/* Copyright 2015 SINTEF ICT, Applied Mathematics. Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 NTNU Copyright 2015 Statoil AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #if HAVE_UMFPACK #include #else #include #endif #include namespace Opm { typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; /// Construct a system solver. NewtonIterationBlackoilInterleaved::NewtonIterationBlackoilInterleaved(const parameter::ParameterGroup& param, const boost::any& parallelInformation_arg) : iterations_( 0 ), parallelInformation_(parallelInformation_arg), newton_use_gmres_( param.getDefault("newton_use_gmres", false ) ), linear_solver_reduction_( param.getDefault("linear_solver_reduction", 1e-2 ) ), linear_solver_maxiter_( param.getDefault("linear_solver_maxiter", 50 ) ), linear_solver_restart_( param.getDefault("linear_solver_restart", 40 ) ), linear_solver_verbosity_( param.getDefault("linear_solver_verbosity", 0 )) { } /// Solve the linear system Ax = b, with A being the /// combined derivative matrix of the residual and b /// being the residual itself. /// \param[in] residual residual object containing A and b. /// \return the solution x NewtonIterationBlackoilInterleaved::SolutionVector NewtonIterationBlackoilInterleaved::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const { // Build the vector of equations. const int np = residual.material_balance_eq.size(); std::vector eqs; eqs.reserve(np + 2); for (int phase = 0; phase < np; ++phase) { eqs.push_back(residual.material_balance_eq[phase]); } // check if wells are present const bool hasWells = residual.well_flux_eq.size() > 0 ; std::vector elim_eqs; if( hasWells ) { eqs.push_back(residual.well_flux_eq); eqs.push_back(residual.well_eq); // Eliminate the well-related unknowns, and corresponding equations. elim_eqs.reserve(2); elim_eqs.push_back(eqs[np]); eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns. elim_eqs.push_back(eqs[np]); eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns. assert(int(eqs.size()) == np); } // Scale material balance equations. for (int phase = 0; phase < np; ++phase) { eqs[phase] = eqs[phase] * residual.matbalscale[phase]; } // calculating the size for b int size_b = 0; for (int elem = 0; elem < np; ++elem) { const int loc_size = eqs[elem].size(); size_b += loc_size; } V b(size_b); int pos = 0; for (int elem = 0; elem < np; ++elem) { const int loc_size = eqs[elem].size(); b.segment(pos, loc_size) = eqs[elem].value(); pos += loc_size; } assert(pos == size_b); // Create ISTL matrix with interleaved rows and columns (block structured). Mat istlA; formInterleavedSystem(eqs, istlA); // Solve reduced system. SolutionVector dx(SolutionVector::Zero(b.size())); // Right hand side. const int size = istlA.N(); Vector istlb(size); for (int i = 0; i < size; ++i) { istlb[i][0] = b(i); istlb[i][1] = b(size + i); istlb[i][2] = b(2*size + i); } // System solution Vector x(istlA.M()); x = 0.0; Dune::InverseOperatorResult result; // Parallel version is deactivated until we figure out how to do it properly. #if HAVE_MPI if (parallelInformation_.type() == typeid(ParallelISTLInformation)) { typedef Dune::OwnerOverlapCopyCommunication Comm; const ParallelISTLInformation& info = boost::any_cast( parallelInformation_); Comm istlComm(info.communicator()); // As we use a dune-istl with block size np the number of components // per parallel is only one. info.copyValuesTo(istlComm.indexSet(), istlComm.remoteIndices(), size, 1); // Construct operator, scalar product and vectors needed. typedef Dune::OverlappingSchwarzOperator Operator; Operator opA(istlA, istlComm); constructPreconditionerAndSolve(opA, x, istlb, istlComm, result); } else #endif { // Construct operator, scalar product and vectors needed. typedef Dune::MatrixAdapter Operator; Operator opA(istlA); Dune::Amg::SequentialInformation info; constructPreconditionerAndSolve(opA, x, istlb, info, result); } // store number of iterations iterations_ = result.iterations; // Check for failure of linear solver. if (!result.converged) { OPM_THROW(LinearSolverProblem, "Convergence failure for linear solver."); } // Copy solver output to dx. for (int i = 0; i < size; ++i) { dx(i) = x[i][0]; dx(size + i) = x[i][1]; dx(2*size + i) = x[i][2]; } if ( hasWells ) { // Compute full solution using the eliminated equations. // Recovery in inverse order of elimination. dx = recoverVariable(elim_eqs[1], dx, np); dx = recoverVariable(elim_eqs[0], dx, np); } return dx; } namespace detail { /** * Simple binary operator that always returns 0.1 * It is used to get the sparsity pattern for our * interleaved system, and is marginally faster than using * operator+=. */ template struct PointOneOp { EIGEN_EMPTY_STRUCT_CTOR(PointOneOp) Scalar operator()(const Scalar& a, const Scalar& b) const { return 0.1; } }; } void NewtonIterationBlackoilInterleaved::formInterleavedSystem(const std::vector& eqs, Mat& istlA) const { const int np = eqs.size(); // Find sparsity structure as union of basic block sparsity structures, // corresponding to the jacobians with respect to pressure. // Use our custom PointOneOp to get to the union structure. // Note that we only iterate over the pressure derivatives on purpose. Eigen::SparseMatrix col_major = eqs[0].derivative()[0].getSparse(); detail::PointOneOp point_one; for (int phase = 1; phase < np; ++phase) { const AutoDiffMatrix::SparseRep& mat = eqs[phase].derivative()[0].getSparse(); col_major = col_major.binaryExpr(mat, point_one); } // Automatically convert the column major structure to a row-major structure Eigen::SparseMatrix row_major = col_major; const int size = row_major.rows(); assert(size == row_major.cols()); // Create ISTL matrix with interleaved rows and columns (block structured). assert(np == 3); istlA.setSize(row_major.rows(), row_major.cols(), row_major.nonZeros()); istlA.setBuildMode(Mat::row_wise); const int* ia = row_major.outerIndexPtr(); const int* ja = row_major.innerIndexPtr(); for (Mat::CreateIterator row = istlA.createbegin(); row != istlA.createend(); ++row) { const int ri = row.index(); for (int i = ia[ri]; i < ia[ri + 1]; ++i) { row.insert(ja[i]); } } // Set all blocks to zero. for (int row = 0; row < size; ++row) { for (int col_ix = ia[row]; col_ix < ia[row + 1]; ++col_ix) { const int col = ja[col_ix]; istlA[row][col] = 0.0; } } /** * Go through all jacobians, and insert in correct spot * * The straight forward way to do this would be to run through each * element in the output matrix, and set all block entries by gathering * from all "input matrices" (derivatives). * * A faster alternative is to instead run through each "input matrix" and * insert its elements in the correct spot in the output matrix. * */ for (int col = 0; col < size; ++col) { for (int p1 = 0; p1 < np; ++p1) { for (int p2 = 0; p2 < np; ++p2) { // Note that that since these are CSC and not CSR matrices, // ja contains row numbers instead of column numbers. const AutoDiffMatrix::SparseRep& s = eqs[p1].derivative()[p2].getSparse(); const int* ia = s.outerIndexPtr(); const int* ja = s.innerIndexPtr(); const double* sa = s.valuePtr(); for (int elem_ix = ia[col]; elem_ix < ia[col + 1]; ++elem_ix) { const int row = ja[elem_ix]; istlA[row][col][p1][p2] = sa[elem_ix]; } } } } } const boost::any& NewtonIterationBlackoilInterleaved::parallelInformation() const { return parallelInformation_; } } // namespace Opm