/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define DUMP(foo) std::cout << "==========================================\n" #foo ":\n" << collapseJacs(foo) << std::endl typedef AutoDiff::ForwardBlock ADB; typedef ADB::V V; typedef ADB::M M; typedef Eigen::Array DataBlock; namespace { std::vector buildAllCells(const int nc) { std::vector all_cells(nc); for (int c = 0; c < nc; ++c) { all_cells[c] = c; } return all_cells; } template AutoDiff::ForwardBlock::M gravityOperator(const UnstructuredGrid& grid, const HelperOps& ops , const GeoProps& geo ) { const int nc = grid.number_of_cells; std::vector f2hf(2 * grid.number_of_faces, -1); for (int c = 0, i = 0; c < nc; ++c) { for (; i < grid.cell_facepos[c + 1]; ++i) { const int f = grid.cell_faces[ i ]; const int p = 0 + (grid.face_cells[2*f + 0] != c); f2hf[2*f + p] = i; } } typedef AutoDiff::ForwardBlock::V V; typedef AutoDiff::ForwardBlock::M M; const V& gpot = geo.gravityPotential(); const V& trans = geo.transmissibility(); const HelperOps::IFaces::Index ni = ops.internal_faces.size(); typedef Eigen::Triplet Tri; std::vector grav; grav.reserve(2 * ni); for (HelperOps::IFaces::Index i = 0; i < ni; ++i) { const int f = ops.internal_faces[ i ]; const int c1 = grid.face_cells[2*f + 0]; const int c2 = grid.face_cells[2*f + 1]; assert ((c1 >= 0) && (c2 >= 0)); const double dG1 = gpot[ f2hf[2*f + 0] ]; const double dG2 = gpot[ f2hf[2*f + 1] ]; const double t = trans[ f ]; grav.push_back(Tri(i, c1, t * dG1)); grav.push_back(Tri(i, c2, - t * dG2)); } M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end()); return G; } V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav) { const int nw = wells.number_of_wells; const int nperf = wells.well_connpos[nw]; const int dim = grid.dimensions; V wdp = V::Zero(nperf,1); ASSERT(wdp.size() == rho.size()); // Main loop, iterate over all perforations, // using the following formula: // wdp(perf) = g*(perf_z - well_ref_z)*rho(perf) // where the total density rho(perf) is taken to be // sum_p (rho_p*saturation_p) in the perforation cell. // [although this is computed on the outside of this function]. for (int w = 0; w < nw; ++w) { const double ref_depth = wells.depth_ref[w]; for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) { const int cell = wells.well_cells[j]; const double cell_depth = grid.cell_centroids[dim * cell + dim - 1]; wdp[j] = rho[j]*grav*(cell_depth - ref_depth); } } return wdp; } template std::vector activePhases(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; std::vector active(maxnp, false); for (int p = 0; p < pu.MaxNumPhases; ++p) { active[ p ] = pu.phase_used[ p ] != 0; } return active; } template std::vector active2Canonical(const PU& pu) { const int maxnp = Opm::BlackoilPhases::MaxNumPhases; std::vector act2can(maxnp, -1); for (int phase = 0; phase < maxnp; ++phase) { if (pu.phase_used[ phase ]) { act2can[ pu.phase_pos[ phase ] ] = phase; } } return act2can; } } // Anonymous namespace namespace Opm { FullyImplicitBlackoilSolver:: FullyImplicitBlackoilSolver(const UnstructuredGrid& grid , const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo , const Wells& wells, const LinearSolverInterface& linsolver) : grid_ (grid) , fluid_ (fluid) , geo_ (geo) , wells_ (wells) , linsolver_ (linsolver) , active_(activePhases(fluid.phaseUsage())) , canph_ (active2Canonical(fluid.phaseUsage())) , cells_ (buildAllCells(grid.number_of_cells)) , ops_ (grid) , wops_ (wells) , grav_ (gravityOperator(grid_, ops_, geo_)) , rq_ (fluid.numPhases()) , residual_ ( { std::vector(fluid.numPhases(), ADB::null()), ADB::null(), std::vector(fluid.numPhases(), ADB::null()), ADB::null() } ) { } void FullyImplicitBlackoilSolver:: step(const double dt, BlackoilState& x , WellState& xw) { const V pvdt = geo_.poreVolume() / dt; { const SolutionState state = constantState(x, xw); computeAccum(state, 0); } const double atol = 1.0e-12; const double rtol = 5.0e-8; const int maxit = 15; assemble(pvdt, x, xw); const double r0 = residualNorm(); int it = 0; std::cout << "\nIteration Residual\n" << std::setw(9) << it << std::setprecision(9) << std::setw(18) << r0 << std::endl; bool resTooLarge = r0 > atol; while (resTooLarge && (it < maxit)) { const V dx = solveJacobianSystem(); updateState(dx, x, xw); assemble(pvdt, x, xw); const double r = residualNorm(); resTooLarge = (r > atol) && (r > rtol*r0); it += 1; std::cout << std::setw(9) << it << std::setprecision(9) << std::setw(18) << r << std::endl; } if (resTooLarge) { std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n"; // THROW("Failed to compute converged solution in " << it << " iterations."); } } FullyImplicitBlackoilSolver::ReservoirResidualQuant::ReservoirResidualQuant() : accum(2, ADB::null()) , mflux( ADB::null()) , b ( ADB::null()) , head ( ADB::null()) , mob ( ADB::null()) { } FullyImplicitBlackoilSolver::SolutionState::SolutionState(const int np) : pressure ( ADB::null()) , saturation(np, ADB::null()) , rs ( ADB::null()) , bhp ( ADB::null()) { } FullyImplicitBlackoilSolver:: WellOps::WellOps(const Wells& wells) : w2p(wells.well_connpos[ wells.number_of_wells ], wells.number_of_wells) , p2w(wells.number_of_wells, wells.well_connpos[ wells.number_of_wells ]) { const int nw = wells.number_of_wells; const int* const wpos = wells.well_connpos; typedef Eigen::Triplet Tri; std::vector scatter, gather; scatter.reserve(wpos[nw]); gather .reserve(wpos[nw]); for (int w = 0, i = 0; w < nw; ++w) { for (; i < wpos[ w + 1 ]; ++i) { scatter.push_back(Tri(i, w, 1.0)); gather .push_back(Tri(w, i, 1.0)); } } w2p.setFromTriplets(scatter.begin(), scatter.end()); p2w.setFromTriplets(gather .begin(), gather .end()); } FullyImplicitBlackoilSolver::SolutionState FullyImplicitBlackoilSolver::constantState(const BlackoilState& x, const WellState& xw) { const int nc = grid_.number_of_cells; const int np = x.numPhases(); // The block pattern assumes the following primary variables: // pressure // water saturation (if water present) // gas saturation (if gas present) // gas solution factor (if both gas and oil present) // well bottom-hole pressure // Note that oil is assumed to always be present, but is never // a primary variable. ASSERT(active_[ Oil ]); std::vector bpat(np, nc); const bool gasandoil = (active_[ Oil ] && active_[ Gas ]); if (gasandoil) { bpat.push_back(nc); } bpat.push_back(xw.bhp().size()); SolutionState state(np); // Pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); state.pressure = ADB::constant(p, bpat); // Saturation. assert (not x.saturation().empty()); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); const Opm::PhaseUsage pu = fluid_.phaseUsage(); { V so = V::Ones(nc, 1); if (active_[ Water ]) { const int pos = pu.phase_pos[ Water ]; const V sw = s.col(pos); so -= sw; state.saturation[pos] = ADB::constant(sw, bpat); } if (active_[ Gas ]) { const int pos = pu.phase_pos[ Gas ]; const V sg = s.col(pos); so -= sg; state.saturation[pos] = ADB::constant(sg, bpat); } if (active_[ Oil ]) { const int pos = pu.phase_pos[ Oil ]; state.saturation[pos] = ADB::constant(so, bpat); } } // Gas-oil ratio (rs). if (active_[ Oil ] && active_[ Gas ]) { const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); state.rs = ADB::constant(rs, bpat); } else { const V Rs = V::Zero(nc, 1); state.rs = ADB::constant(Rs, bpat); } // Well bottom-hole pressure. assert (not xw.bhp().empty()); const V bhp = Eigen::Map(& xw.bhp()[0], xw.bhp().size()); state.bhp = ADB::constant(bhp, bpat); return state; } FullyImplicitBlackoilSolver::SolutionState