// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \copydoc Opm::RichardsLocalResidual */ #ifndef EWOMS_RICHARDS_LOCAL_RESIDUAL_HH #define EWOMS_RICHARDS_LOCAL_RESIDUAL_HH #include "richardsintensivequantities.hh" #include "richardsextensivequantities.hh" namespace Opm { /*! * \ingroup RichardsModel * \brief Element-wise calculation of the residual for the Richards model. */ template class RichardsLocalResidual : public GetPropType { using EqVector = GetPropType; using Evaluation = GetPropType; using RateVector = GetPropType; using IntensiveQuantities = GetPropType; using ElementContext = GetPropType; using Indices = GetPropType; enum { contiEqIdx = Indices::contiEqIdx }; enum { liquidPhaseIdx = getPropValue() }; enum { numEq = getPropValue() }; using Toolbox = Opm::MathToolbox; public: /*! * \copydoc ImmiscibleLocalResidual::computeStorage */ template void computeStorage(Dune::FieldVector& storage, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) const { const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx); // partial time derivative of the wetting phase mass storage[contiEqIdx] = Toolbox::template decay(intQuants.fluidState().density(liquidPhaseIdx)) *Toolbox::template decay(intQuants.fluidState().saturation(liquidPhaseIdx)) *Toolbox::template decay(intQuants.porosity()); } /*! * \copydoc ImmiscibleLocalResidual::computeFlux */ void computeFlux(RateVector& flux, const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const { const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); unsigned focusDofIdx = elemCtx.focusDofIndex(); unsigned upIdx = static_cast(extQuants.upstreamIndex(liquidPhaseIdx)); const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx); // compute advective mass flux of the liquid phase. This is slightly hacky // because it is specific to the element-centered finite volume method. const Evaluation& rho = up.fluidState().density(liquidPhaseIdx); if (focusDofIdx == upIdx) flux[contiEqIdx] = extQuants.volumeFlux(liquidPhaseIdx)*rho; else flux[contiEqIdx] = extQuants.volumeFlux(liquidPhaseIdx)*Toolbox::value(rho); } /*! * \copydoc ImmiscibleLocalResidual::computeSource */ void computeSource(RateVector& source, const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx) const { elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx); } }; } // namespace Opm #endif