/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template MultisegmentWellEval:: MultisegmentWellEval(WellInterfaceIndices& baseif) : MultisegmentWellGeneric(baseif) , baseif_(baseif) , upwinding_segments_(this->numberOfSegments(), 0) , segment_densities_(this->numberOfSegments(), 0.0) , segment_mass_rates_(this->numberOfSegments(), 0.0) , segment_viscosities_(this->numberOfSegments(), 0.0) , segment_phase_densities_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here? , segment_phase_fractions_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here? , segment_phase_viscosities_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here? , cell_perforation_depth_diffs_(baseif_.numPerfs(), 0.0) , cell_perforation_pressure_diffs_(baseif_.numPerfs(), 0.0) { } template void MultisegmentWellEval:: initMatrixAndVectors(const int num_cells) const { duneB_.setBuildMode(OffDiagMatWell::row_wise); duneC_.setBuildMode(OffDiagMatWell::row_wise); duneD_.setBuildMode(DiagMatWell::row_wise); // set the size and patterns for all the matrices and vectors // [A C^T [x = [ res // B D] x_well] res_well] // calculatiing the NNZ for duneD_ // NNZ = number_of_segments + 2 * (number_of_inlets / number_of_outlets) { int nnz_d = this->numberOfSegments(); for (const std::vector& inlets : this->segment_inlets_) { nnz_d += 2 * inlets.size(); } duneD_.setSize(this->numberOfSegments(), this->numberOfSegments(), nnz_d); } duneB_.setSize(this->numberOfSegments(), num_cells, baseif_.numPerfs()); duneC_.setSize(this->numberOfSegments(), num_cells, baseif_.numPerfs()); // we need to add the off diagonal ones for (auto row = duneD_.createbegin(), end = duneD_.createend(); row != end; ++row) { // the number of the row corrspnds to the segment now const int seg = row.index(); // adding the item related to outlet relation const Segment& segment = this->segmentSet()[seg]; const int outlet_segment_number = segment.outletSegment(); if (outlet_segment_number > 0) { // if there is a outlet_segment const int outlet_segment_index = this->segmentNumberToIndex(outlet_segment_number); row.insert(outlet_segment_index); } // Add nonzeros for diagonal row.insert(seg); // insert the item related to its inlets for (const int& inlet : this->segment_inlets_[seg]) { row.insert(inlet); } } // make the C matrix for (auto row = duneC_.createbegin(), end = duneC_.createend(); row != end; ++row) { // the number of the row corresponds to the segment number now. for (const int& perf : this->segment_perforations_[row.index()]) { const int cell_idx = baseif_.cells()[perf]; row.insert(cell_idx); } } // make the B^T matrix for (auto row = duneB_.createbegin(), end = duneB_.createend(); row != end; ++row) { // the number of the row corresponds to the segment number now. for (const int& perf : this->segment_perforations_[row.index()]) { const int cell_idx = baseif_.cells()[perf]; row.insert(cell_idx); } } resWell_.resize(this->numberOfSegments()); primary_variables_.resize(this->numberOfSegments()); primary_variables_evaluation_.resize(this->numberOfSegments()); } template void MultisegmentWellEval:: initPrimaryVariablesEvaluation() const { for (int seg = 0; seg < this->numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { primary_variables_evaluation_[seg][eq_idx] = 0.0; primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]); primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + Indices::numEq, 1.0); } } } template void MultisegmentWellEval:: checkConvergenceControlEq(const WellState& well_state, ConvergenceReport& report, const double tolerance_pressure_ms_wells, const double tolerance_wells, const double max_residual_allowed, DeferredLogger& deferred_logger) const { double control_tolerance = 0.; using CR = ConvergenceReport; CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid; const int well_index = baseif_.indexOfWell(); if (baseif_.isInjector() ) { auto current = well_state.currentInjectionControl(well_index); switch(current) { case Well::InjectorCMode::THP: ctrltype = CR::WellFailure::Type::ControlTHP; control_tolerance = tolerance_pressure_ms_wells; break; case Well::InjectorCMode::BHP: ctrltype = CR::WellFailure::Type::ControlBHP; control_tolerance = tolerance_pressure_ms_wells; break; case Well::InjectorCMode::RATE: case Well::InjectorCMode::RESV: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = tolerance_wells; break; case Well::InjectorCMode::GRUP: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = tolerance_wells; break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger); } } if (baseif_.isProducer() ) { auto current = well_state.currentProductionControl(well_index); switch(current) { case Well::ProducerCMode::THP: ctrltype = CR::WellFailure::Type::ControlTHP; control_tolerance = tolerance_pressure_ms_wells; break; case Well::ProducerCMode::BHP: ctrltype = CR::WellFailure::Type::ControlBHP; control_tolerance = tolerance_pressure_ms_wells; break; case Well::ProducerCMode::ORAT: case Well::ProducerCMode::WRAT: case Well::ProducerCMode::GRAT: case Well::ProducerCMode::LRAT: case Well::ProducerCMode::RESV: case Well::ProducerCMode::CRAT: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = tolerance_wells; break; case Well::ProducerCMode::GRUP: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = tolerance_wells; break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger); } } const double well_control_residual = std::abs(resWell_[0][SPres]); const int dummy_component = -1; if (std::isnan(well_control_residual)) { report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, baseif_.name()}); } else if (well_control_residual > max_residual_allowed * 10.) { report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, baseif_.name()}); } else if ( well_control_residual > control_tolerance) { report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, baseif_.name()}); } } template ConvergenceReport MultisegmentWellEval:: getWellConvergence(const WellState& well_state, const std::vector& B_avg, DeferredLogger& deferred_logger, const double max_residual_allowed, const double tolerance_wells, const double relaxed_inner_tolerance_flow_ms_well, const double tolerance_pressure_ms_wells, const double relaxed_inner_tolerance_pressure_ms_well, const bool relax_tolerance) const { assert(int(B_avg.size()) == baseif_.numComponents()); // checking if any residual is NaN or too large. The two large one is only handled for the well flux std::vector> abs_residual(this->numberOfSegments(), std::vector(numWellEq, 0.0)); for (int seg = 0; seg < this->numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { abs_residual[seg][eq_idx] = std::abs(resWell_[seg][eq_idx]); } } std::vector maximum_residual(numWellEq, 0.0); ConvergenceReport report; // TODO: the following is a little complicated, maybe can be simplified in some way? for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { for (int seg = 0; seg < this->numberOfSegments(); ++seg) { if (eq_idx < baseif_.numComponents()) { // phase