/***************************************************************************** * Copyright (C) 2008-2009 by Melanie Darcis * * Institute of Hydraulic Engineering * * University of Stuttgart, Germany * * email: .@iws.uni-stuttgart.de * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * * \brief The spatial parameters for the fully coupled tutorial problem * which uses the twophase box model. */ #ifndef DUMUX_TUTORIAL_SPATIAL_PARAMETERS_COUPLED_HH #define DUMUX_TUTORIAL_SPATIAL_PARAMETERS_COUPLED_HH // include parent spatialparameters #include // include material laws #include /*@\label{tutorial-coupled:rawLawInclude}@*/ #include namespace Dumux { //forward declaration template class TutorialSpatialParametersCoupled; namespace Properties { // The spatial parameters TypeTag NEW_TYPE_TAG(TutorialSpatialParametersCoupled);/*@\label{tutorial-coupled:define-spatialparameters-typetag}@*/ // Set the spatial parameters SET_TYPE_PROP(TutorialSpatialParametersCoupled, SpatialParameters, Dumux::TutorialSpatialParametersCoupled); /*@\label{tutorial-coupled:set-spatialparameters}@*/ // Set the material law SET_PROP(TutorialSpatialParametersCoupled, MaterialLaw) { private: // material law typedefs typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; // select material law to be used typedef RegularizedBrooksCorey RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/ public: // adapter for absolute law typedef EffToAbsLaw type; /*@\label{tutorial-coupled:eff2abs}@*/ }; } /*! * \ingroup TwoPBoxModel * * \brief The spatial parameters for the fully coupled tutorial problem * which uses the twophase box model. */ template class TutorialSpatialParametersCoupled: public BoxSpatialParameters /*@\label{tutorial-coupled:tutorialSpatialParameters}@*/ { // Get informations for current implementation via property system typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid; typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView; typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; enum { dim = Grid::dimension, dimWorld = Grid::dimensionworld, }; typedef Dune::FieldVector GlobalPosition; // Get object types for function arguments typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry; typedef typename Grid::Traits::template Codim<0>::Entity Element; public: // get material law from property system typedef typename GET_PROP_TYPE(TypeTag, PTAG(MaterialLaw)) MaterialLaw; // determine appropriate parameters depening on selected materialLaw typedef typename MaterialLaw::Params MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/ //! Intrinsic permeability tensor K \f$[m^2]\f$ depending /*! on the position in the domain * * \param element The finite volume element * \param fvElemGeom The finite-volume geometry in the box scheme * \param scvIdx The local vertex index * * Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ const Dune::FieldMatrix &intrinsicPermeability(const Element &element, /*@\label{tutorial-coupled:permeability}@*/ const FVElementGeometry &fvElemGeom, int scvIdx) const { return K_; } //! Define the porosity \f$[-]\f$ of the porous medium depending /*! on the position in the domain * * \param element The finite volume element * \param fvElemGeom The finite-volume geometry in the box scheme * \param scvIdx The local vertex index * * Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ double porosity(const Element &element, /*@\label{tutorial-coupled:porosity}@*/ const FVElementGeometry &fvElemGeom, int scvIdx) const { return 0.2; } /*! Return the parameter object for the material law (i.e. Brooks-Corey) * depending on the position in the domain * * \param element The finite volume element * \param fvElemGeom The finite-volume geometry in the box scheme * \param scvIdx The local vertex index * * Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos * is the vector including the global coordinates of the finite volume. */ const MaterialLawParams& materialLawParams(const Element &element, /*@\label{tutorial-coupled:matLawParams}@*/ const FVElementGeometry &fvElemGeom, int scvIdx) const { return materialParams_; } // constructor TutorialSpatialParametersCoupled(const GridView& gridView) : BoxSpatialParameters(gridView), K_(0) { //set main diagonal entries of the permeability tensor to a value //setting to one value means: isotropic, homogeneous for (int i = 0; i < dim; i++) K_[i][i] = 1e-7; //set residual saturations materialParams_.setSwr(0.0); /*@\label{tutorial-coupled:setLawParams}@*/ materialParams_.setSnr(0.0); //parameters of Brooks & Corey Law materialParams_.setPe(500.0); materialParams_.setLambda(2); } private: Dune::FieldMatrix K_; // Object that holds the values/parameters of the selected material law. MaterialLawParams materialParams_; /*@\label{tutorial-coupled:matParamsObject}@*/ }; } // end namespace #endif