/* Copyright 2016 - 2019 SINTEF Digital, Mathematics & Cybernetics. Copyright 2016 - 2018 Equinor ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 Norce AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #if HAVE_MPI #include #endif #include #include #include #include namespace Opm { template BlackoilWellModel:: BlackoilWellModel(Simulator& simulator, const PhaseUsage& phase_usage) : BlackoilWellModelGeneric(simulator.vanguard().schedule(), simulator.vanguard().summaryState(), simulator.vanguard().eclState(), phase_usage, simulator.gridView().comm()) , simulator_(simulator) { terminal_output_ = ((simulator.gridView().comm().rank() == 0) && EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput)); local_num_cells_ = simulator_.gridView().size(0); // Number of cells the global grid view global_num_cells_ = simulator_.vanguard().globalNumCells(); { auto& parallel_wells = simulator.vanguard().parallelWells(); this->parallel_well_info_.reserve(parallel_wells.size()); for( const auto& name_bool : parallel_wells) { this->parallel_well_info_.emplace_back(name_bool, grid().comm()); } } this->alternative_well_rate_init_ = EWOMS_GET_PARAM(TypeTag, bool, AlternativeWellRateInit); this->wbpCalculationService_ .localCellIndex([this](const std::size_t globalIndex) { return this->compressedIndexForInterior(globalIndex); }) .evalCellSource([this](const int localCell, PAvgDynamicSourceData::SourceDataSpan sourceTerms) { using Item = PAvgDynamicSourceData::SourceDataSpan::Item; const auto* intQuants = this->simulator_.model() .cachedIntensiveQuantities(localCell, /*timeIndex = */0); const auto& fs = intQuants->fluidState(); sourceTerms.set(Item::PoreVol, intQuants->porosity().value() * this->simulator_.model().dofTotalVolume(localCell)); constexpr auto io = FluidSystem::oilPhaseIdx; constexpr auto ig = FluidSystem::gasPhaseIdx; constexpr auto iw = FluidSystem::waterPhaseIdx; // Ideally, these would be 'constexpr'. const auto haveOil = FluidSystem::phaseIsActive(io); const auto haveGas = FluidSystem::phaseIsActive(ig); const auto haveWat = FluidSystem::phaseIsActive(iw); auto weightedPhaseDensity = [&fs](const auto ip) { return fs.saturation(ip).value() * fs.density(ip).value(); }; if (haveOil) { sourceTerms.set(Item::Pressure, fs.pressure(io).value()); } else if (haveGas) { sourceTerms.set(Item::Pressure, fs.pressure(ig).value()); } else { sourceTerms.set(Item::Pressure, fs.pressure(iw).value()); } // Strictly speaking, assumes SUM(s[p]) == 1. auto rho = 0.0; if (haveOil) { rho += weightedPhaseDensity(io); } if (haveGas) { rho += weightedPhaseDensity(ig); } if (haveWat) { rho += weightedPhaseDensity(iw); } sourceTerms.set(Item::MixtureDensity, rho); }); } template BlackoilWellModel:: BlackoilWellModel(Simulator& simulator) : BlackoilWellModel(simulator, phaseUsageFromDeck(simulator.vanguard().eclState())) {} template void BlackoilWellModel:: init() { extractLegacyCellPvtRegionIndex_(); extractLegacyDepth_(); gravity_ = simulator_.problem().gravity()[2]; initial_step_ = true; // add the eWoms auxiliary module for the wells to the list simulator_.model().addAuxiliaryModule(this); is_cell_perforated_.resize(local_num_cells_, false); } template void BlackoilWellModel:: initWellContainer(const int reportStepIdx) { const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::NEW_WELL; const auto& events = schedule()[reportStepIdx].wellgroup_events(); for (auto& wellPtr : this->well_container_) { const bool well_opened_this_step = report_step_starts_ && events.hasEvent(wellPtr->name(), effective_events_mask); wellPtr->init(&this->phase_usage_, this->depth_, this->gravity_, this->local_num_cells_, this->B_avg_, well_opened_this_step); } } template void BlackoilWellModel:: addNeighbors(std::vector& neighbors) const { if (!param_.matrix_add_well_contributions_) { return; } // Create cartesian to compressed mapping const auto& schedule_wells = schedule().getWellsatEnd(); // initialize the additional cell connections introduced by wells. for (const auto& well : schedule_wells) { std::vector wellCells = this->getCellsForConnections(well); for (int cellIdx : wellCells) { neighbors[cellIdx].insert(wellCells.begin(), wellCells.end()); } } } template void BlackoilWellModel:: linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res) { OPM_BEGIN_PARALLEL_TRY_CATCH(); for (const auto& well: well_container_) { // Modifiy the Jacobian with explicit Schur complement // contributions if requested. if (param_.matrix_add_well_contributions_) { well->addWellContributions(jacobian); } // Apply as Schur complement the well residual to reservoir residuals: // r = r - duneC_^T * invDuneD_ * resWell_ well->apply(res); } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::linearize failed: ", simulator_.gridView().comm()); } template void BlackoilWellModel:: linearizeDomain(const Domain& domain, SparseMatrixAdapter& jacobian, GlobalEqVector& res) { // Note: no point in trying to do a parallel gathering // try/catch here, as this function is not called in // parallel but for each individual domain of each rank. for (const auto& well: well_container_) { if (well_domain_.at(well->name()) == domain.index) { // Modifiy the Jacobian with explicit Schur complement // contributions if requested. if (param_.matrix_add_well_contributions_) { well->addWellContributions(jacobian); } // Apply as Schur complement the well residual to reservoir residuals: // r = r - duneC_^T * invDuneD_ * resWell_ well->apply(res); } } } template void BlackoilWellModel:: beginReportStep(const int timeStepIdx) { DeferredLogger local_deferredLogger{}; this->report_step_starts_ = true; { // WELPI scaling runs at start of report step. const auto enableWellPIScaling = true; this->initializeLocalWellStructure(timeStepIdx, enableWellPIScaling); } this->initializeGroupStructure(timeStepIdx); const auto& comm = this->simulator_.vanguard().grid().comm(); OPM_BEGIN_PARALLEL_TRY_CATCH() { // Create facility for calculating reservoir voidage volumes for // purpose of RESV controls. this->rateConverter_ = std::make_unique (this->phase_usage_, std::vector(this->local_num_cells_, 0)); this->rateConverter_->template defineState(this->simulator_); // Update VFP properties. { const auto& sched_state = this->schedule()[timeStepIdx]; this->vfp_properties_ = std::make_unique (sched_state.vfpinj(), sched_state.vfpprod(), this->wellState()); } } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "beginReportStep() failed: ", this->terminal_output_, comm) // Store the current well and group states in order to recover in // the case of failed iterations this->commitWGState(); this->wellStructureChangedDynamically_ = false; } template void BlackoilWellModel:: initializeLocalWellStructure(const int reportStepIdx, const bool enableWellPIScaling) { DeferredLogger local_deferredLogger{}; const auto& comm = this->simulator_.vanguard().grid().comm(); // Wells_ecl_ holds this rank's wells, both open and stopped/shut. this->wells_ecl_ = this->getLocalWells(reportStepIdx); this->local_parallel_well_info_ = this->createLocalParallelWellInfo(this->wells_ecl_); // At least initializeWellState() might be throw an exception in // UniformTabulated2DFunction. Playing it safe by extending the // scope a bit. OPM_BEGIN_PARALLEL_TRY_CATCH() { this->initializeWellPerfData(); this->initializeWellState(reportStepIdx); this->initializeWBPCalculationService(); if (this->param_.use_multisegment_well_ && this->anyMSWellOpenLocal()) { this->wellState().initWellStateMSWell(this->wells_ecl_, &this->prevWellState()); } this->initializeWellProdIndCalculators(); if (enableWellPIScaling && this->schedule()[reportStepIdx].events() .hasEvent(ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX)) { this->runWellPIScaling(reportStepIdx, local_deferredLogger); } } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "Failed to initialize local well structure: ", this->terminal_output_, comm) } template void BlackoilWellModel:: initializeGroupStructure(const int reportStepIdx) { DeferredLogger local_deferredLogger{}; const auto& comm = this->simulator_.vanguard().grid().comm(); OPM_BEGIN_PARALLEL_TRY_CATCH() { const auto& fieldGroup = this->schedule().getGroup("FIELD", reportStepIdx); WellGroupHelpers::setCmodeGroup(fieldGroup, this->schedule(), this->summaryState(), reportStepIdx, this->groupState()); // Define per region average pressure calculators for use by // pressure maintenance groups (GPMAINT keyword). if (this->schedule()[reportStepIdx].has_gpmaint()) { WellGroupHelpers::setRegionAveragePressureCalculator (fieldGroup, this->schedule(), reportStepIdx, this->eclState_.fieldProps(), this->phase_usage_, this->regionalAveragePressureCalculator_); } } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "Failed to initialize group structure: ", this->terminal_output_, comm) } // called at the beginning of a time step template void BlackoilWellModel:: beginTimeStep() { OPM_TIMEBLOCK(beginTimeStep); this->updateAverageFormationFactor(); DeferredLogger local_deferredLogger; this->switched_prod_groups_.clear(); this->switched_inj_groups_.clear(); if (this->wellStructureChangedDynamically_) { // Something altered the well structure/topology. Possibly // WELSPECS/COMPDAT and/or WELOPEN run from an ACTIONX block. // Reconstruct the local wells to account for the new well // structure. const auto reportStepIdx = this->simulator_.episodeIndex(); // Disable