/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
#define OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
// A debugging utility.
#define OPM_AD_DUMP(foo) \
do { \
std::cout << "==========================================\n" \
<< #foo ":\n" \
<< collapseJacs(foo) << std::endl; \
} while (0)
#define OPM_AD_DUMPVAL(foo) \
do { \
std::cout << "==========================================\n" \
<< #foo ":\n" \
<< foo.value() << std::endl; \
} while (0)
#define OPM_AD_DISKVAL(foo) \
do { \
std::ofstream os(#foo); \
os.precision(16); \
os << foo.value() << std::endl; \
} while (0)
namespace Opm {
typedef AutoDiffBlock ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array DataBlock;
template
BlackoilModelBase::
BlackoilModelBase(const ModelParameters& param,
const Grid& grid ,
const BlackoilPropsAdFromDeck& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const WellModel& well_model,
const NewtonIterationBlackoilInterface& linsolver,
std::shared_ptr< const Opm::EclipseState > eclState,
std::shared_ptr schedule,
std::shared_ptr summary_config,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output)
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, rock_comp_props_(rock_comp_props)
, vfp_properties_(
eclState->getTableManager().getVFPInjTables(),
eclState->getTableManager().getVFPProdTables())
, linsolver_ (linsolver)
, active_(detail::activePhases(fluid.phaseUsage()))
, canph_ (detail::active2Canonical(fluid.phaseUsage()))
, cells_ (detail::buildAllCells(Opm::AutoDiffGrid::numCells(grid)))
, ops_ (grid, geo.nnc())
, has_disgas_(has_disgas)
, has_vapoil_(has_vapoil)
, param_( param )
, use_threshold_pressure_(false)
, sd_ (fluid.numPhases())
, phaseCondition_(AutoDiffGrid::numCells(grid))
, well_model_ (well_model)
, isRs_(V::Zero(AutoDiffGrid::numCells(grid)))
, isRv_(V::Zero(AutoDiffGrid::numCells(grid)))
, isSg_(V::Zero(AutoDiffGrid::numCells(grid)))
, residual_ ( { std::vector(fluid.numPhases(), ADB::null()),
ADB::null(),
ADB::null(),
{ 1.1169, 1.0031, 0.0031 }, // the default magic numbers
false } )
, terminal_output_ (terminal_output)
, material_name_(0)
, current_relaxation_(1.0)
// only one region 0 used, which means average reservoir hydrocarbon conditions in
// the field will be calculated.
// TODO: more delicate implementation will be required if we want to handle different
// FIP regions specified from the well specifications.
, rate_converter_(fluid_.phaseUsage(), std::vector(AutoDiffGrid::numCells(grid_),0))
{
if (active_[Water]) {
material_name_.push_back("Water");
}
if (active_[Oil]) {
material_name_.push_back("Oil");
}
if (active_[Gas]) {
material_name_.push_back("Gas");
}
assert(numMaterials() == std::accumulate(active_.begin(), active_.end(), 0)); // Due to the material_name_ init above.
const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
const V depth = Opm::AutoDiffGrid::cellCentroidsZToEigen(grid_);
well_model_.init(&fluid_, &active_, &phaseCondition_, &vfp_properties_, gravity, depth);
// TODO: put this for now to avoid modify the following code.
// TODO: this code can be fragile.
#if HAVE_MPI
const Wells* wells_arg = asImpl().well_model_.wellsPointer();
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast(linsolver_.parallelInformation());
if ( terminal_output_ ) {
// Only rank 0 does print to std::cout if terminal_output is enabled
terminal_output_ = (info.communicator().rank()==0);
}
int local_number_of_wells = localWellsActive() ? wells().number_of_wells : 0;
int global_number_of_wells = info.communicator().sum(local_number_of_wells);
const bool wells_active = ( wells_arg && global_number_of_wells > 0 );
wellModel().setWellsActive(wells_active);
// Compute the global number of cells
std::vector v( Opm::AutoDiffGrid::numCells(grid_), 1);
global_nc_ = 0;
info.computeReduction(v, Opm::Reduction::makeGlobalSumFunctor(), global_nc_);
}else
#endif
{
wellModel().setWellsActive( localWellsActive() );
global_nc_ = Opm::AutoDiffGrid::numCells(grid_);
}
}
template
bool
BlackoilModelBase::
isParallel() const
{
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() !=
typeid(ParallelISTLInformation) )
{
return false;
}
else
{
const auto& comm =boost::any_cast(linsolver_.parallelInformation()).communicator();
return comm.size() > 1;
}
#else
return false;
#endif
}
template
void
BlackoilModelBase::
prepareStep(const SimulatorTimerInterface& timer,
const ReservoirState& reservoir_state,
const WellState& /* well_state */)
{
const double dt = timer.currentStepLength();
pvdt_ = geo_.poreVolume() / dt;
if (active_[Gas]) {
updatePrimalVariableFromState(reservoir_state);
}
}
template
template
SimulatorReport
BlackoilModelBase::
nonlinearIteration(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver,
ReservoirState& reservoir_state,
WellState& well_state)
{
SimulatorReport report;
Dune::Timer perfTimer;
perfTimer.start();
const double dt = timer.currentStepLength();
if (iteration == 0) {
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
residual_norms_history_.clear();
current_relaxation_ = 1.0;
dx_old_ = V::Zero(sizeNonLinear());
}
try {
report += asImpl().assemble(reservoir_state, well_state, iteration == 0);
report.assemble_time += perfTimer.stop();
}
catch (...) {
report.assemble_time += perfTimer.stop();
throw;
}
report.total_linearizations = 1;
perfTimer.reset();
perfTimer.start();
report.converged = asImpl().getConvergence(timer, iteration);
residual_norms_history_.push_back(asImpl().computeResidualNorms());
report.update_time += perfTimer.stop();
const bool must_solve = (iteration < nonlinear_solver.minIter()) || (!report.converged);
if (must_solve) {
perfTimer.reset();
perfTimer.start();
report.total_newton_iterations = 1;
// enable single precision for solvers when dt is smaller then maximal time step for single precision
residual_.singlePrecision = ( dt < param_.maxSinglePrecisionTimeStep_ );
// Compute the nonlinear update.
