/* Copyright 2016 IRIS AS Copyright 2019, 2020 Equinor ASA Copyright 2020 SINTEF Digital, Mathematics and Cybernetics This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #if COMPILE_BDA_BRIDGE #include #include #endif #if HAVE_DUNE_ALUGRID #include #include #endif // HAVE_DUNE_ALUGRID namespace Opm { namespace detail { #ifdef HAVE_MPI void copyParValues(std::any& parallelInformation, size_t size, Dune::OwnerOverlapCopyCommunication& comm) { if (parallelInformation.type() == typeid(ParallelISTLInformation)) { const ParallelISTLInformation* parinfo = std::any_cast(¶llelInformation); assert(parinfo); parinfo->copyValuesTo(comm.indexSet(), comm.remoteIndices(), size, 1); } } #endif template void makeOverlapRowsInvalid(Matrix& matrix, const std::vector& overlapRows) { //value to set on diagonal const int numEq = Matrix::block_type::rows; typename Matrix::block_type diag_block(0.0); for (int eq = 0; eq < numEq; ++eq) diag_block[eq][eq] = 1.0; //loop over precalculated overlap rows and columns for (const auto row : overlapRows) { // Zero out row. matrix[row] = 0.0; //diagonal block set to diag(1.0). matrix[row][row] = diag_block; } } /// Return an appropriate weight function if a cpr preconditioner is asked for. template std::function getWeightsCalculator(const PropertyTree& prm, const Matrix& matrix, size_t pressureIndex, std::function trueFunc) { std::function weightsCalculator; using namespace std::string_literals; auto preconditionerType = prm.get("preconditioner.type"s, "cpr"s); if (preconditionerType == "cpr" || preconditionerType == "cprt" || preconditionerType == "cprw" || preconditionerType == "cprwt") { const bool transpose = preconditionerType == "cprt" || preconditionerType == "cprwt"; const auto weightsType = prm.get("preconditioner.weight_type"s, "quasiimpes"s); if (weightsType == "quasiimpes") { // weights will be created as default in the solver // assignment p = pressureIndex prevent compiler warning about // capturing variable with non-automatic storage duration weightsCalculator = [matrix, transpose, pressureIndex]() { return Amg::getQuasiImpesWeights(matrix, pressureIndex, transpose); }; } else if (weightsType == "trueimpes") { weightsCalculator = trueFunc; } else { OPM_THROW(std::invalid_argument, "Weights type " + weightsType + "not implemented for cpr." " Please use quasiimpes or trueimpes."); } } return weightsCalculator; } template void FlexibleSolverInfo::create(const Matrix& matrix, bool parallel, const PropertyTree& prm, size_t pressureIndex, std::function trueFunc, [[maybe_unused]] Comm& comm) { std::function weightsCalculator = getWeightsCalculator(prm, matrix, pressureIndex, trueFunc); if (parallel) { #if HAVE_MPI if (!wellOperator_) { using ParOperatorType = Dune::OverlappingSchwarzOperator; auto pop = std::make_unique(matrix, comm); using FlexibleSolverType = Dune::FlexibleSolver; auto sol = std::make_unique(*pop, comm, prm, weightsCalculator, pressureIndex); this->pre_ = &sol->preconditioner(); this->op_ = std::move(pop); this->solver_ = std::move(sol); } else { using ParOperatorType = WellModelGhostLastMatrixAdapter; auto pop = std::make_unique(matrix, *wellOperator_, interiorCellNum_); using FlexibleSolverType = Dune::FlexibleSolver; auto sol = std::make_unique(*pop, comm, prm, weightsCalculator, pressureIndex); this->pre_ = &sol->preconditioner(); this->op_ = std::move(pop); this->solver_ = std::move(sol); } #endif } else { if (!wellOperator_) { using SeqOperatorType = Dune::MatrixAdapter; auto sop = std::make_unique(matrix); using FlexibleSolverType = Dune::FlexibleSolver; auto sol = std::make_unique(*sop, prm, weightsCalculator, pressureIndex); this->pre_ = &sol->preconditioner(); this->op_ = std::move(sop); this->solver_ = std::move(sol); } else { using SeqOperatorType = WellModelMatrixAdapter; auto sop = std::make_unique(matrix, *wellOperator_); using FlexibleSolverType = Dune::FlexibleSolver; auto sol = std::make_unique(*sop, prm, weightsCalculator, pressureIndex); this->pre_ = &sol->preconditioner(); this->op_ = std::move(sop); this->solver_ = std::move(sol); } } } #if COMPILE_BDA_BRIDGE template BdaSolverInfo:: BdaSolverInfo(const std::string& accelerator_mode, const int linear_solver_verbosity, const int maxit, const double tolerance, const int platformID, const int deviceID, const bool opencl_ilu_parallel, const std::string& linsolver) : bridge_(std::make_unique(accelerator_mode, linear_solver_verbosity, maxit, tolerance, platformID, deviceID, opencl_ilu_parallel, linsolver)) , accelerator_mode_(accelerator_mode) {} template BdaSolverInfo::~BdaSolverInfo() = default; template template void BdaSolverInfo:: prepare(const Grid& grid, const Dune::CartesianIndexMapper& cartMapper, const std::vector& wellsForConn, const std::vector& cellPartition, const size_t nonzeroes, const bool