WELPI scaling when well structure is updated in the // middle of a report step. const auto enableWellPIScaling = false; this->initializeLocalWellStructure(reportStepIdx, enableWellPIScaling); this->initializeGroupStructure(reportStepIdx); this->commitWGState(); // Reset topology flag to signal that we've handled this // structure change. That way we don't end up here in // subsequent calls to beginTimeStep() unless there's a new // dynamic change to the well structure during a report step. this->wellStructureChangedDynamically_ = false; } this->resetWGState(); const int reportStepIdx = simulator_.episodeIndex(); updateAndCommunicateGroupData(reportStepIdx, simulator_.model().newtonMethod().numIterations()); this->wellState().updateWellsDefaultALQ(this->wells_ecl_, this->summaryState()); this->wellState().gliftTimeStepInit(); const double simulationTime = simulator_.time(); OPM_BEGIN_PARALLEL_TRY_CATCH(); { // test wells wellTesting(reportStepIdx, simulationTime, local_deferredLogger); // create the well container createWellContainer(reportStepIdx); // Wells are active if they are active wells on at least one process. const Grid& grid = simulator_.vanguard().grid(); wells_active_ = !this->well_container_.empty(); wells_active_ = grid.comm().max(wells_active_); // do the initialization for all the wells // TODO: to see whether we can postpone of the intialization of the well containers to // optimize the usage of the following several member variables this->initWellContainer(reportStepIdx); // update the updated cell flag std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false); for (auto& well : well_container_) { well->updatePerforatedCell(is_cell_perforated_); } // calculate the efficiency factors for each well calculateEfficiencyFactors(reportStepIdx); if constexpr (has_polymer_) { if (PolymerModule::hasPlyshlog() || getPropValue() ) { setRepRadiusPerfLength(); } } } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "beginTimeStep() failed: ", terminal_output_, simulator_.vanguard().grid().comm()); for (auto& well : well_container_) { well->setVFPProperties(vfp_properties_.get()); well->setGuideRate(&guideRate_); } this->updateInjFCMult(local_deferredLogger); // Close completions due to economic reasons for (auto& well : well_container_) { well->closeCompletions(wellTestState()); } // we need the inj_multiplier from the previous time step this->initInjMult(); const auto& summaryState = simulator_.vanguard().summaryState(); if (alternative_well_rate_init_) { // Update the well rates of well_state_, if only single-phase rates, to // have proper multi-phase rates proportional to rates at bhp zero. // This is done only for producers, as injectors will only have a single // nonzero phase anyway. for (auto& well : well_container_) { const bool zero_target = well->stopppedOrZeroRateTarget(summaryState, this->wellState()); if (well->isProducer() && !zero_target) { well->updateWellStateRates(simulator_, this->wellState(), local_deferredLogger); } } } for (auto& well : well_container_) { if (well->isVFPActive(local_deferredLogger)){ well->setPrevSurfaceRates(this->wellState(), this->prevWellState()); } } // calculate the well potentials try { updateWellPotentials(reportStepIdx, /*onlyAfterEvent*/true, simulator_.vanguard().summaryConfig(), local_deferredLogger); } catch ( std::runtime_error& e ) { const std::string msg = "A zero well potential is returned for output purposes. "; local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg); } //update guide rates const auto& comm = simulator_.vanguard().grid().comm(); std::vector pot(numPhases(), 0.0); const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); WellGroupHelpers::updateGuideRates(fieldGroup, schedule(), summaryState, this->phase_usage_, reportStepIdx, simulationTime, this->wellState(), this->groupState(), comm, &this->guideRate_, pot, local_deferredLogger); std::string exc_msg; auto exc_type = ExceptionType::NONE; // update gpmaint targets if (schedule_[reportStepIdx].has_gpmaint()) { for (auto& calculator : regionalAveragePressureCalculator_) { calculator.second->template defineState(simulator_); } const double dt = simulator_.timeStepSize(); WellGroupHelpers::updateGpMaintTargetForGroups(fieldGroup, schedule_, regionalAveragePressureCalculator_, reportStepIdx, dt, this->wellState(), this->groupState()); } try { // Compute initial well solution for new wells and injectors that change injection type i.e. WAG. for (auto& well : well_container_) { const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::INJECTION_TYPE_CHANGED + ScheduleEvents::WELL_SWITCHED_INJECTOR_PRODUCER + ScheduleEvents::NEW_WELL; const auto& events = schedule()[reportStepIdx].wellgroup_events(); const bool event = report_step_starts_ && events.hasEvent(well->name(), effective_events_mask); const bool dyn_status_change = this->wellState().well(well->name()).status != this->prevWellState().well(well->name()).status; if (event || dyn_status_change) { try { well->updateWellStateWithTarget(simulator_, this->groupState(), this->wellState(), local_deferredLogger); well->calculateExplicitQuantities(simulator_, this->wellState(), local_deferredLogger); well->solveWellEquation(simulator_, this->wellState(), this->groupState(), local_deferredLogger); } catch (const std::exception& e) { const std::string msg = "Compute initial well solution for new well " + well->name() + " failed. Continue with zero initial rates"; local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg); } } } } // Catch clauses for all errors setting exc_type and exc_msg OPM_PARALLEL_CATCH_CLAUSE(exc_type, exc_msg); if (exc_type != ExceptionType::NONE) { const std::string msg = "Compute initial well solution for new wells failed. Continue with zero initial rates"; local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg); } logAndCheckForExceptionsAndThrow(local_deferredLogger, exc_type, "beginTimeStep() failed: " + exc_msg, terminal_output_, comm); } template void BlackoilWellModel::wellTesting(const int timeStepIdx, const double simulationTime, DeferredLogger& deferred_logger) { for (const std::string& well_name : this->getWellsForTesting(timeStepIdx, simulationTime)) { const Well& wellEcl = schedule().getWell(well_name, timeStepIdx); if (wellEcl.getStatus() == Well::Status::SHUT) continue; WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx, deferred_logger); // some preparation before the well can be used well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg_, true); double well_efficiency_factor = wellEcl.getEfficiencyFactor(); WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx), schedule(), timeStepIdx, well_efficiency_factor); well->setWellEfficiencyFactor(well_efficiency_factor); well->setVFPProperties(vfp_properties_.get()); well->setGuideRate(&guideRate_); // initialize rates/previous rates to prevent zero fractions in vfp-interpolation if (well->isProducer()) { well->updateWellStateRates(simulator_, this->wellState(), deferred_logger); } if (well->isVFPActive(deferred_logger)) { well->setPrevSurfaceRates(this->wellState(), this->prevWellState()); } try { well->wellTesting(simulator_, simulationTime, this->wellState(), this->groupState(), wellTestState(), deferred_logger); } catch (const std::exception& e) { const std::string msg = fmt::format("Exception during testing of well: {}. The well will not open.\n Exception message: {}", wellEcl.name(), e.what()); deferred_logger.warning("WELL_TESTING_FAILED", msg); } } } // called at the end of a report step template void BlackoilWellModel:: endReportStep() { // Clear the communication data structures for above values. for (auto&& pinfo : this->local_parallel_well_info_) { pinfo.get().clear(); } } // called at the end of a report step template const SimulatorReportSingle& BlackoilWellModel:: lastReport() const {return last_report_; } // called at the end of a time step template void BlackoilWellModel:: timeStepSucceeded(const double simulationTime, const double dt) { this->closed_this_step_.clear(); // time step is finished and we are not any more at the beginning of an report step report_step_starts_ = false; const int reportStepIdx = simulator_.episodeIndex(); DeferredLogger local_deferredLogger; for (const auto& well : well_container_) { if (getPropValue() && well->isInjector()) { well->updateWaterThroughput(dt, this->wellState()); } } // update connection transmissibility factor and d factor (if applicable) in the wellstate for (const auto& well : well_container_) { well->updateConnectionTransmissibilityFactor(simulator_, this->wellState().well(well->indexOfWell())); well->updateConnectionDFactor(simulator_, this->wellState().well(well->indexOfWell())); } if (Indices::waterEnabled) { this->updateFiltrationParticleVolume(dt, FluidSystem::waterPhaseIdx); } // at the end of the time step, updating the inj_multiplier saved in WellState for later use this->updateInjMult(local_deferredLogger); // report well switching for (const auto& well : well_container_) { well->reportWellSwitching(this->wellState().well(well->indexOfWell()), local_deferredLogger); } // report group switching if (terminal_output_) { for (const auto& [name, to] : switched_prod_groups_) { const Group::ProductionCMode& oldControl = this->prevWGState().group_state.production_control(name); std::string from = Group::ProductionCMode2String(oldControl); if (to != from) { std::string msg = " Production Group " + name + " control mode changed from "; msg += from; msg += " to " + to; local_deferredLogger.info(msg); } } for (const auto& [key, to] : switched_inj_groups_) { const std::string& name = key.first; const Opm::Phase& phase = key.second; const Group::InjectionCMode& oldControl = this->prevWGState().group_state.injection_control(name, phase); std::string from = Group::InjectionCMode2String(oldControl); if (to != from) { std::string msg = " Injection Group " + name + " control mode changed from "; msg += from; msg += " to " + to; local_deferredLogger.info(msg); } } } // update the rate converter with current averages pressures etc in rateConverter_->template defineState(simulator_); // calculate the well potentials try { updateWellPotentials(reportStepIdx, /*onlyAfterEvent*/false, simulator_.vanguard().summaryConfig(), local_deferredLogger); } catch ( std::runtime_error& e ) { const std::string msg = "A zero well potential is returned for output purposes. "; local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg); } updateWellTestState(simulationTime, wellTestState()); // check group sales limits at the end of the timestep const Group& fieldGroup = schedule_.getGroup("FIELD", reportStepIdx); checkGEconLimits( fieldGroup, simulationTime, simulator_.episodeIndex(), local_deferredLogger); checkGconsaleLimits(fieldGroup, this->wellState(), simulator_.episodeIndex(), local_deferredLogger); this->calculateProductivityIndexValues(local_deferredLogger); this->commitWGState(); const Opm::Parallel::Communication& comm = grid().comm(); DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm); if (terminal_output_) { global_deferredLogger.logMessages(); } //reporting output temperatures this->computeWellTemperature(); } template void BlackoilWellModel:: computeTotalRatesForDof(RateVector& rate, unsigned elemIdx) const { rate = 0; if (!is_cell_perforated_[elemIdx]) return; for (const auto& well : well_container_) well->addCellRates(rate, elemIdx); } template template void BlackoilWellModel:: computeTotalRatesForDof(RateVector& rate, const Context& context, unsigned spaceIdx, unsigned timeIdx) const { rate = 0; int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx); if (!is_cell_perforated_[elemIdx]) return; for (const auto& well : well_container_) well->addCellRates(rate, elemIdx); } template void BlackoilWellModel:: initializeWellState(const int timeStepIdx) { std::vector cellPressures(this->local_num_cells_, 0.0); ElementContext elemCtx(simulator_); const auto& gridView = simulator_.vanguard().gridView(); OPM_BEGIN_PARALLEL_TRY_CATCH(); for (const auto& elem : elements(gridView, Dune::Partitions::interior)) { elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& fs = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0).fluidState(); // copy of get perfpressure in Standard well except for value double& perf_pressure = cellPressures[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)]; if (Indices::oilEnabled) { perf_pressure = fs.pressure(FluidSystem::oilPhaseIdx).value(); } else if (Indices::waterEnabled) { perf_pressure = fs.pressure(FluidSystem::waterPhaseIdx).value(); } else { perf_pressure = fs.pressure(FluidSystem::gasPhaseIdx).value(); } } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::initializeWellState() failed: ", simulator_.vanguard().grid().comm()); this->wellState().init(cellPressures, schedule(), wells_ecl_, local_parallel_well_info_, timeStepIdx, &this->prevWellState(), well_perf_data_, this->summaryState()); } template void BlackoilWellModel:: createWellContainer(const int report_step) { DeferredLogger local_deferredLogger; const int nw = numLocalWells(); well_container_.clear(); if (nw > 0) { well_container_.reserve(nw); for (int w = 0; w < nw; ++w) { const Well& well_ecl = wells_ecl_[w]; if (!well_ecl.hasConnections()) { // No connections in this well. Nothing to do. continue; } const std::string& well_name = well_ecl.name(); const auto well_status = this->schedule() .getWell(well_name, report_step).getStatus(); if ((well_ecl.getStatus() == Well::Status::SHUT) || (well_status == Well::Status::SHUT)) { // Due to ACTIONX the well might have been closed behind our back. if (well_ecl.getStatus() != Well::Status::SHUT) { this->closed_this_step_.insert(well_name); this->wellState().shutWell(w); } continue; } // A new WCON keywords can re-open a well that was closed/shut due to Physical limit if (this->wellTestState().well_is_closed(well_name)) { // The well was shut this timestep, we are most likely retrying // a timestep without the well in question, after it caused // repeated timestep cuts. It should therefore not be opened, // even if it was new or received new targets this report step. const bool closed_this_step = (wellTestState().lastTestTime(well_name) == simulator_.time()); // TODO: more checking here, to make sure this standard more specific and complete // maybe there is some WCON keywords will not open the well auto& events = this->wellState().well(w).events; if (events.hasEvent(ScheduleEvents::REQUEST_OPEN_WELL)) { if (!closed_this_step) { wellTestState().open_well(well_name); wellTestState().open_completions(well_name); } events.clearEvent(ScheduleEvents::REQUEST_OPEN_WELL); } } // TODO: should we do this for all kinds of closing reasons? // something like wellTestState().hasWell(well_name)? bool wellIsStopped = false; if (wellTestState().well_is_closed(well_name)) { if (well_ecl.getAutomaticShutIn()) { // shut wells are not added to the well container this->wellState().shutWell(w); continue; } else { if (!well_ecl.getAllowCrossFlow()) { // stopped wells where cross flow is not allowed // are not added to the well container this->wellState().shutWell(w); continue; } // stopped wells are added to the container but marked as stopped this->wellState().stopWell(w); wellIsStopped = true; } } // shut wells with zero rante constraints and disallowing if (!well_ecl.getAllowCrossFlow()) { const bool any_zero_rate_constraint = well_ecl.isProducer() ? well_ecl.productionControls(summaryState_).anyZeroRateConstraint() : well_ecl.injectionControls(summaryState_).anyZeroRateConstraint(); if (any_zero_rate_constraint) { // Treat as shut, do not add to container. local_deferredLogger.debug(fmt::format(" Well {} gets shut due to having zero rate constraint and disallowing crossflow ", well_ecl.name()) ); this->wellState().shutWell(w); continue; } } if (well_status == Well::Status::STOP) { this->wellState().stopWell(w); wellIsStopped = true; } well_container_.emplace_back(this->createWellPointer(w, report_step)); if (wellIsStopped) well_container_.back()->stopWell(); } } // Collect log messages and print. const Opm::Parallel::Communication& comm = grid().comm(); DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm); if (terminal_output_) { global_deferredLogger.logMessages(); } well_container_generic_.clear(); for (auto& w : well_container_) well_container_generic_.push_back(w.get()); const auto& network = schedule()[report_step].network(); if (network.active() && !this->node_pressures_.empty()) { for (auto& well: well_container_generic_) { // Producers only, since we so far only support the // "extended" network model (properties defined by // BRANPROP and NODEPROP) which only applies to producers. if (well->isProducer()) { const auto it = node_pressures_.find(well->wellEcl().groupName()); if (it != node_pressures_.end()) { // The well belongs to a group which has a network nodal pressure, // set the dynamic THP constraint based on the network nodal pressure const double nodal_pressure = it->second; well->setDynamicThpLimit(nodal_pressure); } } } } this->registerOpenWellsForWBPCalculation(); } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: createWellPointer(const int wellID, const int report_step) const { const auto is_multiseg = this->wells_ecl_[wellID].isMultiSegment(); if (! (this->param_.use_multisegment_well_ && is_multiseg)) { return this->template createTypedWellPointer>(wellID, report_step); } else { return this->template createTypedWellPointer>(wellID, report_step); } } template template std::unique_ptr BlackoilWellModel:: createTypedWellPointer(const int wellID, const int time_step) const { // Use the pvtRegionIdx from the top cell const auto& perf_data = this->well_perf_data_[wellID]; // Cater for case where local part might have no perforations. const auto pvtreg = perf_data.empty() ? 