V dx;
try {
dx = asImpl().solveJacobianSystem();
report.linear_solve_time += perfTimer.stop();
report.total_linear_iterations += linearIterationsLastSolve();
}
catch (...) {
report.linear_solve_time += perfTimer.stop();
report.total_linear_iterations += linearIterationsLastSolve();
throw;
}
perfTimer.reset();
perfTimer.start();
if (param_.use_update_stabilization_) {
// Stabilize the nonlinear update.
bool isOscillate = false;
bool isStagnate = false;
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
if (isOscillate) {
current_relaxation_ -= nonlinear_solver.relaxIncrement();
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
if (terminalOutputEnabled()) {
std::string msg = " Oscillating behavior detected: Relaxation set to "
+ std::to_string(current_relaxation_);
OpmLog::info(msg);
}
}
nonlinear_solver.stabilizeNonlinearUpdate(dx, dx_old_, current_relaxation_);
}
// Apply the update, applying model-dependent
// limitations and chopping of the update.
asImpl().updateState(dx, reservoir_state, well_state);
report.update_time += perfTimer.stop();
}
return report;
}
template
void
BlackoilModelBase::
afterStep(const SimulatorTimerInterface& /*timer*/,
ReservoirState& /* reservoir_state */,
WellState& /* well_state */)
{
// Does nothing in this model.
}
template
int
BlackoilModelBase::
sizeNonLinear() const
{
return residual_.sizeNonLinear();
}
template
int
BlackoilModelBase::
linearIterationsLastSolve() const
{
return linsolver_.iterations();
}
template
bool
BlackoilModelBase::
terminalOutputEnabled() const
{
return terminal_output_;
}
template
int
BlackoilModelBase::
numPhases() const
{
return fluid_.numPhases();
}
template
int
BlackoilModelBase::
numMaterials() const
{
return material_name_.size();
}
template
const std::string&
BlackoilModelBase::
materialName(int material_index) const
{
assert(material_index < numMaterials());
return material_name_[material_index];
}
template
void
BlackoilModelBase::
setThresholdPressures(const std::vector& threshold_pressures)
{
const int num_faces = AutoDiffGrid::numFaces(grid_);
const int num_nnc = geo_.nnc().numNNC();
const int num_connections = num_faces + num_nnc;
if (int(threshold_pressures.size()) != num_connections) {
OPM_THROW(std::runtime_error, "Illegal size of threshold_pressures input ( " << threshold_pressures.size()
<< " ), must be equal to number of faces + nncs ( " << num_faces << " + " << num_nnc << " ).");
}
use_threshold_pressure_ = true;
// Map to interior faces.
const int num_ifaces = ops_.internal_faces.size();
threshold_pressures_by_connection_.resize(num_ifaces + num_nnc);
for (int ii = 0; ii < num_ifaces; ++ii) {
threshold_pressures_by_connection_[ii] = threshold_pressures[ops_.internal_faces[ii]];
}
// Handle NNCs
// Note: the nnc threshold pressures is appended after the face threshold pressures
for (int ii = 0; ii < num_nnc; ++ii) {
threshold_pressures_by_connection_[ii + num_ifaces] = threshold_pressures[ii + num_faces];
}
}
template
BlackoilModelBase::
ReservoirResidualQuant::ReservoirResidualQuant()
: accum(2, ADB::null())
, mflux( ADB::null())
, b ( ADB::null())
, mu ( ADB::null())
, rho ( ADB::null())
, kr ( ADB::null())
, dh ( ADB::null())
, mob ( ADB::null())
{
}
template
BlackoilModelBase::
SimulatorData::SimulatorData(int num_phases)
: rq(num_phases)
, rsSat(ADB::null())
, rvSat(ADB::null())
, soMax()
, Pb()
, Pd()
, krnswdc_ow()
, krnswdc_go()
, pcswmdc_ow()
, pcswmdc_go()
, fip()
{
}
template
void
BlackoilModelBase::
makeConstantState(SolutionState& state) const
{
// HACK: throw away the derivatives. this may not be the most
// performant way to do things, but it will make the state
// automatically consistent with variableState() (and doing
// things automatically is all the rage in this module ;)
state.pressure = ADB::constant(state.pressure.value());
state.temperature = ADB::constant(state.temperature.value());
state.rs = ADB::constant(state.rs.value());
state.rv = ADB::constant(state.rv.value());
const int num_phases = state.saturation.size();
for (int phaseIdx = 0; phaseIdx < num_phases; ++ phaseIdx) {
state.saturation[phaseIdx] = ADB::constant(state.saturation[phaseIdx].value());
}
state.qs = ADB::constant(state.qs.value());
state.bhp = ADB::constant(state.bhp.value());
assert(state.canonical_phase_pressures.size() == static_cast(Opm::BlackoilPhases::MaxNumPhases));
for (int canphase = 0; canphase < Opm::BlackoilPhases::MaxNumPhases; ++canphase) {
ADB& pp = state.canonical_phase_pressures[canphase];
pp = ADB::constant(pp.value());
}
}
template
typename BlackoilModelBase::SolutionState
BlackoilModelBase::
variableState(const ReservoirState& x,
const WellState& xw) const
{
std::vector vars0 = asImpl().variableStateInitials(x, xw);
std::vector vars = ADB::variables(vars0);
return asImpl().variableStateExtractVars(x, asImpl().variableStateIndices(), vars);
}
template
std::vector
BlackoilModelBase::
variableStateInitials(const ReservoirState& x,
const WellState& xw) const
{
assert(active_[ Oil ]);
const int np = x.numPhases();
std::vector vars0;
// p, Sw and Rs, Rv or Sg is used as primary depending on solution conditions
// and bhp and Q for the wells
vars0.reserve(np + 1);
variableReservoirStateInitials(x, vars0);
asImpl().wellModel().variableWellStateInitials(xw, vars0);
return vars0;
}
template
void
BlackoilModelBase::
variableReservoirStateInitials(const ReservoirState& x, std::vector& vars0) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = x.numPhases();
// Initial pressure.
assert (not x.pressure().empty());
const V p = Eigen::Map(& x.pressure()[0], nc, 1);
vars0.push_back(p);
// Initial saturation.
assert (not x.saturation().empty());
const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
// We do not handle a Water/Gas situation correctly, guard against it.
assert (active_[ Oil]);
if (active_[ Water ]) {
const V sw = s.col(pu.phase_pos[ Water ]);
vars0.push_back(sw);
}
if (active_[ Gas ]) {
// define new primary variable xvar depending on solution condition
V xvar(nc);
const V sg = s.col(pu.phase_pos[ Gas ]);
const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size());
const V rv = Eigen::Map(& x.rv()[0], x.rv().size());
xvar = isRs_*rs + isRv_*rv + isSg_*sg;
vars0.push_back(xvar);
}
}
template
std::vector
BlackoilModelBase::
variableStateIndices() const
{
assert(active_[Oil]);
std::vector indices(5, -1);
int next = 0;
indices[Pressure] = next++;
if (active_[Water]) {
indices[Sw] = next++;
}
if (active_[Gas]) {
indices[Xvar] = next++;
}
asImpl().wellModel().variableStateWellIndices(indices, next);
assert(next == fluid_.numPhases() + 2);
return indices;
}
template
typename BlackoilModelBase::SolutionState
BlackoilModelBase::
variableStateExtractVars(const ReservoirState& x,
const std::vector& indices,
std::vector& vars) const
{
//using namespace Opm::AutoDiffGrid;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
SolutionState state(fluid_.numPhases());
// Pressure.
state.pressure = std::move(vars[indices[Pressure]]);
// Temperature cannot be a variable at this time (only constant).
const V temp = Eigen::Map(& x.temperature()[0], x.temperature().size());
state.temperature = ADB::constant(temp);
// Saturations
{
ADB so = ADB::constant(V::Ones(nc, 1));
if (active_[ Water ]) {
state.saturation[pu.phase_pos[ Water ]] = std::move(vars[indices[Sw]]);
const ADB& sw = state.saturation[pu.phase_pos[ Water ]];
so -= sw;
}
if (active_[ Gas ]) {
// Define Sg Rs and Rv in terms of xvar.
