used[BlackoilPhases::Liquid] ) current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Liquid] ]; if( pu.phase_used[BlackoilPhases::Vapour] ) current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Vapour] ]; if (controls.reservoir_rate < current_rate) return Well::InjectorCMode::RESV; } if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP) { const auto& thp = getTHPConstraint(summaryState); double current_thp = ws.thp; if (thp < current_thp) { bool rate_less_than_potential = true; for (int p = 0; p < number_of_phases_; ++p) { // Currently we use the well potentials here computed before the iterations. // We may need to recompute the well potentials to get a more // accurate check here. rate_less_than_potential = rate_less_than_potential && (ws.surface_rates[p]) <= ws.well_potentials[p]; } if(!rate_less_than_potential) { this->operability_status_.thp_limit_violated_but_not_switched = false; return Well::InjectorCMode::THP; } else { this->operability_status_.thp_limit_violated_but_not_switched = true; deferred_logger.debug("NOT_SWITCHING_TO_THP", "The THP limit is violated for injector " + this->name() + ". But the rate will increase if switched to THP. " + "The well is therefore kept at " + Well::InjectorCMode2String(currentControl)); } } } return currentControl; } template bool WellInterfaceFluidSystem:: checkIndividualConstraints(SingleWellState& ws, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { if (this->well_ecl_.isProducer()) { auto new_cmode = this->activeProductionConstraint(ws, summaryState, deferred_logger); if (new_cmode != ws.production_cmode) { ws.production_cmode = new_cmode; return true; } } if (this->well_ecl_.isInjector()) { auto new_cmode = this->activeInjectionConstraint(ws, summaryState, deferred_logger); if (new_cmode != ws.injection_cmode) { ws.injection_cmode = new_cmode; return true; } } return false; } template bool WellInterfaceFluidSystem:: checkGroupConstraints(WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { auto rCoeff = [this](const int id, const int region, std::vector& coeff) { this->rateConverter().calcCoeff(id, region, coeff); }; return WellGroupConstraints(*this).checkGroupConstraints(well_state, group_state, schedule, summaryState, rCoeff, deferred_logger); } template bool WellInterfaceFluidSystem:: checkConstraints(WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { const bool ind_broken = checkIndividualConstraints(well_state.well(this->index_of_well_), summaryState, deferred_logger); if (ind_broken) { return true; } else { return checkGroupConstraints(well_state, group_state, schedule, summaryState, deferred_logger); } } template int WellInterfaceFluidSystem:: flowPhaseToEbosPhaseIdx(const int phaseIdx) const { const auto& pu = this->phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx) return FluidSystem::waterPhaseIdx; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx) return FluidSystem::oilPhaseIdx; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx) return FluidSystem::gasPhaseIdx; // for other phases return the index return phaseIdx; } template std::optional WellInterfaceFluidSystem:: getGroupInjectionTargetRate(const Group& group, const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, double efficiencyFactor, DeferredLogger& deferred_logger) const { auto rCoeff = [this](const int id, const int region, std::vector& coeff) { this->rateConverter().calcCoeff(id, region, coeff); }; return WellGroupControls(*this).getGroupInjectionTargetRate(group, well_state, group_state, schedule, summaryState, injectorType, rCoeff, efficiencyFactor, deferred_logger); } template double WellInterfaceFluidSystem:: getGroupProductionTargetRate(const Group& group, const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, double efficiencyFactor) const { auto rCoeff = [this](const int id, const int region, std::vector& coeff) { this->rateConverter().calcCoeff(id, region, coeff); }; return WellGroupControls(*this).getGroupProductionTargetRate(group, well_state, group_state, schedule, summaryState, rCoeff, efficiencyFactor); } template class WellInterfaceFluidSystem>; } // namespace Opm