/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for fully implicit three-phase black-oil flow ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
if (!use_deck) {
OPM_THROW(std::runtime_error, "This program must be run with an input deck. "
"Specify the deck with deck_filename=deckname.data (for example).");
}
boost::scoped_ptr deck;
boost::scoped_ptr grid;
boost::scoped_ptr props;
boost::scoped_ptr new_props;
// boost::scoped_ptr polymer_props;
PolymerState state;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
std::string deck_filename = param.get("deck_filename");
deck.reset(new EclipseGridParser(deck_filename));
// Grid init
grid.reset(new GridManager(*deck));
// use the capitalized part of the deck's filename between the
// last '/' and the last '.' character as base name.
std::string baseName = deck_filename;
auto charPos = baseName.rfind('/');
if (charPos != std::string::npos)
baseName = baseName.substr(charPos + 1);
charPos = baseName.rfind('.');
if (charPos != std::string::npos)
baseName = baseName.substr(0, charPos);
baseName = boost::to_upper_copy(baseName);
// Rock and fluid init
props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
new_props.reset(new IncompPropsAdFromDeck(*deck, *grid->c_grid()));
PolymerProperties polymer_props(*deck);
PolymerPropsAd polymer_props_ad(polymer_props);
// polymer_props.reset(new PolymerPropsAd(*deck, *grid->c_grid()));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Gravity.
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
} else {
initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
}
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
const double* grav = use_gravity ? &gravity[0] : 0;
// Linear solver.
LinearSolverFactory linsolver(param);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
std::string filename = output_dir + "/epoch_timing.param";
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
// open file to clean it. The file is appended to in SimulatorTwophase
filename = output_dir + "/step_timing.param";
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
step_os.close();
param.writeParam(output_dir + "/simulation.param");
}
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< " (number of epochs: "
<< (deck->numberOfEpochs()) << ")\n\n" << std::flush;
SimulatorReport rep;
// With a deck, we may have more epochs etc.
WellState well_state;
int step = 0;
SimulatorTimer simtimer;
// Use timer for last epoch to obtain total time.
deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
simtimer.init(*deck);
const double total_time = simtimer.totalTime();
// Check for WPOLYMER presence in last epoch to decide
// polymer injection control type.
const bool use_wpolymer = deck->hasField("WPOLYMER");
if (use_wpolymer) {
if (param.has("poly_start_days")) {
OPM_MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. "
"You seem to be trying to control it via parameter poly_start_days (etc.) as well.");
}
}
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
// Set epoch index.
deck->setCurrentEpoch(epoch);
// Update the timer.
if (deck->hasField("TSTEP")) {
simtimer.init(*deck);
} else {
if (epoch != 0) {
OPM_THROW(std::runtime_error, "No TSTEP in deck for epoch " << epoch);
}
simtimer.init(param);
}
simtimer.setCurrentStepNum(step);
simtimer.setTotalTime(total_time);
// Report on start of epoch.
std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------"
<< "\n (number of steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, polymer inflow controls.
WellsManager wells(*deck, *grid->c_grid(), props->permeability());
boost::scoped_ptr polymer_inflow;
if (use_wpolymer) {
if (wells.c_wells() == 0) {
OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells.");
}
polymer_inflow.reset(new PolymerInflowFromDeck(*deck, *wells.c_wells(), props->numCells()));
} else {
polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", polymer_props.cMax())));
}
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every epoch,
// since number of wells may change etc.
if (epoch == 0) {
well_state.init(wells.c_wells(), state);
}
// Create and run simulator.
#if 0
std::vector src(grid->c_grid()->number_of_cells, 0.0);
src[0] = 10. / Opm::unit::day;
src[grid->c_grid()->number_of_cells-1] = -10. / Opm::unit::day;
PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
param.getDefault("poly_amount", polymer_props.cMax()));
#endif
SimulatorFullyImplicitTwophasePolymer simulator(param,
*grid->c_grid(),
*new_props,
polymer_props_ad,
linsolver,
wells,
*polymer_inflow,
grav);
if (epoch == 0) {
warnIfUnusedParams(param);
}
SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
if (output) {
epoch_rep.reportParam(epoch_os);
}
// Update total timing report and remember step number.
rep += epoch_rep;
step = simtimer.currentStepNum();
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
if (output) {
std::string filename = output_dir + "/walltime.param";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
rep.reportParam(tot_os);
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}