// Xvar is only defined if gas phase is active
const ADB& xvar = vars[indices[Xvar]];
ADB& sg = state.saturation[ pu.phase_pos[ Gas ] ];
sg = isSg_*xvar + isRv_*so;
so -= sg;
//Compute the phase pressures before computing RS/RV
{
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: ADB::null());
state.canonical_phase_pressures = computePressures(state.pressure, sw, so, sg);
}
if (active_[ Oil ]) {
// RS and RV is only defined if both oil and gas phase are active.
sd_.rsSat = fluidRsSat(state.canonical_phase_pressures[ Oil ], so , cells_);
if (has_disgas_) {
state.rs = (1-isRs_)*sd_.rsSat + isRs_*xvar;
} else {
state.rs = sd_.rsSat;
}
sd_.rvSat = fluidRvSat(state.canonical_phase_pressures[ Gas ], so , cells_);
if (has_vapoil_) {
state.rv = (1-isRv_)*sd_.rvSat + isRv_*xvar;
} else {
state.rv = sd_.rvSat;
}
sd_.soMax = fluid_.satOilMax();
fluid_.getGasOilHystParams(sd_.krnswdc_go, sd_.pcswmdc_go, cells_);
fluid_.getOilWaterHystParams(sd_.krnswdc_ow, sd_.pcswmdc_ow, cells_);
sd_.Pb = fluid_.bubblePointPressure(cells_,
state.temperature.value(),
state.rs.value());
sd_.Pd = fluid_.dewPointPressure(cells_,
state.temperature.value(),
state.rv.value());
}
}
else {
// Compute phase pressures also if gas phase is not active
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: ADB::null());
const ADB& sg = ADB::null();
state.canonical_phase_pressures = computePressures(state.pressure, sw, so, sg);
}
if (active_[ Oil ]) {
// Note that so is never a primary variable.
state.saturation[pu.phase_pos[ Oil ]] = std::move(so);
}
}
// wells
asImpl().wellModel().variableStateExtractWellsVars(indices, vars, state);
return state;
}
template
void
BlackoilModelBase::
computeAccum(const SolutionState& state,
const int aix )
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& press = state.pressure;
const ADB& temp = state.temperature;
const std::vector& sat = state.saturation;
const ADB& rs = state.rs;
const ADB& rv = state.rv;
const std::vector cond = phaseCondition();
const ADB pv_mult = poroMult(press);
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
for (int phase = 0; phase < maxnp; ++phase) {
if (active_[ phase ]) {
const int pos = pu.phase_pos[ phase ];
sd_.rq[pos].b = asImpl().fluidReciprocFVF(phase, state.canonical_phase_pressures[phase], temp, rs, rv, cond);
sd_.rq[pos].accum[aix] = pv_mult * sd_.rq[pos].b * sat[pos];
// OPM_AD_DUMP(sd_.rq[pos].b);
// OPM_AD_DUMP(sd_.rq[pos].accum[aix]);
}
}
if (active_[ Oil ] && active_[ Gas ]) {
// Account for gas dissolved in oil and vaporized oil
const int po = pu.phase_pos[ Oil ];
const int pg = pu.phase_pos[ Gas ];
// Temporary copy to avoid contribution of dissolved gas in the vaporized oil
// when both dissolved gas and vaporized oil are present.
const ADB accum_gas_copy =sd_.rq[pg].accum[aix];
sd_.rq[pg].accum[aix] += state.rs * sd_.rq[po].accum[aix];
sd_.rq[po].accum[aix] += state.rv * accum_gas_copy;
// OPM_AD_DUMP(sd_.rq[pg].accum[aix]);
}
}
template
SimulatorReport
BlackoilModelBase::
assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
using namespace Opm::AutoDiffGrid;
SimulatorReport report;
// If we have VFP tables, we need the well connection
// pressures for the "simple" hydrostatic correction
// between well depth and vfp table depth.
if (isVFPActive()) {
SolutionState state = asImpl().variableState(reservoir_state, well_state);
SolutionState state0 = state;
asImpl().makeConstantState(state0);
asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
}
// set up the guide rate and group control
if (asImpl().wellModel().wellCollection()->groupControlActive() && initial_assembly) {
setupGroupControl(reservoir_state, well_state);
}
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
asImpl().wellModel().updateWellControls(well_state);
if (asImpl().wellModel().wellCollection()->groupControlActive()) {
// enforce VREP control when necessary.
applyVREPGroupControl(reservoir_state, well_state);
asImpl().wellModel().wellCollection()->updateWellTargets(well_state.wellRates());
}
// Create the primary variables.
SolutionState state = asImpl().variableState(reservoir_state, well_state);
if (initial_assembly) {
// Create the (constant, derivativeless) initial state.
SolutionState state0 = state;
asImpl().makeConstantState(state0);
// Compute initial accumulation contributions
// and well connection pressures.
asImpl().computeAccum(state0, 0);
asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
}
// OPM_AD_DISKVAL(state.pressure);
// OPM_AD_DISKVAL(state.saturation[0]);
// OPM_AD_DISKVAL(state.saturation[1]);
// OPM_AD_DISKVAL(state.saturation[2]);
// OPM_AD_DISKVAL(state.rs);
// OPM_AD_DISKVAL(state.rv);
// OPM_AD_DISKVAL(state.qs);
// OPM_AD_DISKVAL(state.bhp);
// -------- Mass balance equations --------
asImpl().assembleMassBalanceEq(state);
// -------- Well equations ----------
if ( ! wellsActive() ) {
return report;
}
std::vector mob_perfcells;
std::vector b_perfcells;
asImpl().wellModel().extractWellPerfProperties(state, sd_.rq, mob_perfcells, b_perfcells);
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
report += asImpl().solveWellEq(mob_perfcells, b_perfcells, reservoir_state, state, well_state);
}
V aliveWells;
std::vector cq_s;
asImpl().wellModel().computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
asImpl().wellModel().updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
asImpl().wellModel().addWellFluxEq(cq_s, state, residual_);
asImpl().addWellContributionToMassBalanceEq(cq_s, state, well_state);
asImpl().wellModel().addWellControlEq(state, well_state, aliveWells, residual_);
return report;
}
template
void
BlackoilModelBase::
assembleMassBalanceEq(const SolutionState& state)
{
// Compute b_p and the accumulation term b_p*s_p for each phase,
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
// These quantities are stored in sd_.rq[phase].accum[1].