or component mass equations const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx]; if (flux_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = flux_residual; } } else { // pressure or control equation // for the top segment (seg == 0), it is control equation, will be checked later separately if (seg > 0) { // Pressure equation const double pressure_residual = abs_residual[seg][eq_idx]; if (pressure_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = pressure_residual; } } } } } using CR = ConvergenceReport; for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { if (eq_idx < baseif_.numComponents()) { // phase or component mass equations const double flux_residual = maximum_residual[eq_idx]; // TODO: the report can not handle the segment number yet. if (std::isnan(flux_residual)) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, baseif_.name()}); } else if (flux_residual > max_residual_allowed) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, baseif_.name()}); } else if (!relax_tolerance && flux_residual > tolerance_wells) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()}); } else if (flux_residual > relaxed_inner_tolerance_flow_ms_well) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()}); } } else { // pressure equation const double pressure_residual = maximum_residual[eq_idx]; const int dummy_component = -1; if (std::isnan(pressure_residual)) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, baseif_.name()}); } else if (std::isinf(pressure_residual)) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, baseif_.name()}); } else if (!relax_tolerance && pressure_residual > tolerance_pressure_ms_wells) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()}); } else if (pressure_residual > relaxed_inner_tolerance_pressure_ms_well) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()}); } } } checkConvergenceControlEq(well_state, report, tolerance_pressure_ms_wells, tolerance_wells, max_residual_allowed, deferred_logger); return report; } template void MultisegmentWellEval:: processFractions(const int seg) const { static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; const PhaseUsage& pu = baseif_.phaseUsage(); std::vector fractions(baseif_.numPhases(), 0.0); assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ); const int oil_pos = pu.phase_pos[Oil]; fractions[oil_pos] = 1.0; if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { const int water_pos = pu.phase_pos[Water]; fractions[water_pos] = primary_variables_[seg][WFrac]; fractions[oil_pos] -= fractions[water_pos]; } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { const int gas_pos = pu.phase_pos[Gas]; fractions[gas_pos] = primary_variables_[seg][GFrac]; fractions[oil_pos] -= fractions[gas_pos]; } if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = pu.phase_pos[Water]; if (fractions[water_pos] < 0.0) { if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[water_pos]); } fractions[oil_pos] /= (1.0 - fractions[water_pos]); fractions[water_pos] = 0.0; } } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = pu.phase_pos[Gas]; if (fractions[gas_pos] < 0.0) { if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { fractions[pu.phase_pos[Water]] /= (1.0 - fractions[gas_pos]); } fractions[oil_pos] /= (1.0 - fractions[gas_pos]); fractions[gas_pos] = 0.0; } } if (fractions[oil_pos] < 0.0) { if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { fractions[pu.phase_pos[Water]] /= (1.0 - fractions[oil_pos]); } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[oil_pos]); } fractions[oil_pos] = 0.0; } if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { primary_variables_[seg][WFrac] = fractions[pu.phase_pos[Water]]; } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { primary_variables_[seg][GFrac] = fractions[pu.phase_pos[Gas]]; } } template void MultisegmentWellEval:: updateWellState(const BVectorWell& dwells, const double relaxation_factor, const double dFLimit, const double max_pressure_change) const { const std::vector > old_primary_variables = primary_variables_; for (int seg = 0; seg < this->numberOfSegments(); ++seg) { if (has_wfrac_variable) { const int sign = dwells[seg][WFrac] > 0. ? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]) * relaxation_factor, dFLimit); primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited; } if (has_gfrac_variable) { const int sign = dwells[seg][GFrac] > 0. ? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]) * relaxation_factor, dFLimit); primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited; } // handling the overshooting or undershooting of the fractions processFractions(seg); // update the segment pressure { const int sign = dwells[seg][SPres] > 0.? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]) * relaxation_factor, max_pressure_change); primary_variables_[seg][SPres] = std::max( old_primary_variables[seg][SPres] - dx_limited, 1e5); } // update the total rate // TODO: should we have a limitation of the total rate change? { primary_variables_[seg][GTotal] = old_primary_variables[seg][GTotal] - relaxation_factor * dwells[seg][GTotal]; // make sure that no injector produce and no producer inject if (seg == 0) { if (baseif_.isInjector()) { primary_variables_[seg][GTotal] = std::max( primary_variables_[seg][GTotal], 0.0); } else { primary_variables_[seg][GTotal] = std::min( primary_variables_[seg][GTotal], 0.0); } } } } } template void MultisegmentWellEval:: updatePrimaryVariables(const WellState& well_state) const { static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Gas = BlackoilPhases::Vapour; // TODO: to test using rate conversion coefficients to see if it will be better than // this default one if (!baseif_.isOperable() && !baseif_.wellIsStopped()) return; const Well& well = baseif_.wellEcl(); // the index of the top segment in the WellState const auto& segments = well_state.segments(baseif_.indexOfWell()); const auto& segment_rates = segments.rates; const auto& segment_pressure = segments.pressure; const PhaseUsage& pu = baseif_.phaseUsage(); for (int seg = 0; seg < this->numberOfSegments(); ++seg) { // calculate the total rate for each segment double total_seg_rate = 0.0; // the segment pressure primary_variables_[seg][SPres] = segment_pressure[seg]; // TODO: under what kind of circustances, the following will be wrong? // the definition of g makes the gas phase is always the last phase for (int p = 0; p < baseif_.numPhases(); p++) { total_seg_rate += baseif_.scalingFactor(p) * segment_rates[baseif_.numPhases() * seg + p]; } primary_variables_[seg][GTotal] = total_seg_rate; if (std::abs(total_seg_rate) > 0.) { if (has_wfrac_variable) { const int water_pos = pu.phase_pos[Water]; primary_variables_[seg][WFrac] = baseif_.scalingFactor(water_pos) * segment_rates[baseif_.numPhases() * seg + water_pos] / total_seg_rate; } if (has_gfrac_variable) { const int gas_pos = pu.phase_pos[Gas]; primary_variables_[seg][GFrac] = baseif_.scalingFactor(gas_pos) * segment_rates[baseif_.numPhases() * seg + gas_pos] / total_seg_rate; } } else { // total_seg_rate == 0 if (baseif_.isInjector()) { // only single phase injection handled auto phase = well.getInjectionProperties().injectorType; if (has_wfrac_variable) { if (phase == InjectorType::WATER) { primary_variables_[seg][WFrac] = 1.0; } else { primary_variables_[seg][WFrac] = 0.0; } } if (has_gfrac_variable) { if (phase == InjectorType::GAS) { primary_variables_[seg][GFrac] = 1.0; } else { primary_variables_[seg][GFrac] = 0.0; } } } else if (baseif_.isProducer()) { // producers if (has_wfrac_variable) { primary_variables_[seg][WFrac] = 1.0 / baseif_.numPhases(); } if (has_gfrac_variable) { primary_variables_[seg][GFrac] = 1.0 / baseif_.numPhases(); } } } } } template void MultisegmentWellEval:: recoverSolutionWell(const BVector& x, BVectorWell& xw) const { if (!baseif_.isOperable() && !baseif_.wellIsStopped()) return; BVectorWell resWell = resWell_; // resWell = resWell - B * x duneB_.mmv(x, resWell); // xw = D^-1 * resWell xw = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: volumeFraction(const int seg, const unsigned compIdx) const { if (has_wfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) { return primary_variables_evaluation_[seg][WFrac]; } if (has_gfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) { return primary_variables_evaluation_[seg][GFrac]; } // Oil fraction EvalWell oil_fraction = 1.0; if (has_wfrac_variable) { oil_fraction -= primary_variables_evaluation_[seg][WFrac]; } if (has_gfrac_variable) { oil_fraction -= primary_variables_evaluation_[seg][GFrac]; } /* if (has_solvent) { oil_fraction -= primary_variables_evaluation_[seg][SFrac]; } */ return oil_fraction; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: volumeFractionScaled(const int seg, const int comp_idx) const { // For reservoir rate control, the distr in well control is used for the // rate conversion coefficients. For the injection well, only the distr of the injection // phase is not zero. const double scale = baseif_.scalingFactor(baseif_.ebosCompIdxToFlowCompIdx(comp_idx)); if (scale > 0.) { return volumeFraction(seg, comp_idx) / scale; } return volumeFraction(seg, comp_idx); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: surfaceVolumeFraction(const int seg, const int comp_idx) const { EvalWell sum_volume_fraction_scaled = 0.; for (int idx = 0; idx < baseif_.numComponents(); ++idx) { sum_volume_fraction_scaled += volumeFractionScaled(seg, idx); } assert(sum_volume_fraction_scaled.value() != 0.); return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getSegmentRateUpwinding(const int seg, const size_t comp_idx) const { const int seg_upwind = upwinding_segments_[seg]; // the result will contain the derivative with resepct to GTotal in segment seg, // and the derivatives with respect to WFrac GFrac in segment seg_upwind. // the derivative with respect to SPres should be zero. if (seg == 0 && baseif_.isInjector()) { const Well& well = baseif_.wellEcl(); auto phase = well.getInjectionProperties().injectorType; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == comp_idx && phase == InjectorType::WATER) return primary_variables_evaluation_[seg][GTotal] / baseif_.scalingFactor(baseif_.ebosCompIdxToFlowCompIdx(comp_idx)); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == comp_idx && phase == InjectorType::OIL) return primary_variables_evaluation_[seg][GTotal] / baseif_.scalingFactor(baseif_.ebosCompIdxToFlowCompIdx(comp_idx)); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == comp_idx && phase == InjectorType::GAS) return primary_variables_evaluation_[seg][GTotal] / baseif_.scalingFactor(baseif_.ebosCompIdxToFlowCompIdx(comp_idx)); return 0.0; } const EvalWell segment_rate = primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg_upwind, comp_idx); assert(segment_rate.derivative(SPres + Indices::numEq) == 0.); return segment_rate; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: extendEval(const Eval& in) const { EvalWell out = 0.0; out.setValue(in.value()); for(int eq_idx = 0; eq_idx < Indices::numEq;++eq_idx) { out.setDerivative(eq_idx, in.derivative(eq_idx)); } return out; } template void MultisegmentWellEval:: computeSegmentFluidProperties(const EvalWell& temperature, const EvalWell& saltConcentration, int pvt_region_index) { std::vector surf_dens(baseif_.numComponents()); // Surface density. for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index); } for (int seg = 0; seg < this->numberOfSegments(); ++seg) { // the compostion of the components inside wellbore under surface condition std::vector mix_s(baseif_.numComponents(), 0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx); } std::vector b(baseif_.numComponents(), 0.0); std::vector visc(baseif_.numComponents(), 0.0); std::vector& phase_densities = segment_phase_densities_[seg]; const EvalWell seg_pressure = getSegmentPressure(seg); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); b[waterCompIdx] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration); visc[waterCompIdx] = FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure, saltConcentration); // TODO: double check here // TODO: should not we use phaseIndex here? phase_densities[waterCompIdx] = b[waterCompIdx] * surf_dens[waterCompIdx]; } EvalWell rv(0.0); // gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[oilCompIdx] > 0.0) { if (mix_s[gasCompIdx] > 0.0) { rv = mix_s[oilCompIdx] / mix_s[gasCompIdx]; } if (rv > rvmax) { rv = rvmax; } b[gasCompIdx] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv); visc[gasCompIdx] = FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv); phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx] + rv * b[gasCompIdx] * surf_dens[oilCompIdx]; } else { // no oil exists b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gasCompIdx] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx]; } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gasCompIdx] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[gasCompIdx] > 0.0) { if (mix_s[oilCompIdx] > 0.0) { rs = mix_s[gasCompIdx] / mix_s[oilCompIdx]; } if (rs > rsmax) { rs = rsmax; } b[oilCompIdx] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); visc[oilCompIdx] = FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs); phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx] + rs * b[oilCompIdx] * surf_dens[gasCompIdx]; } else { // no oil exists b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilCompIdx] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx]; } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilCompIdx] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } segment_phase_viscosities_[seg] = visc; std::vector mix(mix_s); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell d = 1.0 - rs * rv; if (rs != 0.0) { // rs > 0.0? mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d; } if (rv != 0.0) { // rv > 