0 : pvt_region_idx_[perf_data.front().cell_index]; const auto& parallel_well_info = this->local_parallel_well_info_[wellID].get(); const auto global_pvtreg = parallel_well_info.broadcastFirstPerforationValue(pvtreg); return std::make_unique(this->wells_ecl_[wellID], parallel_well_info, time_step, this->param_, *this->rateConverter_, global_pvtreg, this->numComponents(), this->numPhases(), wellID, perf_data); } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: createWellForWellTest(const std::string& well_name, const int report_step, DeferredLogger& deferred_logger) const { // Finding the location of the well in wells_ecl const int nw_wells_ecl = wells_ecl_.size(); int index_well_ecl = 0; for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) { if (well_name == wells_ecl_[index_well_ecl].name()) { break; } } // It should be able to find in wells_ecl. if (index_well_ecl == nw_wells_ecl) { OPM_DEFLOG_THROW(std::logic_error, fmt::format("Could not find well {} in wells_ecl ", well_name), deferred_logger); } return this->createWellPointer(index_well_ecl, report_step); } template void BlackoilWellModel:: doPreStepNetworkRebalance(DeferredLogger& deferred_logger) { const double dt = this->simulator_.timeStepSize(); // TODO: should we also have the group and network backed-up here in case the solution did not get converged? auto& well_state = this->wellState(); const std::size_t max_iter = param_.network_max_iterations_; bool converged = false; std::size_t iter = 0; bool changed_well_group = false; do { changed_well_group = updateWellControlsAndNetwork(true, dt, deferred_logger); assembleWellEqWithoutIteration(dt, deferred_logger); converged = this->getWellConvergence(this->B_avg_, true).converged() && !changed_well_group; if (converged) { break; } ++iter; for (auto& well : this->well_container_) { const auto& summary_state = this->simulator_.vanguard().summaryState(); well->solveEqAndUpdateWellState(summary_state, well_state, deferred_logger); } this->initPrimaryVariablesEvaluation(); } while (iter < max_iter); if (!converged) { const std::string msg = fmt::format("Initial (pre-step) network balance did not get converged with {} iterations, " "unconverged network balance result will be used", max_iter); deferred_logger.warning(msg); } else { const std::string msg = fmt::format("Initial (pre-step) network balance converged with {} iterations", iter); deferred_logger.debug(msg); } } template void BlackoilWellModel:: assemble(const int iterationIdx, const double dt) { DeferredLogger local_deferredLogger; if (this->glift_debug) { const std::string msg = fmt::format( "assemble() : iteration {}" , iterationIdx); gliftDebug(msg, local_deferredLogger); } last_report_ = SimulatorReportSingle(); Dune::Timer perfTimer; perfTimer.start(); { const int episodeIdx = simulator_.episodeIndex(); const auto& network = schedule()[episodeIdx].network(); if ( !wellsActive() && !network.active() ) { return; } } if (iterationIdx == 0 && wellsActive()) { // try-catch is needed here as updateWellControls // contains global communication and has either to // be reached by all processes or all need to abort // before. OPM_BEGIN_PARALLEL_TRY_CATCH(); { calculateExplicitQuantities(local_deferredLogger); prepareTimeStep(local_deferredLogger); } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "assemble() failed (It=0): ", terminal_output_, grid().comm()); } const bool well_group_control_changed = updateWellControlsAndNetwork(false, dt, local_deferredLogger); // even when there is no wells active, the network nodal pressure still need to be updated through updateWellControlsAndNetwork() // but there is no need to assemble the well equations if ( ! wellsActive() ) { return; } assembleWellEqWithoutIteration(dt, local_deferredLogger); // if group or well control changes we don't consider the // case converged last_report_.well_group_control_changed = well_group_control_changed; last_report_.assemble_time_well += perfTimer.stop(); } template bool BlackoilWellModel:: updateWellControlsAndNetwork(const bool mandatory_network_balance, const double dt, DeferredLogger& local_deferredLogger) { // not necessarily that we always need to update once of the network solutions bool do_network_update = true; bool well_group_control_changed = false; // after certain number of the iterations, we use relaxed tolerance for the network update const std::size_t iteration_to_relax = param_.network_max_strict_iterations_; // after certain number of the iterations, we terminate const std::size_t max_iteration = param_.network_max_iterations_; std::size_t network_update_iteration = 0; while (do_network_update) { if (terminal_output_ && (network_update_iteration == iteration_to_relax) ) { local_deferredLogger.info(" we begin using relaxed tolerance for network update now after " + std::to_string(iteration_to_relax) + " iterations "); } const bool relax_network_balance = network_update_iteration >= iteration_to_relax; std::tie(do_network_update, well_group_control_changed) = updateWellControlsAndNetworkIteration(mandatory_network_balance, relax_network_balance, dt,local_deferredLogger); ++network_update_iteration; if (network_update_iteration >= max_iteration ) { if (terminal_output_) { local_deferredLogger.info("maximum of " + std::to_string(max_iteration) + " iterations has been used, we stop the network update now. " "The simulation will continue with unconverged network results"); } break; } } return well_group_control_changed; } template std::pair BlackoilWellModel:: updateWellControlsAndNetworkIteration(const bool mandatory_network_balance, const bool relax_network_tolerance, const double dt, DeferredLogger& local_deferredLogger) { auto [well_group_control_changed, more_network_update] = updateWellControls(mandatory_network_balance, local_deferredLogger, relax_network_tolerance); bool alq_updated = false; OPM_BEGIN_PARALLEL_TRY_CATCH(); { // Set the well primary variables based on the value of well solutions initPrimaryVariablesEvaluation(); alq_updated = maybeDoGasLiftOptimize(local_deferredLogger); prepareWellsBeforeAssembling(dt, local_deferredLogger); } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "updateWellControlsAndNetworkIteration() failed: ", terminal_output_, grid().comm()); //update guide rates const int reportStepIdx = simulator_.episodeIndex(); if (alq_updated || BlackoilWellModelGuideRates(*this). guideRateUpdateIsNeeded(reportStepIdx)) { const double simulationTime = simulator_.time(); const auto& comm = simulator_.vanguard().grid().comm(); const auto& summaryState = simulator_.vanguard().summaryState(); std::vector pot(numPhases(), 0.0); const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); WellGroupHelpers::updateGuideRates(fieldGroup, schedule(), summaryState, this->phase_usage_, reportStepIdx, simulationTime, this->wellState(), this->groupState(), comm, &this->guideRate_, pot, local_deferredLogger); } return {more_network_update, well_group_control_changed}; } template void BlackoilWellModel:: assembleDomain([[maybe_unused]] const int iterationIdx, const double dt, const Domain& domain) { last_report_ = SimulatorReportSingle(); Dune::Timer perfTimer; perfTimer.start(); { const int episodeIdx = simulator_.episodeIndex(); const auto& network = schedule()[episodeIdx].network(); if ( !wellsActive() && !network.active() ) { return; } } // We assume that calculateExplicitQuantities() and // prepareTimeStep() have been called already for the entire // well model, so we do not need to do it here (when // iterationIdx is 0). DeferredLogger local_deferredLogger; updateWellControlsDomain(local_deferredLogger, domain); initPrimaryVariablesEvaluationDomain(domain); assembleWellEqDomain(dt, domain, local_deferredLogger); // TODO: errors here must be caught higher up, as this method is not called in parallel. // We will log errors on rank 0, but not other ranks for now. if (terminal_output_) { local_deferredLogger.logMessages(); } last_report_.converged = true; last_report_.assemble_time_well += perfTimer.stop(); } template bool BlackoilWellModel:: maybeDoGasLiftOptimize(DeferredLogger& deferred_logger) { bool do_glift_optimization = false; int num_wells_changed = 0; const double simulation_time = simulator_.time(); const double min_wait = simulator_.vanguard().schedule().glo(simulator_.episodeIndex()).min_wait(); // We only optimize if a min_wait time has past. // If all_newton is true we still want to optimize several times pr timestep // i.e. we also optimize if check simulation_time == last_glift_opt_time_ // that is when the last_glift_opt_time is already updated with the current time step if ( simulation_time == last_glift_opt_time_ || simulation_time >= (last_glift_opt_time_ + min_wait)) { do_glift_optimization = true; last_glift_opt_time_ = simulation_time; } if (do_glift_optimization) { GLiftOptWells glift_wells; GLiftProdWells prod_wells; GLiftWellStateMap state_map; // NOTE: To make GasLiftGroupInfo (see below) independent of the TypeTag // associated with *this (i.e. BlackoilWellModel) we observe // that GasLiftGroupInfo's only dependence on *this is that it needs to // access the eclipse Wells in the well container (the eclipse Wells // themselves are independent of the TypeTag). // Hence, we extract them from the well container such that we can pass // them to the GasLiftGroupInfo constructor. GLiftEclWells ecl_well_map; initGliftEclWellMap(ecl_well_map); GasLiftGroupInfo group_info { ecl_well_map, simulator_.vanguard().schedule(), simulator_.vanguard().summaryState(), simulator_.episodeIndex(), simulator_.model().newtonMethod().numIterations(), phase_usage_, deferred_logger, this->wellState(), this->groupState(), simulator_.vanguard().grid().comm(), this->glift_debug }; group_info.initialize(); gasLiftOptimizationStage1( deferred_logger, prod_wells, glift_wells, group_info, state_map); gasLiftOptimizationStage2( deferred_logger, prod_wells, glift_wells, group_info, state_map, simulator_.episodeIndex()); if (this->glift_debug) gliftDebugShowALQ(deferred_logger); num_wells_changed = glift_wells.size(); } num_wells_changed = this->comm_.sum(num_wells_changed); return num_wells_changed > 0; } template void BlackoilWellModel:: gasLiftOptimizationStage1(DeferredLogger& deferred_logger, GLiftProdWells &prod_wells, GLiftOptWells &glift_wells, GasLiftGroupInfo &group_info, GLiftWellStateMap &state_map) { auto comm = simulator_.vanguard().grid().comm(); int num_procs = comm.size(); // NOTE: Gas lift optimization stage 1 seems to be difficult // to do in parallel since the wells are optimized on different // processes and each process needs to know the current ALQ allocated // to each group it is a memeber of in order to check group limits and avoid // allocating more ALQ than necessary. (Surplus ALQ is removed in // stage 2). In stage1, as each well is adding ALQ, the current group ALQ needs // to be communicated to the other processes. But there is no common // synchronization point that all process will reach in the // runOptimizeLoop_() in GasLiftSingleWell.cpp. // // TODO: Maybe a better solution could be invented by distributing // wells according to certain parent groups. Then updated group rates // might not have to be communicated to the other processors. // Currently, the best option seems to be to run this part sequentially // (not in parallel). // // TODO: The simplest approach seems to be if a) one process could take // ownership of all the wells (the union of all the wells in the // well_container_ of each process) then this process could do the // optimization, while the other processes could wait for it to // finish (e.g. comm.barrier()), or alternatively, b) if all // processes could take ownership of all the wells. Then there // would be no need for synchronization here.. // for (int i = 0; i< num_procs; i++) { int num_rates_to_sync = 0; // communication variable GLiftSyncGroups groups_to_sync; if (comm.rank() == i) { // Run stage1: Optimize single wells while also checking group limits for (const auto& well : well_container_) { // NOTE: Only the wells in "group_info" needs to be optimized if (group_info.hasWell(well->name())) { gasLiftOptimizationStage1SingleWell( well.get(), deferred_logger, prod_wells, glift_wells, group_info, state_map, groups_to_sync ); } } num_rates_to_sync = groups_to_sync.size(); } num_rates_to_sync = comm.sum(num_rates_to_sync); if (num_rates_to_sync > 0) { std::vector group_indexes; group_indexes.reserve(num_rates_to_sync); std::vector group_alq_rates; group_alq_rates.reserve(num_rates_to_sync); std::vector group_oil_rates; group_oil_rates.reserve(num_rates_to_sync); std::vector group_gas_rates; group_gas_rates.reserve(num_rates_to_sync); std::vector group_water_rates; group_water_rates.reserve(num_rates_to_sync); if (comm.rank() == i) { for (auto idx : groups_to_sync) { auto [oil_rate, gas_rate, water_rate, alq] = group_info.getRates(idx); group_indexes.push_back(idx); group_oil_rates.push_back(oil_rate); group_gas_rates.push_back(gas_rate); group_water_rates.push_back(water_rate); group_alq_rates.push_back(alq); } } else { group_indexes.resize(num_rates_to_sync); group_oil_rates.resize(num_rates_to_sync); group_gas_rates.resize(num_rates_to_sync); group_water_rates.resize(num_rates_to_sync); group_alq_rates.resize(num_rates_to_sync); } #if HAVE_MPI Parallel::MpiSerializer ser(comm); ser.broadcast(i, group_indexes, group_oil_rates, group_gas_rates, group_water_rates, group_alq_rates); #endif if (comm.rank() != i) { for (int j=0; jglift_debug) { int counter = 0; if (comm.rank() == i) { counter = this->wellState().gliftGetDebugCounter(); } counter = comm.sum(counter); if (comm.rank() != i) { this->wellState().gliftSetDebugCounter(counter); } } } } } // NOTE: this method cannot be const since it passes this->wellState() // (see below) to the GasLiftSingleWell constructor which accepts WellState // as a non-const reference.. template void BlackoilWellModel:: gasLiftOptimizationStage1SingleWell(WellInterface *well, DeferredLogger& deferred_logger, GLiftProdWells &prod_wells, GLiftOptWells &glift_wells, GasLiftGroupInfo &group_info, GLiftWellStateMap &state_map, GLiftSyncGroups& sync_groups) { const auto& summary_state = simulator_.vanguard().summaryState(); std::unique_ptr glift = std::make_unique( *well, simulator_, summary_state, deferred_logger, this->wellState(), this->groupState(), group_info, sync_groups, this->comm_, this->glift_debug); auto state = glift->runOptimize( simulator_.model().newtonMethod().numIterations()); if (state) { state_map.insert({well->name(), std::move(state)}); glift_wells.insert({well->name(), std::move(glift)}); return; } prod_wells.insert({well->name(), well}); } template void BlackoilWellModel:: initGliftEclWellMap(GLiftEclWells &ecl_well_map) { for ( const auto& well: well_container_ ) { ecl_well_map.try_emplace( well->name(), &(well->wellEcl()), well->indexOfWell()); } } template void BlackoilWellModel:: assembleWellEq(const double dt, DeferredLogger& deferred_logger) { for (auto& well : well_container_) { well->assembleWellEq(simulator_, dt, this->wellState(), this->groupState(), deferred_logger); } } template void BlackoilWellModel:: assembleWellEqDomain(const double dt, const Domain& domain, DeferredLogger& deferred_logger) { for (auto& well : well_container_) { if (well_domain_.at(well->name()) == domain.index) { well->assembleWellEq(simulator_, dt, this->wellState(), this->groupState(), deferred_logger); } } } template void BlackoilWellModel:: prepareWellsBeforeAssembling(const double dt, DeferredLogger& deferred_logger) { for (auto& well : well_container_) { well->prepareWellBeforeAssembling(simulator_, dt, this->wellState(), this->groupState(), deferred_logger); } } template void BlackoilWellModel:: assembleWellEqWithoutIteration(const double dt, DeferredLogger& deferred_logger) { // We make sure that all processes throw in case there is an exception // on one of them (WetGasPvt::saturationPressure might throw if not converged) OPM_BEGIN_PARALLEL_TRY_CATCH(); for (auto& well: well_container_) { well->assembleWellEqWithoutIteration(simulator_, dt, this->wellState(), this->groupState(), deferred_logger); } OPM_END_PARALLEL_TRY_CATCH_LOG(deferred_logger, "BlackoilWellModel::assembleWellEqWithoutIteration failed: ", terminal_output_, grid().comm()); } template void BlackoilWellModel:: apply(BVector& r) const { for (auto& well : well_container_) { well->apply(r); } } // Ax = A x - C D^-1 B x template void BlackoilWellModel:: apply(const BVector& x, BVector& Ax) const { for (auto& well : well_container_) { well->apply(x, Ax); } } template void BlackoilWellModel:: getWellContributions(WellContributions& wellContribs) const { // prepare for StandardWells wellContribs.setBlockSize(StandardWell::Indices::numEq, StandardWell::numStaticWellEq); for(unsigned int i = 0; i < well_container_.size(); i++){ auto& well = well_container_[i]; std::shared_ptr > derived = std::dynamic_pointer_cast >(well); if (derived) { wellContribs.addNumBlocks(derived->linSys().getNumBlocks()); } } // allocate memory for data from StandardWells wellContribs.alloc(); for(unsigned int i = 0; i < well_container_.size(); i++){ auto& well = well_container_[i]; // maybe WellInterface could implement addWellContribution() auto derived_std = std::dynamic_pointer_cast>(well); if (derived_std) { derived_std->linSys().extract(derived_std->numStaticWellEq, wellContribs); } else { auto derived_ms = std::dynamic_pointer_cast >(well); if (derived_ms) { derived_ms->linSys().extract(wellContribs); } else { OpmLog::warning("Warning unknown type of well"); } } } } // Ax = Ax - alpha * C D^-1 B x template void BlackoilWellModel:: applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const { if (this->well_container_.empty()) { return; } if( scaleAddRes_.size() != Ax.size() ) { scaleAddRes_.resize( Ax.size() ); } scaleAddRes_ = 0.0; // scaleAddRes_ = - C D^-1 B x apply( x, scaleAddRes_ ); // Ax = Ax + alpha * scaleAddRes_ Ax.axpy( alpha, scaleAddRes_ ); } template void BlackoilWellModel:: addWellContributions(SparseMatrixAdapter& jacobian) const { for ( const auto& well: well_container_ ) { well->addWellContributions(jacobian); } } template void BlackoilWellModel:: addWellPressureEquations(PressureMatrix& jacobian, const BVector& weights,const bool use_well_weights) const { int nw = this->numLocalWellsEnd(); int rdofs = local_num_cells_; for ( int i = 0; i < nw; i++ ){ int wdof = rdofs + i; jacobian[wdof][wdof] = 1.0;// better scaling ? } for ( const auto& well : well_container_ ) { well->addWellPressureEquations(jacobian, weights, pressureVarIndex, use_well_weights, this->wellState()); } } template void BlackoilWellModel:: addReservoirSourceTerms(GlobalEqVector& residual, std::vector& diagMatAddress) const { // NB this loop may write multiple times to the same element // if a cell is perforated by more than one well, so it should // not be OpenMP-parallelized. for (const auto& well : well_container_) { if (!well->isOperableAndSolvable() && !well->wellIsStopped()) { continue; } const auto& cells = well->cells(); const auto& rates = well->connectionRates(); for (unsigned perfIdx = 0; perfIdx < rates.size(); ++perfIdx) { unsigned cellIdx = cells[perfIdx]; auto rate = rates[perfIdx]; rate *= -1.0; VectorBlockType res(0.0); using MatrixBlockType = typename SparseMatrixAdapter::MatrixBlock; MatrixBlockType bMat(0.0); simulator_.model().linearizer().setResAndJacobi(res, bMat, rate); residual[cellIdx] += res; *diagMatAddress[cellIdx] += bMat; } } } template void BlackoilWellModel:: addWellPressureEquationsStruct(PressureMatrix& jacobian) const { int nw = this->numLocalWellsEnd(); int rdofs = local_num_cells_; for(int