// The corresponding accumulation terms from the start of
// the timestep (b^0_p*s^0_p etc.) were already computed
// on the initial call to assemble() and stored in sd_.rq[phase].accum[0].
asImpl().computeAccum(state, 1);
// Set up the common parts of the mass balance equations
// for each active phase.
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
const V trans_nnc = ops_.nnc_trans;
V trans_all(transi.size() + trans_nnc.size());
trans_all << transi, trans_nnc;
{
const std::vector kr = asImpl().computeRelPerm(state);
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
sd_.rq[phaseIdx].kr = kr[canph_[phaseIdx]];
}
}
#pragma omp parallel for schedule(static)
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
const std::vector& cond = phaseCondition();
sd_.rq[phaseIdx].mu = asImpl().fluidViscosity(canph_[phaseIdx], state.canonical_phase_pressures[canph_[phaseIdx]], state.temperature, state.rs, state.rv, cond);
sd_.rq[phaseIdx].rho = asImpl().fluidDensity(canph_[phaseIdx], sd_.rq[phaseIdx].b, state.rs, state.rv);
asImpl().computeMassFlux(phaseIdx, trans_all, sd_.rq[phaseIdx].kr, sd_.rq[phaseIdx].mu, sd_.rq[phaseIdx].rho, state.canonical_phase_pressures[canph_[phaseIdx]], state);
residual_.material_balance_eq[ phaseIdx ] =
pvdt_ * (sd_.rq[phaseIdx].accum[1] - sd_.rq[phaseIdx].accum[0])
+ ops_.div*sd_.rq[phaseIdx].mflux;
}
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
// Add the extra (flux) terms to the mass balance equations
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
// The extra terms in the accumulation part of the equation are already handled.
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
const UpwindSelector upwindOil(grid_, ops_,
sd_.rq[po].dh.value());
const ADB rs_face = upwindOil.select(state.rs);
const UpwindSelector upwindGas(grid_, ops_,
sd_.rq[pg].dh.value());
const ADB rv_face = upwindGas.select(state.rv);
residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * sd_.rq[po].mflux);
residual_.material_balance_eq[ po ] += ops_.div * (rv_face * sd_.rq[pg].mflux);
// OPM_AD_DUMP(residual_.material_balance_eq[ Gas ]);
}
if (param_.update_equations_scaling_) {
asImpl().updateEquationsScaling();
}
}
template
void
BlackoilModelBase::
updateEquationsScaling() {
ADB::V B;
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
for ( int idx=0; idx(linsolver_.parallelInformation());
double B_global_sum = 0;
real_info.computeReduction(B, Reduction::makeGlobalSumFunctor(), B_global_sum);
residual_.matbalscale[idx] = B_global_sum / global_nc_;
}
else
#endif
{
residual_.matbalscale[idx] = B.mean();
}
}
}
}
template
void
BlackoilModelBase::
addWellContributionToMassBalanceEq(const std::vector& cq_s,
const SolutionState&,
const WellState&)
{
if ( !asImpl().localWellsActive() )
{
// If there are no wells in the subdomain of the proces then
// cq_s has zero size and will cause a segmentation fault below.
return;
}
// Add well contributions to mass balance equations
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = asImpl().numPhases();
const V& efficiency_factors = wellModel().wellPerfEfficiencyFactors();
for (int phase = 0; phase < np; ++phase) {
residual_.material_balance_eq[phase] -= superset(efficiency_factors * cq_s[phase],
wellModel().wellOps().well_cells, nc);
}
}
template
bool
BlackoilModelBase::
isVFPActive() const
{
if( ! localWellsActive() ) {
return false;
}
if ( vfp_properties_.getProd()->empty() && vfp_properties_.getInj()->empty() ) {
return false;
}
const int nw = wells().number_of_wells;
//Loop over all wells
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
const int nwc = well_controls_get_num(wc);
//Loop over all controls
for (int c=0; c < nwc; ++c) {
const WellControlType ctrl_type = well_controls_iget_type(wc, c);
if (ctrl_type == THP) {
return true;
}
}
}
return false;
}
template
SimulatorReport
BlackoilModelBase::
solveWellEq(const std::vector& mob_perfcells,
const std::vector& b_perfcells,
const ReservoirState& reservoir_state,
SolutionState& state,
WellState& well_state)
{
V aliveWells;
const int np = wells().number_of_phases;
std::vector cq_s(np, ADB::null());
std::vector indices = asImpl().wellModel().variableWellStateIndices();
SolutionState state0 = state;
WellState well_state0 = well_state;
asImpl().makeConstantState(state0);
std::vector mob_perfcells_const(np, ADB::null());
std::vector b_perfcells_const(np, ADB::null());
if (asImpl().localWellsActive() ){
// If there are non well in the sudomain of the process
// thene mob_perfcells_const and b_perfcells_const would be empty
for (int phase = 0; phase < np; ++phase) {
mob_perfcells_const[phase] = ADB::constant(mob_perfcells[phase].value());
b_perfcells_const[phase] = ADB::constant(b_perfcells[phase].value());
}
}
int it = 0;
bool converged;
do {
// bhp and Q for the wells
std::vector vars0;
vars0.reserve(2);
asImpl().wellModel().variableWellStateInitials(well_state, vars0);
std::vector vars = ADB::variables(vars0);
SolutionState wellSolutionState = state0;
asImpl().wellModel().variableStateExtractWellsVars(indices, vars, wellSolutionState);
asImpl().wellModel().computeWellFlux(wellSolutionState, mob_perfcells_const, b_perfcells_const, aliveWells, cq_s);
asImpl().wellModel().updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state);
asImpl().wellModel().addWellFluxEq(cq_s, wellSolutionState, residual_);
asImpl().wellModel().addWellControlEq(wellSolutionState, well_state, aliveWells, residual_);
converged = getWellConvergence(it);
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
std::vector eqs;
eqs.reserve(2);
eqs.push_back(residual_.well_flux_eq);
eqs.push_back(residual_.well_eq);
ADB total_residual = vertcatCollapseJacs(eqs);
const std::vector& Jn = total_residual.derivative();
typedef Eigen::SparseMatrix Sp;
Sp Jn0;
Jn[0].toSparse(Jn0);
const Eigen::SparseLU< Sp > solver(Jn0);
ADB::V total_residual_v = total_residual.value();
const Eigen::VectorXd& dx = solver.solve(total_residual_v.matrix());
assert(dx.size() == total_residual_v.size());
asImpl().wellModel().updateWellState(dx.array(), dbhpMaxRel(), well_state);
}
// We have to update the well controls regardless whether there are local
// wells active or not as parallel logging will take place that needs to
// communicate with all processes.
asImpl().wellModel().updateWellControls(well_state);
if (asImpl().wellModel().wellCollection()->groupControlActive()) {
// Enforce the VREP control
applyVREPGroupControl(reservoir_state, well_state);
asImpl().wellModel().wellCollection()->updateWellTargets(well_state.wellRates());
}
} while (it < 15);
if (converged) {
if (terminalOutputEnabled())
{
OpmLog::note("well converged iter: " + std::to_string(it));
}
const int nw = wells().number_of_wells;
{
// We will set the bhp primary variable to the new ones,
// but we do not change the derivatives here.