0.0? mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d; } } EvalWell volrat(0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { volrat += mix[comp_idx] / b[comp_idx]; } this->segment_viscosities_[seg] = 0.; // calculate the average viscosity for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { const EvalWell fraction = mix[comp_idx] / b[comp_idx] / volrat; // TODO: a little more work needs to be done to handle the negative fractions here this->segment_phase_fractions_[seg][comp_idx] = fraction; // >= 0.0 ? fraction : 0.0; this->segment_viscosities_[seg] += visc[comp_idx] * this->segment_phase_fractions_[seg][comp_idx]; } EvalWell density(0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { density += surf_dens[comp_idx] * mix_s[comp_idx]; } this->segment_densities_[seg] = density / volrat; // calculate the mass rates segment_mass_rates_[seg] = 0.; for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { const EvalWell rate = getSegmentRateUpwinding(seg, comp_idx); this->segment_mass_rates_[seg] += rate * surf_dens[comp_idx]; } } } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getSegmentPressure(const int seg) const { return primary_variables_evaluation_[seg][SPres]; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getBhp() const { return getSegmentPressure(0); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getSegmentRate(const int seg, const int comp_idx) const { return primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg, comp_idx); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getQs(const int comp_idx) const { return getSegmentRate(0, comp_idx); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getSegmentGTotal(const int seg) const { return primary_variables_evaluation_[seg][GTotal]; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getWQTotal() const { return getSegmentGTotal(0); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getHydroPressureLoss(const int seg) const { return segment_densities_[seg] * baseif_.gravity() * this->segment_depth_diffs_[seg]; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getFrictionPressureLoss(const int seg) const { const EvalWell mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell density = segment_densities_[seg_upwind]; EvalWell visc = segment_viscosities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { density.clearDerivatives(); visc.clearDerivatives(); } const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const double length = this->segmentSet()[seg].totalLength() - this->segmentSet()[outlet_segment_index].totalLength(); assert(length > 0.); const double roughness = this->segmentSet()[seg].roughness(); const double area = this->segmentSet()[seg].crossArea(); const double diameter = this->segmentSet()[seg].internalDiameter(); const double sign = mass_rate < 0. ? 1.0 : - 1.0; return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: pressureDropSpiralICD(const int seg) const { const SICD& sicd = this->segmentSet()[seg].spiralICD(); const int seg_upwind = upwinding_segments_[seg]; const std::vector& phase_fractions = segment_phase_fractions_[seg_upwind]; const std::vector& phase_viscosities = segment_phase_viscosities_[seg_upwind]; EvalWell water_fraction = 0.; EvalWell water_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); water_fraction = phase_fractions[water_pos]; water_viscosity = phase_viscosities[water_pos]; } EvalWell oil_fraction = 0.; EvalWell oil_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); oil_fraction = phase_fractions[oil_pos]; oil_viscosity = phase_viscosities[oil_pos]; } EvalWell gas_fraction = 0.; EvalWell gas_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); gas_fraction = phase_fractions[gas_pos]; gas_viscosity = phase_viscosities[gas_pos]; } EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { water_fraction.clearDerivatives(); water_viscosity.clearDerivatives(); oil_fraction.clearDerivatives(); oil_viscosity.clearDerivatives(); gas_fraction.clearDerivatives(); gas_viscosity.clearDerivatives(); density.clearDerivatives(); } const EvalWell liquid_emulsion_viscosity = mswellhelpers::emulsionViscosity(water_fraction, water_viscosity, oil_fraction, oil_viscosity, sicd); const EvalWell mixture_viscosity = (water_fraction + oil_fraction) * liquid_emulsion_viscosity + gas_fraction * gas_viscosity; const EvalWell reservoir_rate = segment_mass_rates_[seg] / density; const EvalWell reservoir_rate_icd = reservoir_rate * sicd.scalingFactor(); const double viscosity_cali = sicd.viscosityCalibration(); using MathTool = MathToolbox; const double density_cali = sicd.densityCalibration(); const EvalWell temp_value1 = MathTool::pow(density / density_cali, 0.75); const EvalWell temp_value2 = MathTool::pow(mixture_viscosity / viscosity_cali, 0.25); // formulation before 2016, base_strength is used // const double base_strength = sicd.strength() / density_cali; // formulation since 2016, strength is used instead const double strength = sicd.strength(); const double sign = reservoir_rate_icd <= 0. ? 1.0 : -1.0; return sign * temp_value1 * temp_value2 * strength * reservoir_rate_icd * reservoir_rate_icd; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: pressureDropAutoICD(const int seg, const UnitSystem& unit_system) const { const AutoICD& aicd = this->segmentSet()[seg].autoICD(); const int seg_upwind = this->upwinding_segments_[seg]; const std::vector& phase_fractions = this->segment_phase_fractions_[seg_upwind]; const std::vector& phase_viscosities = this->segment_phase_viscosities_[seg_upwind]; const std::vector& phase_densities = this->segment_phase_densities_[seg_upwind]; EvalWell water_fraction = 0.; EvalWell water_viscosity = 0.; EvalWell water_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); water_fraction = phase_fractions[water_pos]; water_viscosity = phase_viscosities[water_pos]; water_density = phase_densities[water_pos]; } EvalWell oil_fraction = 0.; EvalWell oil_viscosity = 0.; EvalWell oil_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); oil_fraction = phase_fractions[oil_pos]; oil_viscosity = phase_viscosities[oil_pos]; oil_density = phase_densities[oil_pos]; } EvalWell gas_fraction = 0.; EvalWell gas_viscosity = 0.; EvalWell gas_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); gas_fraction = phase_fractions[gas_pos]; gas_viscosity = phase_viscosities[gas_pos]; gas_density = phase_densities[gas_pos]; } EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { water_fraction.clearDerivatives(); water_viscosity.clearDerivatives(); water_density.clearDerivatives(); oil_fraction.clearDerivatives(); oil_viscosity.clearDerivatives(); oil_density.clearDerivatives(); gas_fraction.clearDerivatives(); gas_viscosity.clearDerivatives(); gas_density.clearDerivatives(); density.clearDerivatives(); } using MathTool = MathToolbox; const EvalWell mixture_viscosity = MathTool::pow(water_fraction, aicd.waterViscExponent()) * water_viscosity + MathTool::pow(oil_fraction, aicd.oilViscExponent()) * oil_viscosity + MathTool::pow(gas_fraction, aicd.gasViscExponent()) * gas_viscosity; const EvalWell mixture_density = MathTool::pow(water_fraction, aicd.waterDensityExponent()) * water_density + MathTool::pow(oil_fraction, aicd.oilDensityExponent()) * oil_density + MathTool::pow(gas_fraction, aicd.gasDensityExponent()) * gas_density; const double rho_reference = aicd.densityCalibration(); const double visc_reference = aicd.viscosityCalibration(); const auto volume_rate_icd = this->segment_mass_rates_[seg] * aicd.scalingFactor() / mixture_density; const double sign = volume_rate_icd <= 0. ? 