/*
Copyright 2016 IRIS AS
Copyright 2019, 2020 Equinor ASA
Copyright 2020 SINTEF Digital, Mathematics and Cybernetics
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#if COMPILE_BDA_BRIDGE
#include
#include
#endif
#if HAVE_DUNE_ALUGRID
#include
#include
#endif // HAVE_DUNE_ALUGRID
namespace Opm {
namespace detail {
#ifdef HAVE_MPI
void copyParValues(std::any& parallelInformation, size_t size,
Dune::OwnerOverlapCopyCommunication& comm)
{
if (parallelInformation.type() == typeid(ParallelISTLInformation)) {
const ParallelISTLInformation* parinfo = std::any_cast(¶llelInformation);
assert(parinfo);
parinfo->copyValuesTo(comm.indexSet(), comm.remoteIndices(), size, 1);
}
}
#endif
template
void makeOverlapRowsInvalid(Matrix& matrix,
const std::vector& overlapRows)
{
//value to set on diagonal
const int numEq = Matrix::block_type::rows;
typename Matrix::block_type diag_block(0.0);
for (int eq = 0; eq < numEq; ++eq)
diag_block[eq][eq] = 1.0;
//loop over precalculated overlap rows and columns
for (const auto row : overlapRows)
{
// Zero out row.
matrix[row] = 0.0;
//diagonal block set to diag(1.0).
matrix[row][row] = diag_block;
}
}
/// Return an appropriate weight function if a cpr preconditioner is asked for.
template
std::function getWeightsCalculator(const PropertyTree& prm,
const Matrix& matrix,
size_t pressureIndex,
std::function trueFunc)
{
std::function weightsCalculator;
using namespace std::string_literals;
auto preconditionerType = prm.get("preconditioner.type"s, "cpr"s);
if (preconditionerType == "cpr" || preconditionerType == "cprt"
|| preconditionerType == "cprw" || preconditionerType == "cprwt") {
const bool transpose = preconditionerType == "cprt" || preconditionerType == "cprwt";
const auto weightsType = prm.get("preconditioner.weight_type"s, "quasiimpes"s);
if (weightsType == "quasiimpes") {
// weights will be created as default in the solver
// assignment p = pressureIndex prevent compiler warning about
// capturing variable with non-automatic storage duration
weightsCalculator = [matrix, transpose, pressureIndex]() {
return Amg::getQuasiImpesWeights(matrix,
pressureIndex,
transpose);
};
} else if (weightsType == "trueimpes") {
weightsCalculator = trueFunc;
} else {
OPM_THROW(std::invalid_argument,
"Weights type " + weightsType +
"not implemented for cpr."
" Please use quasiimpes or trueimpes.");
}
}
return weightsCalculator;
}
template
void FlexibleSolverInfo::create(const Matrix& matrix,
bool parallel,
const PropertyTree& prm,
size_t pressureIndex,
std::function trueFunc,
[[maybe_unused]] Comm& comm)
{
std::function weightsCalculator =
getWeightsCalculator(prm, matrix, pressureIndex, trueFunc);
if (parallel) {
#if HAVE_MPI
if (!wellOperator_) {
using ParOperatorType = Dune::OverlappingSchwarzOperator;
auto pop = std::make_unique(matrix, comm);
using FlexibleSolverType = Dune::FlexibleSolver;
auto sol = std::make_unique(*pop, comm, prm,
weightsCalculator,
pressureIndex);
this->pre_ = &sol->preconditioner();
this->op_ = std::move(pop);
this->solver_ = std::move(sol);
} else {
using ParOperatorType = WellModelGhostLastMatrixAdapter;
auto pop = std::make_unique(matrix, *wellOperator_,
interiorCellNum_);
using FlexibleSolverType = Dune::FlexibleSolver;
auto sol = std::make_unique(*pop, comm, prm,
weightsCalculator,
pressureIndex);
this->pre_ = &sol->preconditioner();
this->op_ = std::move(pop);
this->solver_ = std::move(sol);
}
#endif
} else {
if (!wellOperator_) {
using SeqOperatorType = Dune::MatrixAdapter;
auto sop = std::make_unique(matrix);
using FlexibleSolverType = Dune::FlexibleSolver;
auto sol = std::make_unique(*sop, prm,
weightsCalculator,
pressureIndex);
this->pre_ = &sol->preconditioner();
this->op_ = std::move(sop);
this->solver_ = std::move(sol);
} else {
using SeqOperatorType = WellModelMatrixAdapter;
auto sop = std::make_unique(matrix, *wellOperator_);
using FlexibleSolverType = Dune::FlexibleSolver;
auto sol = std::make_unique(*sop, prm,
weightsCalculator,
pressureIndex);
this->pre_ = &sol->preconditioner();
this->op_ = std::move(sop);
this->solver_ = std::move(sol);
}
}
}
#if COMPILE_BDA_BRIDGE
template
BdaSolverInfo::
BdaSolverInfo(const std::string& accelerator_mode,
const int linear_solver_verbosity,
const int maxit,
const double tolerance,
const int platformID,
const int deviceID,
const bool opencl_ilu_parallel,
const std::string& linsolver)
: bridge_(std::make_unique(accelerator_mode,
linear_solver_verbosity, maxit,
tolerance, platformID, deviceID,
opencl_ilu_parallel, linsolver))
, accelerator_mode_(accelerator_mode)
{}
template
BdaSolverInfo::~BdaSolverInfo() = default;
template
template
void BdaSolverInfo::
prepare(const Grid& grid,
const Dune::CartesianIndexMapper& cartMapper,
const std::vector& wellsForConn,
const std::vector& cellPartition,
const size_t nonzeroes,
const bool useWellConn)
{
if (numJacobiBlocks_ > 1) {
detail::setWellConnections(grid, cartMapper, wellsForConn,
useWellConn,
wellConnectionsGraph_,
numJacobiBlocks_);
this->blockJacobiAdjacency(grid, cellPartition, nonzeroes);
}
}
template
bool BdaSolverInfo::
apply(Vector& rhs,
const bool useWellConn,
WellContribFunc getContribs,
const int rank,
Matrix& matrix,
Vector& x,
Dune::InverseOperatorResult& result)
{
bool use_gpu = bridge_->getUseGpu();
if (use_gpu) {
auto wellContribs = WellContributions::create(accelerator_mode_, useWellConn);
bridge_->initWellContributions(*wellContribs, x.N() * x[0].N());
// the WellContributions can only be applied separately with CUDA or OpenCL, not with amgcl or rocalution
#if HAVE_CUDA || HAVE_OPENCL
if (!useWellConn) {
getContribs(*wellContribs);
}
#endif
if (numJacobiBlocks_ > 1) {
this->copyMatToBlockJac(matrix, *blockJacobiForGPUILU0_);
// Const_cast needed since the CUDA stuff overwrites values for better matrix condition..