ADB::V new_bhp = Eigen::Map(well_state.bhp().data(), nw);
// Avoiding the copy below would require a value setter method
// in AutoDiffBlock.
std::vector old_derivs = state.bhp.derivative();
state.bhp = ADB::function(std::move(new_bhp), std::move(old_derivs));
}
{
// Need to reshuffle well rates, from phase running fastest
// to wells running fastest.
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map(well_state.wellRates().data(), nw, np).transpose();
ADB::V new_qs = Eigen::Map(wrates.data(), nw*np);
std::vector old_derivs = state.qs.derivative();
state.qs = ADB::function(std::move(new_qs), std::move(old_derivs));
}
asImpl().computeWellConnectionPressures(state, well_state);
}
if (!converged) {
well_state = well_state0;
}
SimulatorReport report;
report.total_well_iterations = it;
report.converged = converged;
return report;
}
template
V
BlackoilModelBase::
solveJacobianSystem() const
{
return linsolver_.computeNewtonIncrement(residual_);
}
template
void
BlackoilModelBase::
updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state)
{
using namespace Opm::AutoDiffGrid;
const int np = fluid_.numPhases();
const int nc = numCells(grid_);
const V null;
assert(null.size() == 0);
const V zero = V::Zero(nc);
const V ones = V::Constant(nc,1.0);
// Extract parts of dx corresponding to each part.
const V dp = subset(dx, Span(nc));
int varstart = nc;
const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null;
varstart += dsw.size();
const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null;
varstart += dxvar.size();
// Extract well parts np phase rates + bhp
const V dwells = subset(dx, Span(asImpl().wellModel().numWellVars(), 1, varstart));
varstart += dwells.size();
assert(varstart == dx.size());
// Pressure update.
const double dpmaxrel = dpMaxRel();
const V p_old = Eigen::Map(&reservoir_state.pressure()[0], nc, 1);
const V absdpmax = dpmaxrel*p_old.abs();
const V dp_limited = sign(dp) * dp.abs().min(absdpmax);
const V p = (p_old - dp_limited).max(zero);
std::copy(&p[0], &p[0] + nc, reservoir_state.pressure().begin());
// Saturation updates.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s_old = Eigen::Map(& reservoir_state.saturation()[0], nc, np);
const double dsmax = dsMax();
V so;
V sw;
V sg;
{
V maxVal = zero;
V dso = zero;
if (active_[Water]){
maxVal = dsw.abs().max(maxVal);
dso = dso - dsw;
}
V dsg;
if (active_[Gas]){
dsg = isSg_ * dxvar - isRv_ * dsw;
maxVal = dsg.abs().max(maxVal);
dso = dso - dsg;
}
maxVal = dso.abs().max(maxVal);
V step = dsmax/maxVal;
step = step.min(1.);
if (active_[Water]) {
const int pos = pu.phase_pos[ Water ];
const V sw_old = s_old.col(pos);
sw = sw_old - step * dsw;
}
if (active_[Gas]) {
const int pos = pu.phase_pos[ Gas ];
const V sg_old = s_old.col(pos);
sg = sg_old - step * dsg;
}
assert(active_[Oil]);
const int pos = pu.phase_pos[ Oil ];
const V so_old = s_old.col(pos);
so = so_old - step * dso;
}
if (active_[Gas]) {
auto ixg = sg < 0;
for (int c = 0; c < nc; ++c) {
if (ixg[c]) {
if (active_[Water]) {
sw[c] = sw[c] / (1-sg[c]);
}
so[c] = so[c] / (1-sg[c]);
sg[c] = 0;
}
}
}
if (active_[Oil]) {
auto ixo = so < 0;
for (int c = 0; c < nc; ++c) {
if (ixo[c]) {
if (active_[Water]) {
sw[c] = sw[c] / (1-so[c]);
}
if (active_[Gas]) {
sg[c] = sg[c] / (1-so[c]);
}
so[c] = 0;
}
}
}
if (active_[Water]) {
auto ixw = sw < 0;
for (int c = 0; c < nc; ++c) {
if (ixw[c]) {
so[c] = so[c] / (1-sw[c]);
if (active_[Gas]) {
sg[c] = sg[c] / (1-sw[c]);
}
sw[c] = 0;
}
}
}
// Update rs and rv
const double drmaxrel = drMaxRel();
V rs;
if (has_disgas_) {
const V rs_old = Eigen::Map(&reservoir_state.gasoilratio()[0], nc);
const V drs = isRs_ * dxvar;
const V drs_limited = sign(drs) * drs.abs().min( (rs_old.abs()*drmaxrel).max( ones*1.0));
rs = rs_old - drs_limited;
rs = rs.max(zero);
}
V rv;
if (has_vapoil_) {
const V rv_old = Eigen::Map(&reservoir_state.rv()[0], nc);
const V drv = isRv_ * dxvar;
const V drv_limited = sign(drv) * drv.abs().min( (rv_old.abs()*drmaxrel).max( ones*1e-3));
rv = rv_old - drv_limited;
rv = rv.max(zero);
}
// Sg is used as primal variable for water only cells.