1.0 : -1.0; // convert 1 unit volume rate using M = UnitSystem::measure; const double unit_volume_rate = unit_system.to_si(M::geometric_volume_rate, 1.); // TODO: we did not consider the maximum allowed rate here const auto result = sign / rho_reference * mixture_density * mixture_density * MathTool::pow(visc_reference/mixture_viscosity, aicd.viscExponent()) * aicd.strength() * MathTool::pow( -sign * volume_rate_icd, aicd.flowRateExponent()) * std::pow(unit_volume_rate, (2. - aicd.flowRateExponent())) ; return result; } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: pressureDropValve(const int seg) const { const Valve& valve = this->segmentSet()[seg].valve(); const EvalWell& mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell visc = segment_viscosities_[seg_upwind]; EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { visc.clearDerivatives(); density.clearDerivatives(); } const double additional_length = valve.pipeAdditionalLength(); const double roughness = valve.pipeRoughness(); const double diameter = valve.pipeDiameter(); const double area = valve.pipeCrossArea(); const EvalWell friction_pressure_loss = mswellhelpers::frictionPressureLoss(additional_length, diameter, area, roughness, density, mass_rate, visc); const double area_con = valve.conCrossArea(); const double cv = valve.conFlowCoefficient(); const EvalWell constriction_pressure_loss = mswellhelpers::valveContrictionPressureLoss(mass_rate, density, area_con, cv); const double sign = mass_rate <= 0. ? 1.0 : -1.0; return sign * (friction_pressure_loss + constriction_pressure_loss); } template typename MultisegmentWellEval::EvalWell MultisegmentWellEval:: getSegmentSurfaceVolume(const EvalWell& temperature, const EvalWell& saltConcentration, const int pvt_region_index, const int seg_idx) const { const EvalWell seg_pressure = getSegmentPressure(seg_idx); std::vector mix_s(baseif_.numComponents(), 0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { mix_s[comp_idx] = surfaceVolumeFraction(seg_idx, comp_idx); } std::vector b(baseif_.numComponents(), 0.); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); b[waterCompIdx] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration); } EvalWell rv(0.0); // gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (rvmax < 0.0) { // negative rvmax can happen if the seg_pressure is outside the range of the table rvmax = 0.0; } if (mix_s[oilCompIdx] > 0.0) { if (mix_s[gasCompIdx] > 0.0) { rv = mix_s[oilCompIdx] / mix_s[gasCompIdx]; } if (rv > rvmax) { rv = rvmax; } b[gasCompIdx] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv); } else { // no oil exists b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (rsmax < 0.0) { // negative rsmax can happen if the seg_pressure is outside the range of the table rsmax = 0.0; } if (mix_s[gasCompIdx] > 0.0) { if (mix_s[oilCompIdx] > 0.0) { rs = mix_s[gasCompIdx] / mix_s[oilCompIdx]; } // std::cout << " rs " << rs.value() << " rsmax " << rsmax.value() << std::endl; if (rs > rsmax) { rs = rsmax; } b[oilCompIdx] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); } else { // no oil exists b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } else { // no gas phase // it is the same with zero mix_s[Gas] b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } std::vector mix(mix_s); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell d = 1.0 - rs * rv; if (d <= 0.0 || d > 1.0) { std::ostringstream sstr; sstr << "Problematic d value " << d << " obtained for well " << baseif_.name() << " during conversion to surface volume with rs " << rs << ", rv " << rv << " and pressure " << seg_pressure << " obtaining d " << d; OpmLog::debug(sstr.str()); OPM_THROW_NOLOG(NumericalIssue, sstr.str()); } if (rs > 0.0) { // rs > 0.0? mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d; } if (rv > 0.0) { // rv > 0.0? mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d; } } EvalWell vol_ratio(0.0); for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { vol_ratio += mix[comp_idx] / b[comp_idx]; } // We increase the segment volume with a factor 10 to stabilize the system. const double volume = this->segmentSet()[seg_idx].volume(); return volume / vol_ratio; } template void MultisegmentWellEval:: computePerfRatePressure(const EvalWell& pressure_cell, const EvalWell& rs, const EvalWell& rv, const std::vector& b_perfcells, const std::vector& mob_perfcells, const double Tw, const int seg, const int perf, const EvalWell& segment_pressure, const bool& allow_cf, std::vector& cq_s, EvalWell& perf_press, double& perf_dis_gas_rate, double& perf_vap_oil_rate, DeferredLogger& deferred_logger) const { std::vector cmix_s(baseif_.numComponents(), 0.0); // the composition of the components inside wellbore for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { cmix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx); } // pressure difference between the segment and the perforation const EvalWell perf_seg_press_diff = baseif_.gravity() * segment_densities_[seg] * this->perforation_segment_depth_diffs_[perf]; // pressure difference between the perforation and the grid cell const double cell_perf_press_diff = this->cell_perforation_pressure_diffs_[perf]; perf_press = pressure_cell - cell_perf_press_diff; // Pressure drawdown (also used to determine direction of flow) // TODO: not 100% sure about the sign of the seg_perf_press_diff const EvalWell drawdown = perf_press - (segment_pressure + perf_seg_press_diff); // producing perforations if ( drawdown > 0.0) { // Do nothing is crossflow is not allowed if (!allow_cf && baseif_.isInjector()) { return; } // compute component volumetric rates at standard conditions for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { const EvalWell cq_p = - Tw * (mob_perfcells[comp_idx] * drawdown); cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const EvalWell cq_s_oil = cq_s[oilCompIdx]; const EvalWell cq_s_gas = cq_s[gasCompIdx]; cq_s[gasCompIdx] += rs * cq_s_oil; cq_s[oilCompIdx] += rv * cq_s_gas; } } else { // injecting perforations // Do nothing if crossflow is not allowed if (!allow_cf && baseif_.isProducer()) { return; } // for injecting perforations, we use total mobility EvalWell total_mob = mob_perfcells[0]; for (int comp_idx = 1; comp_idx < baseif_.numComponents(); ++comp_idx) { total_mob += mob_perfcells[comp_idx]; } // injection perforations total volume rates const EvalWell cqt_i = - Tw * (total_mob * drawdown); // compute volume ratio between connection and at standard conditions EvalWell volume_ratio = 0.