useWellConn) { if (numJacobiBlocks_ > 1) { detail::setWellConnections(grid, cartMapper, wellsForConn, useWellConn, wellConnectionsGraph_, numJacobiBlocks_); this->blockJacobiAdjacency(grid, cellPartition, nonzeroes); } } template bool BdaSolverInfo:: apply(Vector& rhs, const bool useWellConn, WellContribFunc getContribs, const int rank, Matrix& matrix, Vector& x, Dune::InverseOperatorResult& result) { bool use_gpu = bridge_->getUseGpu(); if (use_gpu) { auto wellContribs = WellContributions::create(accelerator_mode_, useWellConn); bridge_->initWellContributions(*wellContribs, x.N() * x[0].N()); // the WellContributions can only be applied separately with CUDA or OpenCL, not with amgcl or rocalution #if HAVE_CUDA || HAVE_OPENCL if (!useWellConn) { getContribs(*wellContribs); } #endif if (numJacobiBlocks_ > 1) { this->copyMatToBlockJac(matrix, *blockJacobiForGPUILU0_); // Const_cast needed since the CUDA stuff overwrites values for better matrix condition.. bridge_->solve_system(&matrix, blockJacobiForGPUILU0_.get(), numJacobiBlocks_, rhs, *wellContribs, result); } else bridge_->solve_system(&matrix, &matrix, numJacobiBlocks_, rhs, *wellContribs, result); if (result.converged) { // get result vector x from non-Dune backend, iff solve was successful bridge_->get_result(x); return true; } else { // warn about CPU fallback // BdaBridge might have disabled its BdaSolver for this simulation due to some error // in that case the BdaBridge is disabled and flexibleSolver is always used // or maybe the BdaSolver did not converge in time, then it will be used next linear solve if (rank == 0) { OpmLog::warning(bridge_->getAccleratorName() + " did not converge, now trying Dune to solve current linear system..."); } } } return false; } template bool BdaSolverInfo:: gpuActive() { return bridge_->getUseGpu(); } template template void BdaSolverInfo:: blockJacobiAdjacency(const Grid& grid, const std::vector& cell_part, size_t nonzeroes) { using size_type = typename Matrix::size_type; using Iter = typename Matrix::CreateIterator; size_type numCells = grid.size(0); blockJacobiForGPUILU0_ = std::make_unique(numCells, numCells, nonzeroes, Matrix::row_wise); const auto& lid = grid.localIdSet(); const auto& gridView = grid.leafGridView(); auto elemIt = gridView.template begin<0>(); // should never overrun, since blockJacobiForGPUILU0_ is initialized with numCells rows //Loop over cells for (Iter row = blockJacobiForGPUILU0_->createbegin(); row != blockJacobiForGPUILU0_->createend(); ++elemIt, ++row) { const auto& elem = *elemIt; size_type idx = lid.id(elem); row.insert(idx); // Add well non-zero connections for (const auto wc : wellConnectionsGraph_[idx]) { row.insert(wc); } int locPart = cell_part[idx]; //Add neighbor if it is on the same part auto isend = gridView.iend(elem); for (auto is = gridView.ibegin(elem); is!=isend; ++is) { //check if face has neighbor if (is->neighbor()) { size_type nid = lid.id(is->outside()); int nabPart = cell_part[nid]; if (locPart == nabPart) { row.insert(nid); } } } } } template void BdaSolverInfo:: copyMatToBlockJac(const Matrix& mat, Matrix& blockJac) { auto rbegin = blockJac.begin(); auto rend = blockJac.end(); auto outerRow = mat.begin(); for (auto row = rbegin; row != rend; ++row, ++outerRow) { auto outerCol = (*outerRow).begin(); for (auto col = (*row).begin(); col != (*row).end(); ++col) { // outerRow is guaranteed to have all column entries that row has! while(outerCol.index() < col.index()) ++outerCol; assert(outerCol.index() == col.index()); *col = *outerCol; // copy nonzero block } } } #endif // COMPILE_BDA_BRIDGE template using BM = Dune::BCRSMatrix>; template using BV = Dune::BlockVector>; #if HAVE_MPI using CommunicationType = Dune::OwnerOverlapCopyCommunication; #else using CommunicationType = Dune::CollectiveCommunication; #endif #define INSTANCE_FLEX(Dim) \ template void makeOverlapRowsInvalid>(BM&, const std::vector&); \ template struct FlexibleSolverInfo,BV,CommunicationType>; #if COMPILE_BDA_BRIDGE #define INSTANCE_GRID(Dim, Grid) \ template void BdaSolverInfo,BV>:: \ prepare(const Grid&, \ const Dune::CartesianIndexMapper&, \ const std::vector&, \ const std::vector&, \ const size_t, const bool); #if HAVE_DUNE_ALUGRID #if HAVE_MPI using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>; #else using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>; #endif //HAVE_MPI #define INSTANCE(Dim) \ template struct BdaSolverInfo,BV>; \ INSTANCE_GRID(Dim,Dune::CpGrid) \ INSTANCE_GRID(Dim,ALUGrid3CN) \ INSTANCE_FLEX(Dim) #else #define INSTANCE(Dim) \ template struct BdaSolverInfo,BV>; \ INSTANCE_GRID(Dim,Dune::CpGrid) \ INSTANCE_FLEX(Dim) #endif #else #define INSTANCE(Dim) \ INSTANCE_FLEX(Dim) #endif // COMPILE_BDA_BRIDGE INSTANCE(1) INSTANCE(2) INSTANCE(3) INSTANCE(4) INSTANCE(5) INSTANCE(6) } }