const double epsilon = std::sqrt(std::numeric_limits::epsilon());
auto watOnly = sw > (1 - epsilon);
// phase translation sg <-> rs
std::vector& hydroCarbonState = reservoir_state.hydroCarbonState();
std::fill(hydroCarbonState.begin(), hydroCarbonState.end(), HydroCarbonState::GasAndOil);
if (has_disgas_) {
const V rsSat0 = fluidRsSat(p_old, s_old.col(pu.phase_pos[Oil]), cells_);
const V rsSat = fluidRsSat(p, so, cells_);
sd_.rsSat = ADB::constant(rsSat);
// The obvious case
auto hasGas = (sg > 0 && isRs_ == 0);
// Set oil saturated if previous rs is sufficiently large
const V rs_old = Eigen::Map(&reservoir_state.gasoilratio()[0], nc);
auto gasVaporized = ( (rs > rsSat * (1+epsilon) && isRs_ == 1 ) && (rs_old > rsSat0 * (1-epsilon)) );
auto useSg = watOnly || hasGas || gasVaporized;
for (int c = 0; c < nc; ++c) {
if (useSg[c]) {
rs[c] = rsSat[c];
if (watOnly[c]) {
so[c] = 0;
sg[c] = 0;
rs[c] = 0;
}
} else {
hydroCarbonState[c] = HydroCarbonState::OilOnly;
}
}
//rs = rs.min(rsSat);
}
// phase transitions so <-> rv
if (has_vapoil_) {
// The gas pressure is needed for the rvSat calculations
const V gaspress_old = computeGasPressure(p_old, s_old.col(Water), s_old.col(Oil), s_old.col(Gas));
const V gaspress = computeGasPressure(p, sw, so, sg);
const V rvSat0 = fluidRvSat(gaspress_old, s_old.col(pu.phase_pos[Oil]), cells_);
const V rvSat = fluidRvSat(gaspress, so, cells_);
sd_.rvSat = ADB::constant(rvSat);
// The obvious case
auto hasOil = (so > 0 && isRv_ == 0);
// Set oil saturated if previous rv is sufficiently large
const V rv_old = Eigen::Map(&reservoir_state.rv()[0], nc);
auto oilCondensed = ( (rv > rvSat * (1+epsilon) && isRv_ == 1) && (rv_old > rvSat0 * (1-epsilon)) );
auto useSg = watOnly || hasOil || oilCondensed;
for (int c = 0; c < nc; ++c) {
if (useSg[c]) {
rv[c] = rvSat[c];
if (watOnly[c]) {
so[c] = 0;
sg[c] = 0;
rv[c] = 0;
}
} else {
hydroCarbonState[c] = HydroCarbonState::GasOnly;
}
}
//rv = rv.min(rvSat);
}
// Update the reservoir_state
if (active_[Water]) {
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c];
}
}
if (active_[Gas]) {
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c];
}
}
if (active_[ Oil ]) {
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + pu.phase_pos[ Oil ]] = so[c];
}
}
if (has_disgas_) {
std::copy(&rs[0], &rs[0] + nc, reservoir_state.gasoilratio().begin());
}
if (has_vapoil_) {
std::copy(&rv[0], &rv[0] + nc, reservoir_state.rv().begin());
}
asImpl().wellModel().updateWellState(dwells, dbhpMaxRel(), well_state);
// Update phase conditions used for property calculations.
updatePhaseCondFromPrimalVariable(reservoir_state);
}
template
std::vector
BlackoilModelBase::
computeRelPerm(const SolutionState& state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const ADB zero = ADB::constant(V::Zero(nc));
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: zero);
const ADB& so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: zero);
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
return fluid_.relperm(sw, so, sg, cells_);
}
template
std::vector
BlackoilModelBase::
computePressures(const ADB& po,
const ADB& sw,
const ADB& so,
const ADB& sg) const
{
// convert the pressure offsets to the capillary pressures
std::vector pressure = fluid_.capPress(sw, so, sg, cells_);
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
// The reference pressure is always the liquid phase (oil) pressure.
if (phaseIdx == BlackoilPhases::Liquid)
continue;
if (active_[phaseIdx]) {
pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid];
}
}
// Since pcow = po - pw, but pcog = pg - po,
// we have
// pw = po - pcow
// pg = po + pcgo
// This is an unfortunate inconsistency, but a convention we must handle.
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
if (active_[phaseIdx]) {
if (phaseIdx == BlackoilPhases::Aqua) {
pressure[phaseIdx] = po - pressure[phaseIdx];
} else {
pressure[phaseIdx] += po;
}
}
}
return pressure;
}
template
V
BlackoilModelBase::
computeGasPressure(const V& po,
const V& sw,
const V& so,
const V& sg) const
{
assert (active_[Gas]);
std::vector cp = fluid_.capPress(ADB::constant(sw),
ADB::constant(so),
ADB::constant(sg),
cells_);
return cp[Gas].value() + po;
}
template
void
BlackoilModelBase::
computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& mu ,
const ADB& rho ,
const ADB& phasePressure,
const SolutionState& state)
{
// Compute and store mobilities.
const ADB tr_mult = transMult(state.pressure);
sd_.rq[ actph ].mob = tr_mult * kr / mu;
// Compute head differentials. Gravity potential is done using the face average as in eclipse and MRST.
const ADB rhoavg = ops_.caver * rho;
sd_.rq[ actph ].dh = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
if (use_threshold_pressure_) {
applyThresholdPressures(sd_.rq[ actph ].dh);
}
// Compute phase fluxes with upwinding of formation value factor and mobility.
const ADB& b = sd_.rq[ actph ].b;
const ADB& mob = sd_.rq[ actph ].mob;
const ADB& dh = sd_.rq[ actph ].dh;
UpwindSelector upwind(grid_, ops_, dh.value());
sd_.rq[ actph ].mflux = upwind.select(b * mob) * (transi * dh);
}
template
void
BlackoilModelBase::
applyThresholdPressures(ADB& dp)
{
// We support reversible threshold pressures only.
// Method: if the potential difference is lower (in absolute
// value) than the threshold for any face, then the potential
// (and derivatives) is set to zero. If it is above the
// threshold, the threshold pressure is subtracted from the
// absolute potential (the potential is moved towards zero).
// Identify the set of faces where the potential is under the
// threshold, that shall have zero flow. Storing the bool
// Array as a V (a double Array) with 1 and 0 elements, a
// 1 where flow is allowed, a 0 where it is not.
const V high_potential = (dp.value().abs() >= threshold_pressures_by_connection_).template cast();
// Create a sparse vector that nullifies the low potential elements.
const M keep_high_potential(high_potential.matrix().asDiagonal());
// Find the current sign for the threshold modification
const V sign_dp = sign(dp.value());
const V threshold_modification = sign_dp * threshold_pressures_by_connection_;
// Modify potential and nullify where appropriate.
