/* Copyright 2016 SINTEF ICT, Applied Mathematics. Copyright 2016 - 2017 Statoil ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED #define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm::Properties { NEW_PROP_TAG(EnableTerminalOutput); } // namespace Opm::Properties namespace Opm { /// Class for handling the blackoil well model. template class BlackoilWellModel : public Opm::BaseAuxiliaryModule { public: // --------- Types --------- typedef WellStateFullyImplicitBlackoil WellState; typedef BlackoilModelParametersEbos ModelParameters; using Grid = GetPropType; using FluidSystem = GetPropType; using ElementContext = GetPropType; using Indices = GetPropType; using Simulator = GetPropType; using Scalar = GetPropType; using RateVector = GetPropType; using GlobalEqVector = GetPropType; using SparseMatrixAdapter = GetPropType; typedef typename Opm::BaseAuxiliaryModule::NeighborSet NeighborSet; static const int numEq = Indices::numEq; static const int solventSaturationIdx = Indices::solventSaturationIdx; // TODO: where we should put these types, WellInterface or Well Model? // or there is some other strategy, like TypeTag typedef Dune::FieldVector VectorBlockType; typedef Dune::BlockVector BVector; typedef Dune::FieldMatrix MatrixBlockType; typedef Opm::BlackOilPolymerModule PolymerModule; // For the conversion between the surface volume rate and resrevoir voidage rate using RateConverterType = RateConverter:: SurfaceToReservoirVoidage >; BlackoilWellModel(Simulator& ebosSimulator); void init(); ///////////// // ///////////// unsigned numDofs() const // No extra dofs are inserted for wells. (we use a Schur complement.) { return 0; } void addNeighbors(std::vector& neighbors) const; void applyInitial() {} void linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res); void postSolve(GlobalEqVector& deltaX) { recoverWellSolutionAndUpdateWellState(deltaX); } ///////////// // ///////////// template void deserialize(Restarter& /* res */) { // TODO (?) } /*! * \brief This method writes the complete state of the well * to the harddisk. */ template void serialize(Restarter& /* res*/) { // TODO (?) } void beginEpisode() { beginReportStep(ebosSimulator_.episodeIndex()); } void beginTimeStep(); void beginIteration() { assemble(ebosSimulator_.model().newtonMethod().numIterations(), ebosSimulator_.timeStepSize()); } void endIteration() { } void endTimeStep() { timeStepSucceeded(ebosSimulator_.time(), ebosSimulator_.timeStepSize()); } void endEpisode() { endReportStep(); } template void computeTotalRatesForDof(RateVector& rate, const Context& context, unsigned spaceIdx, unsigned timeIdx) const; using WellInterfacePtr = std::shared_ptr >; WellInterfacePtr well(const std::string& wellName) const; void initFromRestartFile(const RestartValue& restartValues); Opm::data::GroupValues groupData(const int reportStepIdx, const Opm::Schedule& sched) const { auto gvalues = ::Opm::data::GroupValues{}; for (const auto& gname : sched.groupNames(reportStepIdx)) { const auto& grup = sched.getGroup(gname, reportStepIdx); auto& gdata = gvalues[gname]; this->assignGroupControl(grup, gdata); } return gvalues; } Opm::data::Wells wellData() const { auto wsrpt = well_state_.report(phase_usage_, Opm::UgGridHelpers::globalCell(grid())); for (const auto& well : this->wells_ecl_) { auto xwPos = wsrpt.find(well.name()); if (xwPos == wsrpt.end()) { // No well results. Unexpected. continue; } xwPos->second.current_control.isProducer = well.isProducer(); } return wsrpt; } // substract Binv(D)rw from r; void apply( BVector& r) const; // subtract B*inv(D)*C * x from A*x void apply(const BVector& x, BVector& Ax) const; #if HAVE_CUDA || HAVE_OPENCL // accumulate the contributions of all Wells in the WellContributions object void getWellContributions(WellContributions& x) const; #endif // apply well model with scaling of alpha void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const; // Check if well equations is converged. ConvergenceReport getWellConvergence(const std::vector& B_avg, const bool checkGroupConvergence = false) const; // return the internal well state, ignore the passed one. // Used by the legacy code to make it compatible with the legacy well models. const WellState& wellState(const WellState& well_state OPM_UNUSED) const; // return the internal well state const WellState& wellState() const; const SimulatorReportSingle& lastReport() const; void addWellContributions(SparseMatrixAdapter& jacobian) const { for ( const auto& well: well_container_ ) { well->addWellContributions(jacobian); } } // called at the beginning of a report step void beginReportStep(const int time_step); /// Return true if any well has a THP constraint. bool hasTHPConstraints() const; /// Shut down any single well, but only if it is in prediction mode. /// Returns true if the well was actually found and shut. bool forceShutWellByNameIfPredictionMode(const std::string& wellname, const double simulation_time); protected: Simulator& ebosSimulator_; std::vector< Well > wells_ecl_; std::vector< std::vector > well_perf_data_; bool wells_active_; // a vector of all the wells. std::vector well_container_; // map from logically cartesian cell indices to compressed ones std::vector cartesian_to_compressed_; std::vector is_cell_perforated_; void initializeWellPerfData(); // create the well container std::vector createWellContainer(const int time_step); WellInterfacePtr createWellForWellTest(const std::string& well_name, const int report_step, Opm::DeferredLogger& deferred_logger) const; WellState