i=0; i < nw; i++){ int wdof = rdofs + i; jacobian.entry(wdof,wdof) = 1.0;// better scaling ? } std::vector> wellconnections = getMaxWellConnections(); for(int i=0; i < nw; i++){ const auto& perfcells = wellconnections[i]; for(int perfcell : perfcells){ int wdof = rdofs + i; jacobian.entry(wdof,perfcell) = 0.0; jacobian.entry(perfcell, wdof) = 0.0; } } } template void BlackoilWellModel:: recoverWellSolutionAndUpdateWellState(const BVector& x) { DeferredLogger local_deferredLogger; OPM_BEGIN_PARALLEL_TRY_CATCH(); { const auto& summary_state = simulator_.vanguard().summaryState(); for (auto& well : well_container_) { well->recoverWellSolutionAndUpdateWellState(summary_state, x, this->wellState(), local_deferredLogger); } } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "recoverWellSolutionAndUpdateWellState() failed: ", terminal_output_, simulator_.vanguard().grid().comm()); } template void BlackoilWellModel:: recoverWellSolutionAndUpdateWellStateDomain(const BVector& x, const Domain& domain) { // Note: no point in trying to do a parallel gathering // try/catch here, as this function is not called in // parallel but for each individual domain of each rank. DeferredLogger local_deferredLogger; const auto& summary_state = this->simulator_.vanguard().summaryState(); for (auto& well : well_container_) { if (well_domain_.at(well->name()) == domain.index) { well->recoverWellSolutionAndUpdateWellState(summary_state, x, this->wellState(), local_deferredLogger); } } // TODO: avoid losing the logging information that could // be stored in the local_deferredlogger in a parallel case. if (terminal_output_) { local_deferredLogger.logMessages(); } } template void BlackoilWellModel:: initPrimaryVariablesEvaluation() const { for (auto& well : well_container_) { well->initPrimaryVariablesEvaluation(); } } template void BlackoilWellModel:: initPrimaryVariablesEvaluationDomain(const Domain& domain) const { for (auto& well : well_container_) { if (well_domain_.at(well->name()) == domain.index) { well->initPrimaryVariablesEvaluation(); } } } template ConvergenceReport BlackoilWellModel:: getDomainWellConvergence(const Domain& domain, const std::vector& B_avg, DeferredLogger& local_deferredLogger) const { const auto& summary_state = simulator_.vanguard().summaryState(); const int iterationIdx = simulator_.model().newtonMethod().numIterations(); const bool relax_tolerance = iterationIdx > param_.strict_outer_iter_wells_; ConvergenceReport report; for (const auto& well : well_container_) { if ((well_domain_.at(well->name()) == domain.index)) { if (well->isOperableAndSolvable() || well->wellIsStopped()) { report += well->getWellConvergence(summary_state, this->wellState(), B_avg, local_deferredLogger, relax_tolerance); } else { ConvergenceReport xreport; using CR = ConvergenceReport; xreport.setWellFailed({CR::WellFailure::Type::Unsolvable, CR::Severity::Normal, -1, well->name()}); report += xreport; } } } // Log debug messages for NaN or too large residuals. if (terminal_output_) { for (const auto& f : report.wellFailures()) { if (f.severity() == ConvergenceReport::Severity::NotANumber) { local_deferredLogger.debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } else if (f.severity() == ConvergenceReport::Severity::TooLarge) { local_deferredLogger.debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } } } return report; } template ConvergenceReport BlackoilWellModel:: getWellConvergence(const std::vector& B_avg, bool checkWellGroupControls) const { DeferredLogger local_deferredLogger; // Get global (from all processes) convergence report. ConvergenceReport local_report; const int iterationIdx = simulator_.model().newtonMethod().numIterations(); for (const auto& well : well_container_) { if (well->isOperableAndSolvable() || well->wellIsStopped()) { const auto& summary_state = simulator_.vanguard().summaryState(); local_report += well->getWellConvergence( summary_state, this->wellState(), B_avg, local_deferredLogger, iterationIdx > param_.strict_outer_iter_wells_); } else { ConvergenceReport report; using CR = ConvergenceReport; report.setWellFailed({CR::WellFailure::Type::Unsolvable, CR::Severity::Normal, -1, well->name()}); local_report += report; } } const Opm::Parallel::Communication comm = grid().comm(); DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm); ConvergenceReport report = gatherConvergenceReport(local_report, comm); // the well_group_control_changed info is already communicated if (checkWellGroupControls) { report.setWellGroupTargetsViolated(this->lastReport().well_group_control_changed); } if (terminal_output_) { global_deferredLogger.logMessages(); } // Log debug messages for NaN or too large residuals. if (terminal_output_) { for (const auto& f : report.wellFailures()) { if (f.severity() == ConvergenceReport::Severity::NotANumber) { OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } else if (f.severity() == ConvergenceReport::Severity::TooLarge) { OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } } } return report; } template void BlackoilWellModel:: calculateExplicitQuantities(DeferredLogger& deferred_logger) const { // TODO: checking isOperableAndSolvable() ? for (auto& well : well_container_) { well->calculateExplicitQuantities(simulator_, this->wellState(), deferred_logger); } } template std::pair BlackoilWellModel:: updateWellControls(const bool mandatory_network_balance, DeferredLogger& deferred_logger, const bool relax_network_tolerance) { const int episodeIdx = simulator_.episodeIndex(); const auto& network = schedule()[episodeIdx].network(); if (!wellsActive() && !network.active()) { return {false, false}; } const int iterationIdx = simulator_.model().newtonMethod().numIterations(); const auto& comm = simulator_.vanguard().grid().comm(); updateAndCommunicateGroupData(episodeIdx, iterationIdx); // network related bool more_network_update = false; if (shouldBalanceNetwork(episodeIdx, iterationIdx) || mandatory_network_balance) { const auto local_network_imbalance = updateNetworkPressures(episodeIdx); const double network_imbalance = comm.max(local_network_imbalance); const auto& balance = schedule()[episodeIdx].network_balance(); constexpr double relaxtion_factor = 10.0; const double tolerance = relax_network_tolerance ? relaxtion_factor * balance.pressure_tolerance() : balance.pressure_tolerance(); more_network_update = this->networkActive() && network_imbalance > tolerance; } bool changed_well_group = false; // Check group individual constraints. const int nupcol = schedule()[episodeIdx].nupcol(); // don't switch group control when iterationIdx > nupcol // to avoid oscilations between group controls if (iterationIdx <= nupcol) { const Group& fieldGroup = schedule().getGroup("FIELD", episodeIdx); changed_well_group = updateGroupControls(fieldGroup, deferred_logger, episodeIdx, iterationIdx); } // Check wells' group constraints and communicate. bool changed_well_to_group = false; { // For MS Wells a linear solve is performed below and the matrix might be singular. // We need to communicate the exception thrown to the others and rethrow. OPM_BEGIN_PARALLEL_TRY_CATCH() for (const auto& well : well_container_) { const auto mode = WellInterface::IndividualOrGroup::Group; const bool changed_well = well->updateWellControl(simulator_, mode, this->wellState(), this->groupState(), deferred_logger); if (changed_well) { changed_well_to_group = changed_well || changed_well_to_group; } } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel: updating well controls failed: ", simulator_.gridView().comm()); } changed_well_to_group = comm.sum(static_cast(changed_well_to_group)); if (changed_well_to_group) { updateAndCommunicate(episodeIdx, iterationIdx, deferred_logger); changed_well_group = true; } // Check individual well constraints and communicate. bool changed_well_individual = false; { // For MS Wells a linear solve is performed below and the matrix might be singular. // We need to communicate the exception thrown to the others and rethrow. OPM_BEGIN_PARALLEL_TRY_CATCH() for (const auto& well : well_container_) { const auto mode = WellInterface::IndividualOrGroup::Individual; const bool changed_well = well->updateWellControl(simulator_, mode, this->wellState(), this->groupState(), deferred_logger); if (changed_well) { changed_well_individual = changed_well || changed_well_individual; } } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel: updating well controls failed: ", simulator_.gridView().comm()); } changed_well_individual = comm.sum(static_cast(changed_well_individual)); if (changed_well_individual) { updateAndCommunicate(episodeIdx, iterationIdx, deferred_logger); changed_well_group = true; } // update wsolvent fraction for REIN wells const Group& fieldGroup = schedule().getGroup("FIELD", episodeIdx); updateWsolvent(fieldGroup, episodeIdx, this->nupcolWellState()); return { changed_well_group, more_network_update }; } template void BlackoilWellModel:: updateWellControlsDomain(DeferredLogger& deferred_logger, const Domain& domain) { if ( !wellsActive() ) return ; // TODO: decide on and implement an approach to handling of // group controls, network and similar for domain solves. // Check only individual well constraints and communicate. for (const auto& well : well_container_) { if (well_domain_.at(well->name()) == domain.index) { const auto mode = WellInterface::IndividualOrGroup::Individual; well->updateWellControl(simulator_, mode, this->wellState(), this->groupState(), deferred_logger); } } } template void BlackoilWellModel:: initializeWBPCalculationService() { this->wbpCalcMap_.clear(); this->wbpCalcMap_.resize(this->wells_ecl_.size()); this->registerOpenWellsForWBPCalculation(); auto wellID = std::size_t{0}; for (const auto& well : this->wells_ecl_) { this->wbpCalcMap_[wellID].wbpCalcIdx_ = this->wbpCalculationService_ .createCalculator(well, this->local_parallel_well_info_[wellID], this->conn_idx_map_[wellID].local(), this->makeWellSourceEvaluatorFactory(wellID)); ++wellID; } this->wbpCalculationService_.defineCommunication(); } template data::WellBlockAveragePressures BlackoilWellModel:: computeWellBlockAveragePressures() const { auto wbpResult = data::WellBlockAveragePressures{}; using Calculated = PAvgCalculator::Result::WBPMode; using Output = data::WellBlockAvgPress::Quantity; this->wbpCalculationService_.collectDynamicValues(); const auto numWells = this->wells_ecl_.size(); for (auto wellID = 0*numWells; wellID < numWells; ++wellID) { const auto calcIdx = this->wbpCalcMap_[wellID].wbpCalcIdx_; const auto& well = this->wells_ecl_[wellID]; if (! well.hasRefDepth()) { // Can't perform depth correction without at least a // fall-back datum depth. continue; } this->wbpCalculationService_ .inferBlockAveragePressures(calcIdx, well.pavg(), this->gravity_, well.getWPaveRefDepth()); const auto& result = this->wbpCalculationService_ .averagePressures(calcIdx); auto& reported = wbpResult.values[well.name()]; reported[Output::WBP] = result.value(Calculated::WBP); reported[Output::WBP4] = result.value(Calculated::WBP4); reported[Output::WBP5] = result.value(Calculated::WBP5); reported[Output::WBP9] = result.value(Calculated::WBP9); } return wbpResult; } template ParallelWBPCalculation::EvaluatorFactory BlackoilWellModel:: makeWellSourceEvaluatorFactory(const std::vector::size_type wellIdx) const { using Span = PAvgDynamicSourceData::SourceDataSpan; using Item = typename Span::Item; return [wellIdx, this]() -> ParallelWBPCalculation::Evaluator { if (! this->wbpCalcMap_[wellIdx].openWellIdx_.has_value()) { // Well is stopped/shut. Return evaluator for stopped wells. return []([[maybe_unused]] const int connIdx, Span sourceTerm) { // Well/connection is stopped/shut. Set all items to // zero. sourceTerm .set(Item::Pressure , 0.0) .set(Item::PoreVol , 0.0) .set(Item::MixtureDensity, 0.0); }; } // Well is open. Return an evaluator for open wells/open connections. return [this, wellPtr = this->well_container_[*this->wbpCalcMap_[wellIdx].openWellIdx_].get()] (const int connIdx, Span sourceTerm) { // Note: The only item which actually matters for the WBP // calculation at the well reservoir connection level is the // mixture density. Set other items to zero. const auto& connIdxMap = this->conn_idx_map_[wellPtr->indexOfWell()]; const auto rho = wellPtr-> connectionDensity(connIdxMap.global(connIdx), connIdxMap.open(connIdx)); sourceTerm .set(Item::Pressure , 0.0) .set(Item::PoreVol , 0.0) .set(Item::MixtureDensity, rho); }; }; } template void BlackoilWellModel:: registerOpenWellsForWBPCalculation() { assert (this->wbpCalcMap_.size() == this->wells_ecl_.size()); for (auto& wbpCalc : this->wbpCalcMap_) { wbpCalc.openWellIdx_.reset(); } auto openWellIdx = typename std::vector::size_type{0}; for (const auto* openWell : this->well_container_generic_) { this->wbpCalcMap_[openWell->indexOfWell()].openWellIdx_ = openWellIdx++; } } template void BlackoilWellModel:: updateAndCommunicate(const int reportStepIdx, const int iterationIdx, DeferredLogger& deferred_logger) { updateAndCommunicateGroupData(reportStepIdx, iterationIdx); // updateWellStateWithTarget might throw for multisegment wells hence we // have a parallel try catch here to thrown on all processes. OPM_BEGIN_PARALLEL_TRY_CATCH() // if a well or group change control it affects all wells that are under the same group for (const auto& well : well_container_) { well->updateWellStateWithTarget(simulator_, this->groupState(), this->wellState(), deferred_logger); } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::updateAndCommunicate failed: ", simulator_.gridView().comm()) updateAndCommunicateGroupData(reportStepIdx, iterationIdx); } template bool BlackoilWellModel:: updateGroupControls(const Group& group, DeferredLogger& deferred_logger, const int reportStepIdx, const int iterationIdx) { bool changed = false; bool changed_hc = checkGroupHigherConstraints( group, deferred_logger, reportStepIdx); if (changed_hc) { changed = true; updateAndCommunicate(reportStepIdx, iterationIdx, deferred_logger); } bool changed_individual = BlackoilWellModelConstraints(*this). updateGroupIndividualControl(group, reportStepIdx, this->switched_inj_groups_, this->switched_prod_groups_, this->groupState(), this->wellState(), deferred_logger); if (changed_individual) { changed = true; updateAndCommunicate(reportStepIdx, iterationIdx, deferred_logger); } // call recursively down the group hierarchy for (const std::string& groupName : group.groups()) { bool changed_this = updateGroupControls( schedule().getGroup(groupName, reportStepIdx), deferred_logger, reportStepIdx,iterationIdx); changed = changed || changed_this; } return changed; } template void BlackoilWellModel:: updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const { DeferredLogger local_deferredLogger; for (const auto& well : well_container_) { const auto& wname = well->name(); const auto wasClosed = wellTestState.well_is_closed(wname); well->checkWellOperability(simulator_, this->wellState(), local_deferredLogger); well->updateWellTestState(this->wellState().well(wname), simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState, local_deferredLogger); if (!wasClosed && wellTestState.well_is_closed(wname)) { this->closed_this_step_.insert(wname); } } const Opm::Parallel::Communication comm = grid().comm(); DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm); if (terminal_output_) { global_deferredLogger.logMessages(); } } template void BlackoilWellModel::computePotentials(const std::size_t widx, const WellState& well_state_copy, std::string& exc_msg, ExceptionType::ExcEnum& exc_type, DeferredLogger& deferred_logger) { const int np = numPhases(); std::vector potentials; const auto& well = well_container_[widx]; std::string cur_exc_msg; auto cur_exc_type = ExceptionType::NONE; try { well->computeWellPotentials(simulator_, well_state_copy, potentials, deferred_logger); } // catch all possible exception and store type and message. OPM_PARALLEL_CATCH_CLAUSE(cur_exc_type, cur_exc_msg); if (cur_exc_type != ExceptionType::NONE) { exc_msg += fmt::format("\nFor well {}: {}", well->name(), cur_exc_msg); } exc_type = std::max(exc_type, cur_exc_type); // Store it in the well state // potentials is resized and set to zero in the beginning of well->ComputeWellPotentials // and updated only if sucessfull. i.e. the potentials are zero for exceptions auto& ws = this->wellState().well(well->indexOfWell()); for (int p = 0; p < np; ++p) { // make sure the potentials are positive ws.well_potentials[p] = std::max(0.0, potentials[p]); } } template void BlackoilWellModel:: calculateProductivityIndexValues(DeferredLogger& deferred_logger) { for (const auto& wellPtr : this->well_container_) { this->calculateProductivityIndexValues(wellPtr.get(), deferred_logger); } } template void BlackoilWellModel:: calculateProductivityIndexValuesShutWells(const int reportStepIdx, DeferredLogger& deferred_logger) { // For the purpose of computing PI/II values, it is sufficient to // construct StandardWell instances only. We don't need to form // well objects that honour the 'isMultisegment()' flag of the // corresponding "this->wells_ecl_[shutWell]". for (const auto& shutWell : this->local_shut_wells_) { if (!this->wells_ecl_[shutWell].hasConnections()) { // No connections in this well. Nothing to do. continue; } auto wellPtr = this->template createTypedWellPointer >(shutWell, reportStepIdx); wellPtr->init(&this->phase_usage_, this->depth_, this->gravity_, this->local_num_cells_, this->B_avg_, true); this->calculateProductivityIndexValues(wellPtr.get(), deferred_logger); } } template void BlackoilWellModel:: calculateProductivityIndexValues(const WellInterface* wellPtr, DeferredLogger& deferred_logger) { wellPtr->updateProductivityIndex(this->simulator_, this->prod_index_calc_[wellPtr->indexOfWell()], this->wellState(), deferred_logger); } template void BlackoilWellModel:: prepareTimeStep(DeferredLogger& deferred_logger) { // Check if there is a network with active prediction wells at this time step. const auto episodeIdx = simulator_.episodeIndex(); this->updateNetworkActiveState(episodeIdx); // Rebalance the network initially if any wells in the network have status changes // (Need to check this before clearing events) const bool do_prestep_network_rebalance = this->needPreStepNetworkRebalance(episodeIdx); for (const auto& well : well_container_) { auto& events = this->wellState().well(well->indexOfWell()).events; if (events.hasEvent(WellState::event_mask)) { well->updateWellStateWithTarget(simulator_, this->groupState(), this->wellState(), deferred_logger); const auto& summary_state = simulator_.vanguard().summaryState(); well->updatePrimaryVariables(summary_state, this->wellState(), deferred_logger); well->initPrimaryVariablesEvaluation(); // There