bridge_->solve_system(&matrix, blockJacobiForGPUILU0_.get(),
numJacobiBlocks_, rhs, *wellContribs, result);
}
else
bridge_->solve_system(&matrix, &matrix,
numJacobiBlocks_, rhs, *wellContribs, result);
if (result.converged) {
// get result vector x from non-Dune backend, iff solve was successful
bridge_->get_result(x);
return true;
} else {
// warn about CPU fallback
// BdaBridge might have disabled its BdaSolver for this simulation due to some error
// in that case the BdaBridge is disabled and flexibleSolver is always used
// or maybe the BdaSolver did not converge in time, then it will be used next linear solve
if (rank == 0) {
OpmLog::warning(bridge_->getAccleratorName() + " did not converge, now trying Dune to solve current linear system...");
}
}
}
return false;
}
template
bool BdaSolverInfo::
gpuActive()
{
return bridge_->getUseGpu();
}
template
template
void BdaSolverInfo::
blockJacobiAdjacency(const Grid& grid,
const std::vector& cell_part,
size_t nonzeroes)
{
using size_type = typename Matrix::size_type;
using Iter = typename Matrix::CreateIterator;
size_type numCells = grid.size(0);
blockJacobiForGPUILU0_ = std::make_unique(numCells, numCells,
nonzeroes, Matrix::row_wise);
const auto& lid = grid.localIdSet();
const auto& gridView = grid.leafGridView();
auto elemIt = gridView.template begin<0>(); // should never overrun, since blockJacobiForGPUILU0_ is initialized with numCells rows
//Loop over cells
for (Iter row = blockJacobiForGPUILU0_->createbegin(); row != blockJacobiForGPUILU0_->createend(); ++elemIt, ++row)
{
const auto& elem = *elemIt;
size_type idx = lid.id(elem);
row.insert(idx);
// Add well non-zero connections
for (const auto wc : wellConnectionsGraph_[idx]) {
row.insert(wc);
}
int locPart = cell_part[idx];
//Add neighbor if it is on the same part
auto isend = gridView.iend(elem);
for (auto is = gridView.ibegin(elem); is!=isend; ++is)
{
//check if face has neighbor
if (is->neighbor())
{
size_type nid = lid.id(is->outside());
int nabPart = cell_part[nid];
if (locPart == nabPart) {
row.insert(nid);
}
}
}
}
}
template
void BdaSolverInfo::
copyMatToBlockJac(const Matrix& mat, Matrix& blockJac)
{
auto rbegin = blockJac.begin();
auto rend = blockJac.end();
auto outerRow = mat.begin();
for (auto row = rbegin; row != rend; ++row, ++outerRow) {
auto outerCol = (*outerRow).begin();
for (auto col = (*row).begin(); col != (*row).end(); ++col) {
// outerRow is guaranteed to have all column entries that row has!
while(outerCol.index() < col.index()) ++outerCol;
assert(outerCol.index() == col.index());
*col = *outerCol; // copy nonzero block
}
}
}
#endif // COMPILE_BDA_BRIDGE
template
using BM = Dune::BCRSMatrix>;
template
using BV = Dune::BlockVector>;
#if HAVE_MPI
using CommunicationType = Dune::OwnerOverlapCopyCommunication;
#else
using CommunicationType = Dune::CollectiveCommunication;
#endif
#define INSTANCE_FLEX(Dim) \
template void makeOverlapRowsInvalid>(BM&, const std::vector&); \
template struct FlexibleSolverInfo,BV,CommunicationType>;
#if COMPILE_BDA_BRIDGE
#define INSTANCE_GRID(Dim, Grid) \
template void BdaSolverInfo,BV>:: \
prepare(const Grid&, \
const Dune::CartesianIndexMapper&, \
const std::vector&, \
const std::vector&, \
const size_t, const bool);
#if HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
#define INSTANCE(Dim) \
template struct BdaSolverInfo,BV>; \
INSTANCE_GRID(Dim,Dune::CpGrid) \
INSTANCE_GRID(Dim,ALUGrid3CN) \
INSTANCE_FLEX(Dim)
#else
#define INSTANCE(Dim) \
template struct BdaSolverInfo,BV>; \
INSTANCE_GRID(Dim,Dune::CpGrid) \
INSTANCE_FLEX(Dim)
#endif
#else
#define INSTANCE(Dim) \
INSTANCE_FLEX(Dim)
#endif // COMPILE_BDA_BRIDGE
INSTANCE(1)
INSTANCE(2)
INSTANCE(3)
INSTANCE(4)
INSTANCE(5)
INSTANCE(6)
}
}