dp = keep_high_potential * (dp - threshold_modification);
}
template
std::vector
BlackoilModelBase::
computeResidualNorms() const
{
std::vector residualNorms;
std::vector::const_iterator massBalanceIt = residual_.material_balance_eq.begin();
const std::vector::const_iterator endMassBalanceIt = residual_.material_balance_eq.end();
for (; massBalanceIt != endMassBalanceIt; ++massBalanceIt) {
const double massBalanceResid = detail::infinityNorm( (*massBalanceIt),
linsolver_.parallelInformation() );
if (!std::isfinite(massBalanceResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residualNorms.push_back(massBalanceResid);
}
// the following residuals are not used in the oscillation detection now
const double wellFluxResid = detail::infinityNormWell( residual_.well_flux_eq,
linsolver_.parallelInformation() );
if (!std::isfinite(wellFluxResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residualNorms.push_back(wellFluxResid);
const double wellResid = detail::infinityNormWell( residual_.well_eq,
linsolver_.parallelInformation() );
if (!std::isfinite(wellResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residualNorms.push_back(wellResid);
return residualNorms;
}
template
double
BlackoilModelBase::
relativeChange(const SimulationDataContainer& previous,
const SimulationDataContainer& current ) const
{
std::vector< double > p0 ( previous.pressure() );
std::vector< double > sat0( previous.saturation() );
const std::size_t pSize = p0.size();
const std::size_t satSize = sat0.size();
// compute u^n - u^n+1
for( std::size_t i=0; i 0.0 ) {
return stateOld / stateNew ;
}
else {
return 0.0;
}
}
template
double
BlackoilModelBase::
convergenceReduction(const Eigen::Array& B,
const Eigen::Array& tempV,
const Eigen::Array& R,
std::vector& R_sum,
std::vector& maxCoeff,
std::vector& B_avg,
std::vector& maxNormWell,
int nc) const
{
const int np = asImpl().numPhases();
const int nm = asImpl().numMaterials();
const int nw = residual_.well_flux_eq.size() / np;
assert(nw * np == int(residual_.well_flux_eq.size()));
// Do the global reductions
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast(linsolver_.parallelInformation());
// Compute the global number of cells and porevolume
std::vector v(nc, 1);
auto nc_and_pv = std::tuple(0, 0.0);
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor(),
Opm::Reduction::makeGlobalSumFunctor());
auto nc_and_pv_containers = std::make_tuple(v, geo_.poreVolume());
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
for ( int idx = 0; idx < nm; ++idx )
{
auto values = std::tuple(0.0 ,0.0 ,0.0);
auto containers = std::make_tuple(B.col(idx),
tempV.col(idx),
R.col(idx));
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor(),
Opm::Reduction::makeGlobalMaxFunctor(),
Opm::Reduction::makeGlobalSumFunctor());
info.computeReduction(containers, operators, values);
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
maxCoeff[idx] = std::get<1>(values);
R_sum[idx] = std::get<2>(values);
assert(nm >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
info.communicator().max(maxNormWell.data(), np);
// Compute pore volume
return std::get<1>(nc_and_pv);
}
else
#endif
{
B_avg.resize(nm);
maxCoeff.resize(nm);
R_sum.resize(nm);
maxNormWell.resize(np);
for ( int idx = 0; idx < nm; ++idx )
{
B_avg[idx] = B.col(idx).sum()/nc;
maxCoeff[idx] = tempV.col(idx).maxCoeff();
R_sum[idx] = R.col(idx).sum();
assert(nm >= np);
if (idx < np) {
maxNormWell[idx] = 0.0;
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
// Compute total pore volume
return geo_.poreVolume().sum();
}
}
template
bool
BlackoilModelBase::
getConvergence(const SimulatorTimerInterface& timer, const int iteration)
{
const double dt = timer.currentStepLength();
const double tol_mb = param_.tolerance_mb_;
const double tol_cnv = param_.tolerance_cnv_;
const double tol_wells = param_.tolerance_wells_;
const double tol_well_control = param_.tolerance_well_control_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = asImpl().numPhases();
const int nm = asImpl().numMaterials();
assert(int(sd_.rq.size()) == nm);
const V& pv = geo_.poreVolume();
std::vector R_sum(nm);
std::vector B_avg(nm);
std::vector maxCoeff(nm);
std::vector maxNormWell(np);
Eigen::Array B(nc, nm);
Eigen::Array R(nc, nm);
Eigen::Array tempV(nc, nm);
for ( int idx = 0; idx < nm; ++idx )
{
const ADB& tempB = sd_.rq[idx].b;
B.col(idx) = 1./tempB.value();
R.col(idx) = residual_.material_balance_eq[idx].value();
tempV.col(idx) = R.col(idx).abs()/pv;
}
const double pvSum = convergenceReduction(B, tempV, R,
R_sum, maxCoeff, B_avg, maxNormWell,
nc);
std::vector CNV(nm);
std::vector mass_balance_residual(nm);
std::vector well_flux_residual(np);
bool converged_MB = true;
bool converged_CNV = true;
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < nm; ++idx )
{
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
// Well flux convergence is only for fluid phases, not other materials
// in our current implementation.
assert(nm >= np);
if (idx < np) {
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
}
const double residualWell = detail::infinityNormWell(residual_.well_eq,
linsolver_.parallelInformation());
converged_Well = converged_Well && (residualWell < tol_well_control);
const bool converged = converged_MB && converged_CNV && converged_Well;
// Residual in Pascal can have high values and still be ok.
const double maxWellResidualAllowed = 1000.0 * maxResidualAllowed();
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg = "Iter";
for (int idx = 0; idx < nm; ++idx) {
msg += " MB(" + materialName(idx).substr(0, 3) + ") ";
}
for (int idx = 0; idx < nm; ++idx) {
msg += " CNV(" + materialName(idx).substr(0, 1) + ") ";
}
for (int idx = 0; idx < np; ++idx) {
msg += " W-FLUX(" + materialName(idx).substr(0, 1) + ")";
}
msg += " WELL-CONT";
// std::cout << " WELL-CONT ";
OpmLog::debug(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int idx = 0; idx < nm; ++idx) {
ss << std::setw(11) << mass_balance_residual[idx];
}
for (int idx = 0; idx < nm; ++idx) {
ss << std::setw(11) << CNV[idx];
}
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << well_flux_residual[idx];
}
ss << std::setw(11) << residualWell;
// std::cout << std::setw(11) << residualWell;
ss.precision(oprec);
ss.flags(oflags);
OpmLog::debug(ss.str());
}
for (int idx = 0; idx < nm; ++idx) {
if (std::isnan(mass_balance_residual[idx])
|| std::isnan(CNV[idx])
|| (idx < np && std::isnan(well_flux_residual[idx]))) {
const auto msg = std::string("NaN residual for phase ") + materialName(idx);
if (terminal_output_) {
OpmLog::bug(msg);
}
OPM_THROW_NOLOG(Opm::NumericalProblem, msg);
}
if (mass_balance_residual[idx] > maxResidualAllowed()
|| CNV[idx] > maxResidualAllowed()
|| (idx < np && well_flux_residual[idx] > maxResidualAllowed())) {
const auto msg = std::string("Too large residual for phase ") + materialName(idx);
if (terminal_output_) {
