/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
/// Class for handling the blackoil well model.
template
class BlackoilWellModel {
public:
// --------- Types ---------
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParameters ModelParameters;
static const int Water = WellInterface::Water;
static const int Oil = WellInterface::Oil;
static const int Gas = WellInterface::Gas;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
static const int numEq = BlackoilIndices::numEq;
static const int solventSaturationIdx = BlackoilIndices::solventSaturationIdx;
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
typedef Dune::FieldVector VectorBlockType;
typedef Dune::BlockVector BVector;
typedef Ewoms::BlackOilPolymerModule PolymerModule;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage >;
BlackoilWellModel(Simulator& ebosSimulator,
const ModelParameters& param,
const bool terminal_output);
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
void assemble(const int iterationIdx,
const double dt);
// substract Binv(D)rw from r;
void apply( BVector& r) const;
// subtract B*inv(D)*C * x from A*x
void apply(const BVector& x, BVector& Ax) const;
// apply well model with scaling of alpha
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
// using the solution x to recover the solution xw for wells and applying
// xw to update Well State
void recoverWellSolutionAndUpdateWellState(const BVector& x);
// Check if well equations is converged.
bool getWellConvergence(const std::vector& B_avg) const;
// return all the wells.
const WellCollection& wellCollection() const;
// return non const reference to all the wells.
WellCollection& wellCollection();
// return the internal well state, ignore the passed one.
// Used by the legacy code to make it compatible with the legacy well models.
const WellState& wellState(const WellState& well_state OPM_UNUSED) const;
// return the internal well state
const WellState& wellState() const;
// only use this for restart.
void setRestartWellState(const WellState& well_state);
// called at the beginning of a time step
void beginTimeStep();
// called at the end of a time step
void timeStepSucceeded();
// called at the beginning of a report step
void beginReportStep(const int time_step);
// called at the end of a report step
void endReportStep();
const SimulatorReport& lastReport() const;
protected:
Simulator& ebosSimulator_;
std::unique_ptr wells_manager_;
std::vector< const Well* > wells_ecl_;
bool wells_active_;
using WellInterfacePtr = std::unique_ptr >;
// a vector of all the wells.
// eventually, the wells_ above should be gone.
// the name is just temporary
// later, might make share_ptr const later.
std::vector well_container_;
using ConvergenceReport = typename WellInterface::ConvergenceReport;
// create the well container
std::vector createWellContainer(const int time_step) const;
WellState well_state_;
WellState previous_well_state_;
const ModelParameters param_;
bool terminal_output_;
bool has_solvent_;
bool has_polymer_;
std::vector pvt_region_idx_;
PhaseUsage phase_usage_;
std::vector active_;
size_t global_nc_;
// the number of the cells in the local grid
size_t number_of_cells_;
double gravity_;
std::vector depth_;
DynamicListEconLimited dynamic_list_econ_limited_;
std::unique_ptr rateConverter_;
std::unique_ptr vfp_properties_;
SimulatorReport last_report_;
// used to better efficiency of calcuation
mutable BVector scaleAddRes_;
const Wells* wells() const { return wells_manager_->c_wells(); }
const Schedule& schedule() const
{ return ebosSimulator_.gridManager().schedule(); }
void updateWellControls();
void updateGroupControls();
// setting the well_solutions_ based on well_state.
void updatePrimaryVariables();
void setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map& cartesian_to_compressed ) const;
void computeRepRadiusPerfLength(const Grid& grid);
void computeAverageFormationFactor(std::vector& B_avg) const;
void applyVREPGroupControl();
void computeWellVoidageRates(std::vector& well_voidage_rates,
std::vector& voidage_conversion_coeffs) const;
// Calculating well potentials for each well
void computeWellPotentials(std::vector& well_potentials);
const std::vector& wellPerfEfficiencyFactors() const;
void calculateEfficiencyFactors();
// it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation()
// makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions
// twice at the beginning of the time step
/// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated
/// at the beginning of the time step and no derivatives are included in these quantities
void calculateExplicitQuantities() const;
SimulatorReport solveWellEq(const double dt);
void initPrimaryVariablesEvaluation() const;
// The number of components in the model.
int numComponents() const;
int numWells() const;
int numPhases() const;
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;
void resetWellControlFromState() const;
void assembleWellEq(const double dt,
bool only_wells);
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
void prepareTimeStep();
void prepareGroupControl();
void computeRESV(const std::size_t step);
void extractLegacyCellPvtRegionIndex_();
void extractLegacyDepth_();
/// return true if wells are available in the reservoir
bool wellsActive() const;
void setWellsActive(const bool wells_active);
/// return true if wells are available on this process
bool localWellsActive() const;
/// upate the dynamic lists related to economic limits
void updateListEconLimited(DynamicListEconLimited& list_econ_limited) const;
void updatePerforationIntensiveQuantities();
};
} // namespace Opm
#include "BlackoilWellModel_impl.hpp"
#endif