well_state_; WellState previous_well_state_; WellState well_state_nupcol_; const ModelParameters param_; bool terminal_output_; bool has_solvent_; bool has_polymer_; std::vector pvt_region_idx_; PhaseUsage phase_usage_; size_t global_nc_; // the number of the cells in the local grid size_t number_of_cells_; double gravity_; std::vector depth_; bool initial_step_; bool report_step_starts_; std::unique_ptr rateConverter_; std::unique_ptr> vfp_properties_; SimulatorReportSingle last_report_; WellTestState wellTestState_; std::unique_ptr guideRate_; // used to better efficiency of calcuation mutable BVector scaleAddRes_; const Grid& grid() const { return ebosSimulator_.vanguard().grid(); } const EclipseState& eclState() const { return ebosSimulator_.vanguard().eclState(); } const Schedule& schedule() const { return ebosSimulator_.vanguard().schedule(); } // compute the well fluxes and assemble them in to the reservoir equations as source terms // and in the well equations. void assemble(const int iterationIdx, const double dt); // called at the end of a time step void timeStepSucceeded(const double& simulationTime, const double dt); // called at the end of a report step void endReportStep(); // using the solution x to recover the solution xw for wells and applying // xw to update Well State void recoverWellSolutionAndUpdateWellState(const BVector& x); void updateWellControls(Opm::DeferredLogger& deferred_logger, const bool checkGroupControls); void updateAndCommunicateGroupData(); // setting the well_solutions_ based on well_state. void updatePrimaryVariables(Opm::DeferredLogger& deferred_logger); void setupCartesianToCompressed_(const int* global_cell, int number_of_cells); void computeRepRadiusPerfLength(const Grid& grid, Opm::DeferredLogger& deferred_logger); void computeAverageFormationFactor(std::vector& B_avg) const; // Calculating well potentials for each well void computeWellPotentials(std::vector& well_potentials, const int reportStepIdx, Opm::DeferredLogger& deferred_logger); const std::vector& wellPerfEfficiencyFactors() const; void calculateEfficiencyFactors(const int reportStepIdx); // it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation() // makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions // twice at the beginning of the time step /// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated /// at the beginning of the time step and no derivatives are included in these quantities void calculateExplicitQuantities(Opm::DeferredLogger& deferred_logger) const; SimulatorReportSingle solveWellEq(const std::vector& B_avg, const double dt, Opm::DeferredLogger& deferred_logger); void initPrimaryVariablesEvaluation() const; // The number of components in the model. int numComponents() const; int numLocalWells() const; int numPhases() const; void assembleWellEq(const std::vector& B_avg, const double dt, Opm::DeferredLogger& deferred_logger); // some preparation work, mostly related to group control and RESV, // at the beginning of each time step (Not report step) void prepareTimeStep(Opm::DeferredLogger& deferred_logger); void extractLegacyCellPvtRegionIndex_(); void extractLegacyDepth_(); /// return true if wells are available in the reservoir bool wellsActive() const; void setWellsActive(const bool wells_active); /// return true if wells are available on this process bool localWellsActive() const; /// upate the wellTestState related to economic limits void updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const; void updatePerforationIntensiveQuantities(); void wellTesting(const int timeStepIdx, const double simulationTime, Opm::DeferredLogger& deferred_logger); // convert well data from opm-common to well state from opm-core void wellsToState( const data::Wells& wells, const PhaseUsage& phases, const bool handle_ms_well, WellStateFullyImplicitBlackoil& state ) const; // whether there exists any multisegment well open on this process bool anyMSWellOpenLocal() const; const Well& getWellEcl(const std::string& well_name) const; void updateGroupIndividualControls(Opm::DeferredLogger& deferred_logger, std::set& switched_groups); void updateGroupIndividualControl(const Group& group, Opm::DeferredLogger& deferred_logger, std::set& switched_groups); bool checkGroupConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const; Group::ProductionCMode checkGroupProductionConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const; Group::InjectionCMode checkGroupInjectionConstraints(const Group& group, const Phase& phase) const; void checkGconsaleLimits(const Group& group, WellState& well_state, Opm::DeferredLogger& deferred_logger ) const; void updateGroupHigherControls(Opm::DeferredLogger& deferred_logger, std::set& switched_groups); void checkGroupHigherConstraints(const Group& group, Opm::DeferredLogger& deferred_logger, std::set& switched_groups); void actionOnBrokenConstraints(const Group& group, const Group::ExceedAction& exceed_action, const Group::ProductionCMode& newControl, Opm::DeferredLogger& deferred_logger); void actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& topUpPhase, Opm::DeferredLogger& deferred_logger); WellInterfacePtr getWell(const std::string& well_name) const; void updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState); void setWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, double wsolvent); void assignGroupControl(const Group& group, data::GroupData& gdata) const; }; } // namespace Opm #include "BlackoilWellModel_impl.hpp" #endif