OpmLog::problem(msg);
}
OPM_THROW_NOLOG(Opm::NumericalProblem, msg);
}
}
if (std::isnan(residualWell) || residualWell > maxWellResidualAllowed) {
const auto msg = std::string("NaN or too large residual for well control equation");
if (terminal_output_) {
OpmLog::problem(msg);
}
OPM_THROW_NOLOG(Opm::NumericalProblem, msg);
}
return converged;
}
template
bool
BlackoilModelBase::
getWellConvergence(const int iteration)
{
const double tol_wells = param_.tolerance_wells_;
const double tol_well_control = param_.tolerance_well_control_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = asImpl().numPhases();
const int nm = asImpl().numMaterials();
const V& pv = geo_.poreVolume();
std::vector R_sum(nm);
std::vector B_avg(nm);
std::vector maxCoeff(nm);
std::vector maxNormWell(np);
Eigen::Array B(nc, nm);
Eigen::Array R(nc, nm);
Eigen::Array tempV(nc, nm);
for ( int idx = 0; idx < nm; ++idx )
{
const ADB& tempB = sd_.rq[idx].b;
B.col(idx) = 1./tempB.value();
R.col(idx) = residual_.material_balance_eq[idx].value();
tempV.col(idx) = R.col(idx).abs()/pv;
}
convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg, maxNormWell, nc);
std::vector well_flux_residual(np);
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < np; ++idx )
{
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
const double residualWell = detail::infinityNormWell(residual_.well_eq,
linsolver_.parallelInformation());
converged_Well = converged_Well && (residualWell < tol_well_control);
const bool converged = converged_Well;
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
for (int idx = 0; idx < np; ++idx) {
if (std::isnan(well_flux_residual[idx])) {
const auto msg = std::string("NaN residual for phase ") + materialName(idx);
if (terminal_output_) {
OpmLog::bug(msg);
}
OPM_THROW_NOLOG(Opm::NumericalProblem, msg);
}
if (well_flux_residual[idx] > maxResidualAllowed()) {
const auto msg = std::string("Too large residual for phase ") + materialName(idx);
if (terminal_output_) {
OpmLog::problem(msg);
}
OPM_THROW_NOLOG(Opm::NumericalProblem, msg);
}
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg;
msg = "Iter";
for (int idx = 0; idx < np; ++idx) {
msg += " W-FLUX(" + materialName(idx).substr(0, 1) + ")";
}
msg += " WELL-CONT";
OpmLog::debug(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int idx = 0; idx < np; ++idx) {
ss << std::setw(11) << well_flux_residual[idx];
}
ss << std::setw(11) << residualWell;
ss.precision(oprec);
ss.flags(oflags);
OpmLog::debug(ss.str());
}
return converged;
}
template
ADB
BlackoilModelBase::
fluidViscosity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector& cond) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, temp, cells_);
case Oil:
return fluid_.muOil(p, temp, rs, cond, cells_);
case Gas:
return fluid_.muGas(p, temp, rv, cond, cells_);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
template
ADB
BlackoilModelBase::
fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector& cond) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, temp, cells_);
case Oil:
return fluid_.bOil(p, temp, rs, cond, cells_);
case Gas:
return fluid_.bGas(p, temp, rv, cond, cells_);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
template
ADB
BlackoilModelBase::
fluidDensity(const int phase,
const ADB& b,
const ADB& rs,
const ADB& rv) const
{
const V& rhos = fluid_.surfaceDensity(phase, cells_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
ADB rho = rhos * b;
if (phase == Oil && active_[Gas]) {
rho += fluid_.surfaceDensity(pu.phase_pos[ Gas ], cells_) * rs * b;
}
if (phase == Gas && active_[Oil]) {
rho += fluid_.surfaceDensity(pu.phase_pos[ Oil ], cells_) * rv * b;
}
return rho;
}
template
V
BlackoilModelBase::
fluidRsSat(const V& p,
const V& satOil,
const std::vector& cells) const
{
return fluid_.rsSat(ADB::constant(p), ADB::constant(satOil), cells).value();
}
template
ADB
BlackoilModelBase::
fluidRsSat(const ADB& p,
const ADB& satOil,
const std::vector& cells) const
{
return fluid_.rsSat(p, satOil, cells);
}
template
V
BlackoilModelBase::
fluidRvSat(const V& p,
const V& satOil,
const std::vector& cells) const
{
return fluid_.rvSat(ADB::constant(p), ADB::constant(satOil), cells).value();
}
template
ADB
BlackoilModelBase::
fluidRvSat(const ADB& p,
const ADB& satOil,
const std::vector& cells) const
{
return fluid_.rvSat(p, satOil, cells);
}
template
ADB
BlackoilModelBase::
poroMult(const ADB& p) const
{
const int n = p.size();
if (rock_comp_props_ && rock_comp_props_->isActive()) {
V pm(n);
V dpm(n);
#pragma omp parallel for schedule(static)
for (int i = 0; i < n; ++i) {
pm[i] = rock_comp_props_->poroMult(p.value()[i]);
dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]);
}
ADB::M dpm_diag(dpm.matrix().asDiagonal());
const int num_blocks = p.numBlocks();
std::vector jacs(num_blocks);
#pragma omp parallel for schedule(dynamic)
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dpm_diag, p.derivative()[block], jacs[block]);
}
return ADB::function(std::move(pm), std::move(jacs));
} else {
return ADB::constant(V::Constant(n, 1.0));
}
}
template
ADB
BlackoilModelBase::
transMult(const ADB& p) const
{
const int n = p.size();
if (rock_comp_props_ && rock_comp_props_->isActive()) {
V tm(n);
V dtm(n);
#pragma omp parallel for schedule(static)
for (int i = 0; i < n; ++i) {
tm[i] = rock_comp_props_->transMult(p.value()[i]);
dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]);
}
ADB::M dtm_diag(dtm.matrix().asDiagonal());
const int num_blocks = p.numBlocks();
std::vector jacs(num_blocks);
#pragma omp parallel for schedule(dynamic)
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dtm_diag, p.derivative()[block], jacs[block]);
}
return ADB::function(std::move(tm), std::move(jacs));
} else {
return ADB::constant(V::Constant(n, 1.0));
}
}
template
void
BlackoilModelBase::
classifyCondition(const ReservoirState& state)
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = state.numPhases();
const PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s = Eigen::Map(& state.saturation()[0], nc, np);
if (active_[ Gas ]) {
// Oil/Gas or Water/Oil/Gas system
const V so = s.col(pu.phase_pos[ Oil ]);
const V sg = s.col(pu.phase_pos[ Gas ]);
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
if (so[c] > 0) { phaseCondition_[c].setFreeOil (); }
if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); }
if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); }
}
}
else {
// Water/Oil system
assert (active_[ Water ]);
const V so = s.col(pu.phase_pos[ Oil ]);
for (V::Index c = 0, e = so.size(); c != e; ++c) {
phaseCondition_[c].setFreeWater();
if (so[c] > 0) { phaseCondition_[c].setFreeOil(); }
}
}
}
template
void
BlackoilModelBase::
updatePrimalVariableFromState(const ReservoirState& state)
{
updatePhaseCondFromPrimalVariable(state);
}
/// Update the phaseCondition_ member based on the primalVariable_ member.
template
void
BlackoilModelBase