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); volume_ratio += cmix_s[waterCompIdx] / b_perfcells[waterCompIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // Incorporate RS/RV factors if both oil and gas active // TODO: not sure we use rs rv from the perforation cells when handling injecting perforations // basically, for injecting perforations, the wellbore is the upstreaming side. const EvalWell d = 1.0 - rv * rs; if (d.value() == 0.0) { OPM_DEFLOG_THROW(NumericalIssue, "Zero d value obtained for well " << baseif_.name() << " during flux calculation" << " with rs " << rs << " and rv " << rv, deferred_logger); } const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d; volume_ratio += tmp_oil / b_perfcells[oilCompIdx]; const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d; volume_ratio += tmp_gas / b_perfcells[gasCompIdx]; } else { // not having gas and oil at the same time if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); volume_ratio += cmix_s[oilCompIdx] / b_perfcells[oilCompIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); volume_ratio += cmix_s[gasCompIdx] / b_perfcells[gasCompIdx]; } } // injecting connections total volumerates at standard conditions EvalWell cqt_is = cqt_i / volume_ratio; for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) { cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is; } } // end for injection perforations // calculating the perforation solution gas rate and solution oil rates if (baseif_.isProducer()) { if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // TODO: the formulations here remain to be tested with cases with strong crossflow through production wells // s means standard condition, r means reservoir condition // q_os = q_or * b_o + rv * q_gr * b_g // q_gs = q_gr * g_g + rs * q_or * b_o // d = 1.0 - rs * rv // q_or = 1 / (b_o * d) * (q_os - rv * q_gs) // q_gr = 1 / (b_g * d) * (q_gs - rs * q_os) const double d = 1.0 - rv.value() * rs.value(); // vaporized oil into gas // rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d perf_vap_oil_rate = rv.value() * (cq_s[gasCompIdx].value() - rs.value() * cq_s[oilCompIdx].value()) / d; // dissolved of gas in oil // rs * q_or * b_o = rs * (q_os - rv * q_gs) / d perf_dis_gas_rate = rs.value() * (cq_s[oilCompIdx].value() - rv.value() * cq_s[gasCompIdx].value()) / d; } } } template void MultisegmentWellEval:: assembleControlEq(const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const Well::InjectionControls& inj_controls, const Well::ProductionControls& prod_controls, const double rho, DeferredLogger& deferred_logger) { static constexpr int Gas = BlackoilPhases::Vapour; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Water = BlackoilPhases::Aqua; EvalWell control_eq(0.0); const auto& well = baseif_.wellEcl(); auto getRates = [&]() { std::vector rates(3, 0.0); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)); } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx)); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)); } return rates; }; if (baseif_.wellIsStopped()) { control_eq = getWQTotal(); } else if (baseif_.isInjector() ) { // Find scaling factor to get injection rate, const InjectorType injectorType = inj_controls.injector_type; double scaling = 1.0; const auto& pu = baseif_.phaseUsage(); switch (injectorType) { case InjectorType::WATER: { scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]); break; } case InjectorType::OIL: { scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]); break; } case InjectorType::GAS: { scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]); break; } default: throw("Expected WATER, OIL or GAS as type for injectors " + well.name()); } const EvalWell injection_rate = getWQTotal() / scaling; // Setup function for evaluation of BHP from THP (used only if needed). auto bhp_from_thp = [&]() { const auto rates = getRates(); return baseif_.calculateBhpFromThp(well_state, rates, well, summaryState, rho, deferred_logger); }; // Call generic implementation. baseif_.assembleControlEqInj(well_state, group_state, schedule, summaryState, inj_controls, getBhp(), injection_rate, bhp_from_thp, control_eq, deferred_logger); } else { // Find rates. const auto rates = getRates(); // Setup function for evaluation of BHP from THP (used only if needed). auto bhp_from_thp = [&]() { return baseif_.calculateBhpFromThp(well_state, rates, well, summaryState, rho, deferred_logger); }; // Call generic implementation. baseif_.assembleControlEqProd(well_state, group_state, schedule, summaryState, prod_controls, getBhp(), rates, bhp_from_thp, control_eq, deferred_logger); } // using control_eq to update the matrix and residuals resWell_[0][SPres] = control_eq.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq); } } template void MultisegmentWellEval:: updateThp(WellState& well_state, const double rho, DeferredLogger& deferred_logger) const { static constexpr int Gas = BlackoilPhases::Vapour; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Water = BlackoilPhases::Aqua; // When there is no vaild VFP table provided, we set the thp to be zero. if (!baseif_.isVFPActive(deferred_logger) || baseif_.wellIsStopped()) { well_state.update_thp(baseif_.indexOfWell(), 0.); return; } // the well is under other control types, we calculate the thp based on bhp and rates std::vector rates(3, 0.0); const PhaseUsage& pu = baseif_.phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[ Water ] = well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[ Water ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[ Oil ] = well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[ Oil ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[ Gas ] = well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[ Gas ] ]; } const double bhp = well_state.bhp(baseif_.indexOfWell()); well_state.update_thp(baseif_.indexOfWell(), this->calculateThpFromBhp(rates, bhp, rho, deferred_logger)); } template void MultisegmentWellEval:: handleAccelerationPressureLoss(const int seg, WellState& well_state) const { const double area = this->segmentSet()[seg].crossArea(); const EvalWell mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { density.clearDerivatives(); } EvalWell accelerationPressureLoss = mswellhelpers::velocityHead(area, mass_rate, density); // handling the velocity head of intlet segments for (const int inlet : this->segment_inlets_[seg]) { const int seg_upwind_inlet = upwinding_segments_[inlet]; const double inlet_area = this->segmentSet()[inlet].crossArea(); EvalWell inlet_density = this->segment_densities_[seg_upwind_inlet]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (inlet != seg_upwind_inlet) { inlet_density.clearDerivatives(); } const EvalWell inlet_mass_rate = segment_mass_rates_[inlet]; accelerationPressureLoss -= mswellhelpers::velocityHead(std::max(inlet_area, area), inlet_mass_rate, inlet_density); } // We change the sign of the accelerationPressureLoss for injectors. // Is this correct? Testing indicates that this is what the reference simulator does const double sign = mass_rate < 0. ? 