FullyImplicitBlackoilSolver::variableState(const BlackoilState& x, const WellState& xw) { const int nc = grid_.number_of_cells; const int np = x.numPhases(); std::vector vars0; vars0.reserve(active_[Oil] && active_[Gas] ? np + 2 : np + 1); // Rs is primary if oil and gas present. // Initial pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); vars0.push_back(p); // Initial saturation. assert (not x.saturation().empty()); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); const Opm::PhaseUsage pu = fluid_.phaseUsage(); // We do not handle a Water/Gas situation correctly, guard against it. ASSERT (active_[ Oil]); if (active_[ Water ]) { const V sw = s.col(pu.phase_pos[ Water ]); vars0.push_back(sw); } if (active_[ Gas ]) { const V sg = s.col(pu.phase_pos[ Gas ]); vars0.push_back(sg); } // Initial gas-oil ratio (Rs). if (active_[ Oil ] && active_[ Gas ]) { const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); vars0.push_back(rs); } // Initial well bottom-hole pressure. assert (not xw.bhp().empty()); const V bhp = Eigen::Map(& xw.bhp()[0], xw.bhp().size()); vars0.push_back(bhp); std::vector vars = ADB::variables(vars0); SolutionState state(np); // Pressure. int nextvar = 0; state.pressure = vars[ nextvar++ ]; // Saturation. const std::vector& bpat = vars[0].blockPattern(); { ADB so = ADB::constant(V::Ones(nc, 1), bpat); if (active_[ Water ]) { ADB& sw = vars[ nextvar++ ]; state.saturation[ pu.phase_pos[ Water ] ] = sw; so = so - sw; } if (active_[ Gas ]) { ADB& sg = vars[ nextvar++ ]; state.saturation[ pu.phase_pos[ Gas ] ] = sg; so = so - sg; } if (active_[ Oil ]) { // Note that so is never a primary variable. state.saturation[ pu.phase_pos[ Oil ] ] = so; } } // Rs. if (active_[ Oil ] && active_[ Gas ]) { state.rs = vars[ nextvar++ ]; } else { state.rs = ADB::constant(V::Zero(nc), bpat); } // Bhp. state.bhp = vars[ nextvar ++]; ASSERT(nextvar == int(vars.size())); return state; } void FullyImplicitBlackoilSolver::computeAccum(const SolutionState& state, const int aix ) { const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB& press = state.pressure; const std::vector& sat = state.saturation; const ADB& rs = state.rs; const int maxnp = Opm::BlackoilPhases::MaxNumPhases; for (int phase = 0; phase < maxnp; ++phase) { if (active_[ phase ]) { const int pos = pu.phase_pos[ phase ]; rq_[pos].b = fluidReciprocFVF(phase, press, rs, cells_); rq_[pos].accum[aix] = rq_[pos].b * sat[pos]; // DUMP(rq_[pos].b); // DUMP(rq_[pos].accum[aix]); } } if (active_[ Oil ] && active_[ Gas ]) { // Account for gas dissolved in oil. const int po = pu.phase_pos[ Oil ]; const int pg = pu.phase_pos[ Gas ]; rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix]; // DUMP(rq_[pg].accum[aix]); } } void FullyImplicitBlackoilSolver:: assemble(const V& pvdt, const BlackoilState& x , const WellState& xw ) { // Create the primary variables. const SolutionState state = variableState(x, xw); // -------- Mass balance equations -------- // Compute b_p and the accumulation term b_p*s_p for each phase, // except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o. // These quantities are stored in rq_[phase].accum[1]. // The corresponding accumulation terms from the start of // the timestep (b^0_p*s^0_p etc.) were already computed // in step() and stored in rq_[phase].accum[0]. computeAccum(state, 1); // Set up the common parts of the mass balance equations // for each active phase. const V transi = subset(geo_.transmissibility(), ops_.internal_faces); const std::vector kr = computeRelPerm(state); for (int phase = 0; phase < fluid_.numPhases(); ++phase) { computeMassFlux(phase, transi, kr, state); // std::cout << "===== kr[" << phase << "] = \n" << std::endl; // std::cout << kr[phase]; // std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl; // std::cout << rq_[phase].mflux; residual_.mass_balance[ phase ] = pvdt*(rq_[phase].accum[1] - rq_[phase].accum[0]) + ops_.div*rq_[phase].mflux; // DUMP(residual_.mass_balance[phase]); } // -------- Extra (optional) sg or rs equation, and rs contributions to the mass balance equations -------- // Add the extra (flux) terms to the gas mass balance equations // from gas dissolved in the oil phase. // The extra terms in the accumulation part of the equation are already handled. if (active_[ Oil ] && active_[ Gas ]) { const int po = fluid_.phaseUsage().phase_pos[ Oil ]; const UpwindSelector upwind(grid_, ops_, rq_[po].head.value()); const ADB rs_face = upwind.select(state.rs); residual_.mass_balance[ Gas ] += ops_.div * (rs_face * rq_[po].mflux); // DUMP(residual_.mass_balance[ Gas ]); // Also, we have another equation: sg = 0 or rs = rsMax. const int pg = fluid_.phaseUsage().phase_pos[ Gas ]; const ADB sg_eq = state.saturation[pg]; const ADB rs_max = fluidRsMax(state.pressure, cells_); const ADB rs_eq = state.rs - rs_max; Selector use_rs_eq(rs_eq.value()); residual_.rs_or_sg_eq = use_rs_eq.select(rs_eq, sg_eq); // DUMP(residual_.rs_or_sg_eq); } // -------- Well equation, and well contributions to the mass balance equations -------- // Contribution to mass balance will have to wait. const int nc = grid_.number_of_cells; const int np = wells_.number_of_phases; const int nw = wells_.number_of_wells; const int nperf = wells_.well_connpos[nw]; const std::vector well_cells(wells_.well_cells, wells_.well_cells + nperf); const V transw = Eigen::Map(wells_.WI, nperf); const ADB& bhp = state.bhp; const DataBlock well_s = wops_.w2p * Eigen::Map(wells_.comp_frac, nw, np).matrix(); // Extract variables for perforation cell pressures // and corresponding perforation well pressures. const ADB p_perfcell = subset(state.pressure, well_cells); // Finally construct well perforation pressures and well flows. // Compute well pressure differentials. // Construct pressure difference vector for wells. const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const int dim = grid_.dimensions; const double* g = geo_.gravity(); if (g) { // Guard against gravity in anything but last dimension. for (int dd = 0; dd < dim - 1; ++dd) { ASSERT(g[dd] == 0.0); } } ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern()); for (int phase = 0; phase < 3; ++phase) { if (active_[phase]) { const int pos = pu.phase_pos[phase]; const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, cells_); cell_rho_total += state.saturation[pos] * cell_rho; } } ADB inj_rho_total = ADB::constant(V::Zero(nperf), state.pressure.blockPattern()); ASSERT(np == wells_.number_of_phases); const DataBlock compi = Eigen::Map(wells_.comp_frac, nw, np); for (int phase = 0; phase < 3; ++phase) { if (active_[phase]) { const int pos = pu.phase_pos[phase]; const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, cells_); const V fraction = compi.col(pos); inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells); } } const V rho_perf_cell = subset(cell_rho_total, well_cells).value(); const V rho_perf_well = inj_rho_total.value(); V prodperfs = V::Constant(nperf, -1.0); for (int w = 0; w < nw; ++w) { if (wells_.type[w] == PRODUCER) { std::fill(prodperfs.data() + wells_.well_connpos[w], prodperfs.data() + wells_.well_connpos[w+1], 1.0); } } const Selector producer(prodperfs); const V rho_perf = producer.select(rho_perf_cell, rho_perf_well); const V well_perf_dp = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0); const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp; const ADB nkgradp_well = transw * (p_perfcell - p_perfwell); // DUMP(nkgradp_well); const Selector cell_to_well_selector(nkgradp_well.value()); ADB qs = ADB::constant(V::Zero(nw*np), state.bhp.blockPattern()); // We can safely use a dummy rs here (for well calculations) // as long as we do not inject oil. const ADB rs_perfwell = ADB::constant(V::Zero(nperf), state.bhp.blockPattern()); const std::vector well_kr = computeRelPermWells(state, well_s, well_cells); ADB perf_total_mob = subset(rq_[0].mob, well_cells); for (int phase = 1; phase < np; ++phase) { perf_total_mob += subset(rq_[phase].mob, well_cells); } std::vector well_contribs(np, ADB::null()); std::vector well_perf_rates(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { const ADB& cell_b = rq_[phase].b; const ADB perf_b = subset(cell_b, well_cells); const ADB& cell_mob = rq_[phase].mob; const V well_fraction = compi.col(phase); // Using total mobilities for all phases for injection. const ADB perf_mob_injector = (wops_.w2p * well_fraction.matrix()).array() * perf_total_mob; const ADB perf_mob = producer.select(subset(cell_mob, well_cells), perf_mob_injector); const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations. well_perf_rates[phase] = (perf_flux*perf_b); const ADB well_rates = wops_.p2w * well_perf_rates[phase]; qs += superset(well_rates, Span(nw, 1, phase*nw), nw*np); // const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc); well_contribs[phase] = superset(perf_flux*perf_b, well_cells, nc); // DUMP(well_contribs[phase]); residual_.mass_balance[phase] += well_contribs[phase]; } if (active_[Gas] && active_[Oil]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; const ADB rs_perf = subset(state.rs, well_cells); qs += superset(well_perf_rates[oilpos]*rs_perf, Span(nw, 1, gaspos*nw), nw*np); // DUMP(well_contribs[gaspos] + well_contribs[oilpos]*state.rs); residual_.mass_balance[gaspos] += well_contribs[oilpos]*state.rs; } // Handling BHP and SURFACE_RATE wells. V bhp_targets(nw); V rate_targets(nw); M rate_distr(nw, np*nw); for (int w = 0; w < nw; ++w) { const WellControls* wc = wells_.ctrls[w]; if (wc->type[wc->current] == BHP) { bhp_targets[w] = wc->target[wc->current]; rate_targets[w] = -1e100; } else if (wc->type[wc->current] == SURFACE_RATE) { bhp_targets[w] = -1e100; rate_targets[w] = wc->target[wc->current]; for (int phase = 0; phase < np; ++phase) { rate_distr.insert(w, phase*nw + w) = wc->distr[phase]; } } else { THROW("Can only handle BHP and SURFACE_RATE type controls."); } } const ADB bhp_residual = bhp - bhp_targets; const ADB rate_residual = rate_distr * qs - rate_targets; // Choose bhp residual for positive bhp targets. Selector bhp_selector(bhp_targets); residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual); DUMP(residual_.well_eq); } V FullyImplicitBlackoilSolver::solveJacobianSystem() const { const int np = fluid_.numPhases(); ADB mass_res = residual_.mass_balance[0]; for (int phase = 1; phase < np; ++phase) { mass_res = vertcat(mass_res, residual_.mass_balance[phase]); } if (active_[Oil] && active_[Gas]) { mass_res = vertcat(mass_res, residual_.rs_or_sg_eq); } const ADB total_residual = collapseJacs(vertcat(mass_res, residual_.well_eq)); DUMP(total_residual); const Eigen::SparseMatrix matr = total_residual.derivative()[0]; V dx(V::Zero(total_residual.size())); Opm::LinearSolverInterface::LinearSolverReport rep = linsolver_.solve(matr.rows(), matr.nonZeros(), matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(), total_residual.value().data(), dx.data()); if (!rep.converged) { THROW("ImpesTPFAAD::solve(): Linear solver convergence failure."); } return dx; } namespace { struct Chop01 { double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); } }; } void FullyImplicitBlackoilSolver::updateState(const V& dx, BlackoilState& state, WellState& well_state) const { const int np = fluid_.numPhases(); const int nc = grid_.number_of_cells; const int nw = wells_.number_of_wells; const V null; ASSERT(null.size() == 0); const V zero = V::Zero(nc); const V one = V::Constant(nc, 1.0); // Extract parts of dx corresponding to each part. const V dp = subset(dx, Span(nc)); int varstart = nc; const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null; varstart += dsw.size(); const V dsg = active_[Gas] ? subset(dx, Span(nc, 1, varstart)) : null; varstart += dsg.size(); const V drs = (active_[Water] && active_[Gas]) ? subset(dx, Span(nc, 1, varstart)) : null; varstart += drs.size(); const V dbhp = subset(dx, Span(nw, 1, varstart)); varstart += dbhp.size(); ASSERT(varstart == dx.size()); // Pressure update. const double dpmaxrel = 0.8; const V p_old = Eigen::Map(&state.pressure()[0], nc, 1); const V absdpmax = dpmaxrel*p_old.abs(); const V dpsign = dp/dp.abs(); const V dp_limited = dpsign * dp.abs().min(absdpmax); const V p = (p_old - dp_limited).max(zero); std::copy(&p[0], &p[0] + nc, state.pressure().begin()); // Rs update. Moved before the saturation update because it is // needed there. if (active_[Oil] && active_[Gas]) { const double drsmaxrel = 0.8; const V rs_old = Eigen::Map(&state.gasoilratio()[0], nc); const V absdrsmax = drsmaxrel*rs_old.abs(); const V drssign = drs/drs.abs(); const V drs_limited = drssign * drs.abs().min(absdrsmax); const V rs = rs_old - drs_limited; std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin()); } // Saturation updates. const double dsmax = 0.3; const DataBlock s_old = Eigen::Map(& state.saturation()[0], nc, np); V so = one; const Opm::PhaseUsage& pu = fluid_.phaseUsage(); if (active_[ Water ]) { const int pos = pu.phase_pos[ Water ]; const V sw_old = s_old.col(pos); const V dswsign = dsw/dsw.abs(); const V dsw_limited = dswsign * dsw.abs().min(dsmax); const V sw = (sw_old - dsw_limited).unaryExpr(Chop01()); so -= sw; for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pos] = sw[c]; } } if (active_[ Gas ]) { const int pos = pu.phase_pos[ Gas ]; const V sg_old = s_old.col(pos); const V dsgsign = dsg/dsg.abs(); const V dsg_limited = dsgsign * dsg.abs().min(dsmax); V sg = sg_old - dsg_limited; if (active_[ Oil ]) { // Appleyard chop process. const double epsilon = std::sqrt(std::numeric_limits::epsilon()); const double above_epsilon = 2.0*epsilon; const double rs_adjust = 1.0; auto sat2usat = (sg_old > 0.0) && (sg <= 0.0); Eigen::Map rs(&state.gasoilratio()[0], nc); const V rs_sat = fluidRsMax(rs, cells_); auto over_saturated = ((sg > 0) || (rs > rs_sat*rs_adjust)) && (sat2usat == false); auto usat2sat = (sg_old < epsilon) && over_saturated; auto zerosg = (sat2usat && sg_old <= above_epsilon); auto epssg = (sat2usat && sg_old > epsilon); // With no simple support for Matlab-style statements below, // we use an explicit for loop. // sg(zerosg) = 0.0; // sg(epssg) = epsilon; // sg(usat2sat) = above_epsilon; // rs(sg > 0) = rs_sat(sg > 0); // rs(rs > rs_sat*rs_adjust) = rs_sat(rs > rs_sat*rs_adjust); for (int c = 0; c < nc; ++c) { if (zerosg[c]) { sg[c] = 0.0; } if (epssg[c]) { sg[c] = epsilon; } if (usat2sat[c]) { sg[c] = above_epsilon; } if (sg[c] > 0.0) { rs[c] = rs_sat[c]; } if (rs[c] > rs_sat[c]*rs_adjust) { rs[c] = rs_sat[c]; } } } sg.unaryExpr(Chop01()); so -= sg; for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pos] = sg[c]; } } if (active_[ Oil ]) { const int pos = pu.phase_pos[ Oil ]; for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pos] = so[c]; } } // Bhp update. const V bhp_old = Eigen::Map(&well_state.bhp()[0], nw, 1); const V bhp = bhp_old - dbhp; std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin()); } std::vector FullyImplicitBlackoilSolver::computeRelPerm(const SolutionState& state) const { const int nc = grid_.number_of_cells; const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nc, 1), bpat); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB sw = (active_[ Water ] ? state.saturation[ pu.phase_pos[ Water ] ] : null); const ADB so = (active_[ Oil ] ? state.saturation[ pu.phase_pos[ Oil ] ] : null); const ADB sg = (active_[ Gas ] ? state.saturation[ pu.phase_pos[ Gas ] ] : null); return fluid_.relperm(sw, so, sg, cells_); } std::vector FullyImplicitBlackoilSolver::computeRelPermWells(const SolutionState& state, const DataBlock& well_s, const std::vector& well_cells) const { const int nw = wells_.number_of_wells; const int nperf = wells_.well_connpos[nw]; const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nperf), bpat); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); const ADB sw = (active_[ Water ] ? ADB::constant(well_s.col(pu.phase_pos[ Water ]), bpat) : null); const ADB so = (active_[ Oil ] ? ADB::constant(well_s.col(pu.phase_pos[ Oil ]), bpat) : null); const ADB sg = (active_[ Gas ] ? ADB::constant(well_s.col(pu.phase_pos[ Gas ]), bpat) : null); return fluid_.relperm(sw, so, sg, well_cells); } void FullyImplicitBlackoilSolver::computeMassFlux(const int actph , const V& transi, const std::vector& kr , const SolutionState& state ) { const int phase = canph_[ actph ]; const ADB mu = fluidViscosity(phase, state.pressure, state.rs, cells_); rq_[ actph ].mob = kr[ phase ] / mu; const ADB rho = fluidDensity(phase, state.pressure, state.rs, cells_); const ADB gflux = grav_ * rho; ADB& head = rq_[ actph ].head; head = transi*(ops_.ngrad * state.pressure) + gflux; UpwindSelector upwind(grid_, ops_, head.value()); const ADB& b = rq_[ actph ].b; const ADB& mob = rq_[ actph ].mob; rq_[ actph ].mflux = upwind.select(b * mob) * head; // DUMP(rq_[ actph ].mob); // DUMP(rq_[ actph ].mflux); } double FullyImplicitBlackoilSolver::residualNorm() const { double r = 0; for (std::vector::const_iterator b = residual_.mass_balance.begin(), e = residual_.mass_balance.end(); b != e; ++b) { r = std::max(r, (*b).value().matrix().norm()); } if (active_[Oil] && active_[Gas]) { r = std::max(r, residual_.rs_or_sg_eq.value().matrix().norm()); } for (std::vector::const_iterator b = residual_.well_flux_eq.begin(), e = residual_.well_flux_eq.end(); b != e; ++b) { r = std::max(r, (*b).value().matrix().norm()); } r = std::max(r, residual_.well_eq.value().matrix().norm()); return r; } ADB FullyImplicitBlackoilSolver::fluidViscosity(const int phase, const ADB& p , const ADB& rs , const std::vector& cells) const { switch (phase) { case Water: return fluid_.muWat(p, cells); case Oil: { return fluid_.muOil(p, rs, cells); } case Gas: return fluid_.muGas(p, cells); default: THROW("Unknown phase index " << phase); } } ADB FullyImplicitBlackoilSolver::fluidReciprocFVF(const int phase, const ADB& p , const ADB& rs , const std::vector& cells) const { switch (phase) { case Water: return fluid_.bWat(p, cells); case Oil: { return fluid_.bOil(p, rs, cells); } case Gas: return fluid_.bGas(p, cells); default: THROW("Unknown phase index " << phase); } } ADB FullyImplicitBlackoilSolver::fluidDensity(const int phase, const ADB& p , const ADB& rs , const std::vector& cells) const { const double* rhos = fluid_.surfaceDensity(); ADB b = fluidReciprocFVF(phase, p, rs, cells); ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b; if (phase == Oil && active_[Gas]) { // It is correct to index into rhos with canonical phase indices. rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b; } return rho; } V FullyImplicitBlackoilSolver::fluidRsMax(const V& p, const std::vector& cells) const { return fluid_.rsMax(p, cells); } ADB FullyImplicitBlackoilSolver::fluidRsMax(const ADB& p, const std::vector& cells) const { return fluid_.rsMax(p, cells); } } // namespace Opm