is no new well control change input within a report step, // so next time step, the well does not consider to have effective events anymore. events.clearEvent(WellState::event_mask); } // these events only work for the first time step within the report step if (events.hasEvent(ScheduleEvents::REQUEST_OPEN_WELL)) { events.clearEvent(ScheduleEvents::REQUEST_OPEN_WELL); } // solve the well equation initially to improve the initial solution of the well model if (param_.solve_welleq_initially_ && well->isOperableAndSolvable()) { try { well->solveWellEquation(simulator_, this->wellState(), this->groupState(), deferred_logger); } catch (const std::exception& e) { const std::string msg = "Compute initial well solution for " + well->name() + " initially failed. Continue with the previous rates"; deferred_logger.warning("WELL_INITIAL_SOLVE_FAILED", msg); } } // If we're using local well solves that include control switches, they also update // operability, so reset before main iterations begin well->resetWellOperability(); } updatePrimaryVariables(deferred_logger); // Actually do the pre-step network rebalance, using the updated well states and initial solutions if (do_prestep_network_rebalance) doPreStepNetworkRebalance(deferred_logger); } template void BlackoilWellModel:: updateAverageFormationFactor() { std::vector< Scalar > B_avg(numComponents(), Scalar() ); const auto& grid = simulator_.vanguard().grid(); const auto& gridView = grid.leafGridView(); ElementContext elemCtx(simulator_); OPM_BEGIN_PARALLEL_TRY_CATCH(); for (const auto& elem : elements(gridView, Dune::Partitions::interior)) { elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); auto& B = B_avg[ compIdx ]; B += 1 / fs.invB(phaseIdx).value(); } if constexpr (has_solvent_) { auto& B = B_avg[solventSaturationIdx]; B += 1 / intQuants.solventInverseFormationVolumeFactor().value(); } } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::updateAverageFormationFactor() failed: ", grid.comm()) // compute global average grid.comm().sum(B_avg.data(), B_avg.size()); for (auto& bval : B_avg) { bval /= global_num_cells_; } B_avg_ = B_avg; } template void BlackoilWellModel:: updatePrimaryVariables(DeferredLogger& deferred_logger) { for (const auto& well : well_container_) { const auto& summary_state = simulator_.vanguard().summaryState(); well->updatePrimaryVariables(summary_state, this->wellState(), deferred_logger); } } template void BlackoilWellModel::extractLegacyCellPvtRegionIndex_() { const auto& grid = simulator_.vanguard().grid(); const auto& eclProblem = simulator_.problem(); const unsigned numCells = grid.size(/*codim=*/0); pvt_region_idx_.resize(numCells); for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) { pvt_region_idx_[cellIdx] = eclProblem.pvtRegionIndex(cellIdx); } } // The number of components in the model. template int BlackoilWellModel::numComponents() const { // The numComponents here does not reflect the actual number of the components in the system. // It more or less reflects the number of mass conservation equations for the well equations. // For example, in the current formulation, we do not have the polymer conservation equation // in the well equations. As a result, for an oil-water-polymer system, this function will return 2. // In some way, it makes this function appear to be confusing from its name, and we need // to revisit/revise this function again when extending the variants of system that flow can simulate. int numComp = numPhases() < 3? numPhases(): FluidSystem::numComponents; if constexpr (has_solvent_) { numComp++; } return numComp; } template void BlackoilWellModel::extractLegacyDepth_() { const auto& eclProblem = simulator_.problem(); depth_.resize(local_num_cells_); for (unsigned cellIdx = 0; cellIdx < local_num_cells_; ++cellIdx) { depth_[cellIdx] = eclProblem.dofCenterDepth(cellIdx); } } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: getWell(const std::string& well_name) const { // finding the iterator of the well in wells_ecl auto well = std::find_if(well_container_.begin(), well_container_.end(), [&well_name](const WellInterfacePtr& elem)->bool { return elem->name() == well_name; }); assert(well != well_container_.end()); return *well; } template bool BlackoilWellModel:: hasWell(const std::string& well_name) const { return std::any_of(well_container_.begin(), well_container_.end(), [&well_name](const WellInterfacePtr& elem) -> bool { return elem->name() == well_name; }); } template int BlackoilWellModel:: reportStepIndex() const { return std::max(this->simulator_.episodeIndex(), 0); } template void BlackoilWellModel:: calcRates(const int fipnum, const int pvtreg, const std::vector& production_rates, std::vector& resv_coeff) { rateConverter_->calcCoeff(fipnum, pvtreg, production_rates, resv_coeff); } template void BlackoilWellModel:: calcInjRates(const int fipnum, const int pvtreg, std::vector& resv_coeff) { rateConverter_->calcInjCoeff(fipnum, pvtreg, resv_coeff); } template void BlackoilWellModel:: computeWellTemperature() { if (!has_energy_) return; int np = numPhases(); double cellInternalEnergy; double cellBinv; double cellDensity; double perfPhaseRate; const int nw = numLocalWells(); for (auto wellID = 0*nw; wellID < nw; ++wellID) { const Well& well = wells_ecl_[wellID]; if (well.isInjector()) continue; std::array weighted{0.0,0.0}; auto& [weighted_temperature, total_weight] = weighted; auto& well_info = local_parallel_well_info_[wellID].get(); auto& ws = this->wellState().well(wellID); auto& perf_data = ws.perf_data; auto& perf_phase_rate = perf_data.phase_rates; using int_type = decltype(well_perf_data_[wellID].size()); for (int_type perf = 0, end_perf = well_perf_data_[wellID].size(); perf < end_perf; ++perf) { const int cell_idx = well_perf_data_[wellID][perf].cell_index; const auto& intQuants = simulator_.model().intensiveQuantities(cell_idx, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); // we on only have one temperature pr cell any phaseIdx will do double cellTemperatures = fs.temperature(/*phaseIdx*/0).value(); double weight_factor = 0.0; for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } cellInternalEnergy = fs.enthalpy(phaseIdx).value() - fs.pressure(phaseIdx).value() / fs.density(phaseIdx).value(); cellBinv = fs.invB(phaseIdx).value(); cellDensity = fs.density(phaseIdx).value(); perfPhaseRate = perf_phase_rate[ perf*np + phaseIdx ]; weight_factor += cellDensity * perfPhaseRate/cellBinv * cellInternalEnergy/cellTemperatures; } total_weight += weight_factor; weighted_temperature += weight_factor * cellTemperatures; } well_info.communication().sum(weighted.data(), 2); this->wellState().well(wellID).temperature = weighted_temperature/total_weight; } } template void BlackoilWellModel:: logPrimaryVars() const { std::ostringstream os; for (const auto& w : well_container_) { os << w->name() << ":"; auto pv = w->getPrimaryVars(); for (const double v : pv) { os << ' ' << v; } os << '\n'; } OpmLog::debug(os.str()); } template std::vector BlackoilWellModel:: getPrimaryVarsDomain(const Domain& domain) const { std::vector ret; for (const auto& well : well_container_) { if (well_domain_.at(well->name()) == domain.index) { const auto& pv = well->getPrimaryVars(); ret.insert(ret.end(), pv.begin(), pv.end()); } } return ret; } template void BlackoilWellModel:: setPrimaryVarsDomain(const Domain& domain, const std::vector& vars) { std::size_t offset = 0; for (auto& well : well_container_) { if (well_domain_.at(well->name()) == domain.index) { int num_pri_vars = well->setPrimaryVars(vars.begin() + offset); offset += num_pri_vars; } } assert(offset == vars.size()); } template void BlackoilWellModel:: setupDomains(const std::vector& domains) { OPM_BEGIN_PARALLEL_TRY_CATCH(); // TODO: This loop nest may be slow for very large numbers of // domains and wells, but that has not been observed on tests so // far. Using the partition vector instead would be faster if we // need to change. for (const auto& wellPtr : this->well_container_) { const int first_well_cell = wellPtr->cells().front(); for (const auto& domain : domains) { auto cell_present = [&domain](const auto cell) { return std::binary_search(domain.cells.begin(), domain.cells.end(), cell); }; if (cell_present(first_well_cell)) { // Assuming that if the first well cell is found in a domain, // then all of that well's cells are in that same domain. well_domain_[wellPtr->name()] = domain.index; // Verify that all of that well's cells are in that same domain. for (int well_cell : wellPtr->cells()) { if (! cell_present(well_cell)) { OPM_THROW(std::runtime_error, fmt::format("Well '{}' found on multiple domains.", wellPtr->name())); } } } } } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::setupDomains(): well found on multiple domains.", simulator_.gridView().comm()); // Write well/domain info to the DBG file. const Opm::Parallel::Communication& comm = grid().comm(); const int rank = comm.rank(); DeferredLogger local_log; if (!well_domain_.empty()) { std::ostringstream os; os << "Well name Rank Domain\n"; for (const auto& [wname, domain] : well_domain_) { os << wname << std::setw(19 - wname.size()) << rank << std::setw(12) << domain << '\n'; } local_log.debug(os.str()); } auto global_log = gatherDeferredLogger(local_log, comm); if (terminal_output_) { global_log.logMessages(); } } } // namespace Opm