1.0 : - 1.0; accelerationPressureLoss *= sign; well_state.segments(baseif_.indexOfWell()).pressure_drop_accel[seg] = accelerationPressureLoss.value(); resWell_[seg][SPres] -= accelerationPressureLoss.value(); duneD_[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq); duneD_[seg][seg][SPres][GTotal] -= accelerationPressureLoss.derivative(GTotal + Indices::numEq); if (has_wfrac_variable) { duneD_[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq); } if (has_gfrac_variable) { duneD_[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq); } } template void MultisegmentWellEval:: assembleDefaultPressureEq(const int seg, WellState& well_state) const { assert(seg != 0); // not top segment // for top segment, the well control equation will be used. EvalWell pressure_equation = getSegmentPressure(seg); // we need to handle the pressure difference between the two segments // we only consider the hydrostatic pressure loss first // TODO: we might be able to add member variables to store these values, then we update well state // after converged const auto hydro_pressure_drop = getHydroPressureLoss(seg); auto& segments = well_state.segments(baseif_.indexOfWell()); segments.pressure_drop_hydrostatic[seg] = hydro_pressure_drop.value(); pressure_equation -= hydro_pressure_drop; if (this->frictionalPressureLossConsidered()) { const auto friction_pressure_drop = getFrictionPressureLoss(seg); pressure_equation -= friction_pressure_drop; segments.pressure_drop_friction[seg] = friction_pressure_drop.value(); } resWell_[seg][SPres] = pressure_equation.value(); const int seg_upwind = upwinding_segments_[seg]; duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq); duneD_[seg][seg][SPres][GTotal] += pressure_equation.derivative(GTotal + Indices::numEq); if (has_wfrac_variable) { duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq); } if (has_gfrac_variable) { duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq); } // contribution from the outlet segment const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index); resWell_[seg][SPres] -= outlet_pressure.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq); } if (this->accelerationalPressureLossConsidered()) { handleAccelerationPressureLoss(seg, well_state); } } template void MultisegmentWellEval:: updateWellStateFromPrimaryVariables(WellState& well_state, const double rho, DeferredLogger& deferred_logger) const { static constexpr int Gas = BlackoilPhases::Vapour; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Water = BlackoilPhases::Aqua; const PhaseUsage& pu = baseif_.phaseUsage(); assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ); const int oil_pos = pu.phase_pos[Oil]; auto& segments = well_state.segments(baseif_.indexOfWell()); auto& segment_rates = segments.rates; auto& segment_pressure = segments.pressure; for (int seg = 0; seg < this->numberOfSegments(); ++seg) { std::vector fractions(baseif_.numPhases(), 0.0); fractions[oil_pos] = 1.0; if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { const int water_pos = pu.phase_pos[Water]; fractions[water_pos] = primary_variables_[seg][WFrac]; fractions[oil_pos] -= fractions[water_pos]; } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { const int gas_pos = pu.phase_pos[Gas]; fractions[gas_pos] = primary_variables_[seg][GFrac]; fractions[oil_pos] -= fractions[gas_pos]; } // convert the fractions to be Q_p / G_total to calculate the phase rates for (int p = 0; p < baseif_.numPhases(); ++p) { const double scale = baseif_.scalingFactor(p); // for injection wells, there should only one non-zero scaling factor if (scale > 0.) { fractions[p] /= scale; } else { // this should only happens to injection wells fractions[p] = 0.; } } // calculate the phase rates based on the primary variables const double g_total = primary_variables_[seg][GTotal]; for (int p = 0; p < baseif_.numPhases(); ++p) { const double phase_rate = g_total * fractions[p]; segment_rates[seg*baseif_.numPhases() + p] = phase_rate; if (seg == 0) { // top segment well_state.wellRates(baseif_.indexOfWell())[p] = phase_rate; } } // update the segment pressure segment_pressure[seg] = primary_variables_[seg][SPres]; if (seg == 0) { // top segment well_state.update_bhp(baseif_.indexOfWell(), segment_pressure[seg]); } } updateThp(well_state, rho, deferred_logger); } template void MultisegmentWellEval:: assembleICDPressureEq(const int seg, const UnitSystem& unit_system, WellState& well_state, DeferredLogger& deferred_logger) const { // TODO: upwinding needs to be taken care of // top segment can not be a spiral ICD device assert(seg != 0); // the pressure equation is something like // p_seg - deltaP - p_outlet = 0. // the major part is how to calculate the deltaP EvalWell pressure_equation = getSegmentPressure(seg); EvalWell icd_pressure_drop; switch(this->segmentSet()[seg].segmentType()) { case Segment::SegmentType::SICD : icd_pressure_drop = pressureDropSpiralICD(seg); break; case Segment::SegmentType::AICD : icd_pressure_drop = pressureDropAutoICD(seg, unit_system); break; case Segment::SegmentType::VALVE : icd_pressure_drop = pressureDropValve(seg); break; default: { OPM_DEFLOG_THROW(std::runtime_error, "Segment " + std::to_string(this->segmentSet()[seg].segmentNumber()) + " for well " + baseif_.name() + " is not of ICD type", deferred_logger); } } pressure_equation = pressure_equation - icd_pressure_drop; well_state.segments(baseif_.indexOfWell()).pressure_drop_friction[seg] = icd_pressure_drop.value(); const int seg_upwind = upwinding_segments_[seg]; resWell_[seg][SPres] = pressure_equation.value(); duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq); duneD_[seg][seg][SPres][GTotal] += pressure_equation.derivative(GTotal + Indices::numEq); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq); } // contribution from the outlet segment const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index); resWell_[seg][SPres] -= outlet_pressure.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq); } } template void MultisegmentWellEval:: assemblePressureEq(const int seg, const UnitSystem& unit_system, WellState& well_state, DeferredLogger& deferred_logger) const { switch(this->segmentSet()[seg].segmentType()) { case Segment::SegmentType::SICD : case Segment::SegmentType::AICD : case Segment::SegmentType::VALVE : { assembleICDPressureEq(seg, unit_system, well_state,deferred_logger); break; } default : assembleDefaultPressureEq(seg, well_state); } } template std::vector MultisegmentWellEval:: getWellResiduals(const std::vector& B_avg, DeferredLogger& deferred_logger) const { assert(int(B_avg.size() ) == baseif_.numComponents()); std::vector residuals(numWellEq + 1, 0.0); for (int seg = 0; seg < this->numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { double residual = 0.; if (eq_idx < baseif_.numComponents()) { residual = std::abs(resWell_[seg][eq_idx]) * B_avg[eq_idx]; } else { if (seg > 0) { residual = std::abs(resWell_[seg][eq_idx]); } } if (std::isnan(residual) || std::isinf(residual)) { OPM_DEFLOG_THROW(NumericalIssue, "nan or inf value for residal get for well " << baseif_.name() << " segment " << seg << " eq_idx " << eq_idx, deferred_logger); } if (residual > residuals[eq_idx]) { residuals[eq_idx] = residual; } } } // handling the control equation residual { const double control_residual = std::abs(resWell_[0][numWellEq - 1]); if (std::isnan(control_residual) || std::isinf(control_residual)) { OPM_DEFLOG_THROW(NumericalIssue, "nan or inf value for control residal get for well " << baseif_.name(), deferred_logger); } residuals[numWellEq] = control_residual; } return residuals; } template double MultisegmentWellEval:: getControlTolerance(const WellState& well_state, const double tolerance_wells, const double tolerance_pressure_ms_wells, DeferredLogger& deferred_logger) const { double control_tolerance = 0.; const int well_index = baseif_.indexOfWell(); if (baseif_.isInjector() ) { auto current = well_state.currentInjectionControl(well_index); switch(current) { case Well::InjectorCMode::THP: control_tolerance = tolerance_pressure_ms_wells; break; case Well::InjectorCMode::BHP: control_tolerance = tolerance_wells; break; case Well::InjectorCMode::RATE: case Well::InjectorCMode::RESV: control_tolerance = tolerance_wells; break; case Well::InjectorCMode::GRUP: control_tolerance = tolerance_wells; break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger); } } if (baseif_.isProducer() ) { auto current = well_state.currentProductionControl(well_index); switch(current) { case Well::ProducerCMode::THP: control_tolerance = tolerance_pressure_ms_wells; // 0.1 bar break; case Well::ProducerCMode::BHP: control_tolerance = tolerance_wells; // 0.01 bar break; case Well::ProducerCMode::ORAT: case Well::ProducerCMode::WRAT: case Well::ProducerCMode::GRAT: case Well::ProducerCMode::LRAT: case Well::ProducerCMode::RESV: case Well::ProducerCMode::CRAT: control_tolerance = tolerance_wells; // smaller tolerance for rate control break; case Well::ProducerCMode::GRUP: control_tolerance = tolerance_wells; // smaller tolerance for rate control break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger); } } return control_tolerance; } template double MultisegmentWellEval:: getResidualMeasureValue(const WellState& well_state, const std::vector& residuals, const double tolerance_wells, const double tolerance_pressure_ms_wells, DeferredLogger& deferred_logger) const { assert(int(residuals.size()) == numWellEq + 1); const double rate_tolerance = tolerance_wells; int count = 0; double sum = 0; for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) { if (residuals[eq_idx] > rate_tolerance) { sum += residuals[eq_idx] / rate_tolerance; ++count; } } const double pressure_tolerance = tolerance_pressure_ms_wells; if (residuals[SPres] > pressure_tolerance) { sum += residuals[SPres] / pressure_tolerance; ++count; } const double control_tolerance = getControlTolerance(well_state, tolerance_wells, tolerance_pressure_ms_wells, deferred_logger); if (residuals[SPres + 1] > control_tolerance) { sum += residuals[SPres + 1] / control_tolerance; ++count; } // if (count == 0), it should be converged. assert(count != 0); return sum; } template void MultisegmentWellEval:: updateUpwindingSegments() { for (int seg = 0; seg < this->numberOfSegments(); ++seg) { // special treatment is needed for segment 0 if (seg == 0) { // we are not supposed to have injecting producers and producing injectors assert( ! (baseif_.isProducer() && primary_variables_evaluation_[seg][GTotal] > 0.) ); assert( ! (baseif_.isInjector() && primary_variables_evaluation_[seg][GTotal] < 0.) ); upwinding_segments_[seg] = seg; continue; } // for other normal segments if (primary_variables_evaluation_[seg][GTotal] <= 0.) { upwinding_segments_[seg] = seg; } else { const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); upwinding_segments_[seg] = outlet_segment_index; } } } #if HAVE_CUDA || HAVE_OPENCL template void MultisegmentWellEval:: addWellContribution(WellContributions& wellContribs) const { unsigned int Mb = duneB_.N(); // number of blockrows in duneB_, duneC_ and duneD_ unsigned int BnumBlocks = duneB_.nonzeroes(); unsigned int DnumBlocks = duneD_.nonzeroes(); // duneC std::vector Ccols; std::vector Cvals; Ccols.reserve(BnumBlocks); Cvals.reserve(BnumBlocks * Indices::numEq * numWellEq); for (auto rowC = duneC_.begin(); rowC != duneC_.end(); ++rowC) { for (auto colC = rowC->begin(), endC = rowC->end(); colC != endC; ++colC) { Ccols.emplace_back(colC.index()); for (int i = 0; i < numWellEq; ++i) { for (int j = 0; j < Indices::numEq; ++j) { Cvals.emplace_back((*colC)[i][j]); } } } } // duneD Dune::UMFPack umfpackMatrix(duneD_, 0); double *Dvals = umfpackMatrix.getInternalMatrix().getValues(); auto *Dcols = umfpackMatrix.getInternalMatrix().getColStart(); auto *Drows = umfpackMatrix.getInternalMatrix().getRowIndex(); // duneB std::vector Bcols; std::vector Brows; std::vector Bvals; Bcols.reserve(BnumBlocks); Brows.reserve(Mb+1); Bvals.reserve(BnumBlocks * Indices::numEq * numWellEq); Brows.emplace_back(0); unsigned int sumBlocks = 0; for (auto rowB = duneB_.begin(); rowB != duneB_.end(); ++rowB) { int sizeRow = 0; for (auto colB = rowB->begin(), endB = rowB->end(); colB != endB; ++colB) { Bcols.emplace_back(colB.index()); for (int i = 0; i < numWellEq; ++i) { for (int j = 0; j < Indices::numEq; ++j) { Bvals.emplace_back((*colB)[i][j]); } } sizeRow++; } sumBlocks += sizeRow; Brows.emplace_back(sumBlocks); } wellContribs.addMultisegmentWellContribution(Indices::numEq, numWellEq, Mb, Bvals, Bcols, Brows, DnumBlocks, Dvals, Dcols, Drows, Cvals); } #endif #define INSTANCE(A,...) \ template class MultisegmentWellEval,__VA_ARGS__,double>; // One phase INSTANCE(BlackOilDefaultIndexTraits,BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u>) // Two phase INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u>) // Blackoil INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,0u,false,false,0u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,0u,true,false,0u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,0u,false,true,0u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,0u,false,true,2u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<1u,0u,0u,0u,false,false,0u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,1u,0u,0u,false,false,0u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,1u,0u,false,false,0u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,1u,false,false,0u>) INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,0u,false,false,1u>) // Alt indices INSTANCE(EclAlternativeBlackOilIndexTraits,BlackOilIndices<0u,0u,0u,0u,false,false,0u>) } // namespace Opm