/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include namespace Opm { BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck, const UnstructuredGrid& grid, bool init_rock) { init(deck, grid.number_of_cells, grid.global_cell, grid.cartdims, grid.cell_centroids, grid.dimensions, init_rock); } BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(Opm::DeckConstPtr newParserDeck, const UnstructuredGrid& grid, bool init_rock) { init(newParserDeck, grid.number_of_cells, grid.global_cell, grid.cartdims, grid.cell_centroids, grid.dimensions, init_rock); } BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck, const UnstructuredGrid& grid, const parameter::ParameterGroup& param, bool init_rock) { init(deck, grid.number_of_cells, grid.global_cell, grid.cartdims, grid.cell_centroids, grid.dimensions, param, init_rock); } BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(Opm::DeckConstPtr newParserDeck, const UnstructuredGrid& grid, const parameter::ParameterGroup& param, bool init_rock) { init(newParserDeck, grid.number_of_cells, grid.global_cell, grid.cartdims, grid.cell_centroids, grid.dimensions, param, init_rock); } BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck() { } /// \return D, the number of spatial dimensions. int BlackoilPropertiesFromDeck::numDimensions() const { return rock_.numDimensions(); } /// \return N, the number of cells. int BlackoilPropertiesFromDeck::numCells() const { return rock_.numCells(); } /// \return Array of N porosity values. const double* BlackoilPropertiesFromDeck::porosity() const { return rock_.porosity(); } /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). const double* BlackoilPropertiesFromDeck::permeability() const { return rock_.permeability(); } // ---- Fluid interface ---- /// \return P, the number of phases (also the number of components). int BlackoilPropertiesFromDeck::numPhases() const { return pvt_.numPhases(); } /// \return Object describing the active phases. PhaseUsage BlackoilPropertiesFromDeck::phaseUsage() const { return pvt_.phaseUsage(); } /// \param[in] n Number of data points. /// \param[in] p Array of n pressure values. /// \param[in] z Array of nP surface volume values. /// \param[in] cells Array of n cell indices to be associated with the p and z values. /// \param[out] mu Array of nP viscosity values, array must be valid before calling. /// \param[out] dmudp If non-null: array of nP viscosity derivative values, /// array must be valid before calling. void BlackoilPropertiesFromDeck::viscosity(const int n, const double* p, const double* z, const int* /*cells*/, double* mu, double* dmudp) const { if (dmudp) { OPM_THROW(std::runtime_error, "BlackoilPropertiesFromDeck::viscosity() -- derivatives of viscosity not yet implemented."); } else { pvt_.mu(n, p, z, mu); } } /// \param[in] n Number of data points. /// \param[in] p Array of n pressure values. /// \param[in] z Array of nP surface volume values. /// \param[in] cells Array of n cell indices to be associated with the p and z values. /// \param[out] A Array of nP^2 values, array must be valid before calling. /// The P^2 values for a cell give the matrix A = RB^{-1} which /// relates z to u by z = Au. The matrices are output in Fortran order. /// \param[out] dAdp If non-null: array of nP^2 matrix derivative values, /// array must be valid before calling. The matrices are output /// in Fortran order. void BlackoilPropertiesFromDeck::matrix(const int n, const double* p, const double* z, const int* /*cells*/, double* A, double* dAdp) const { const int np = numPhases(); B_.resize(n*np); R_.resize(n*np); if (dAdp) { dB_.resize(n*np); dR_.resize(n*np); pvt_.dBdp(n, p, z, &B_[0], &dB_[0]); pvt_.dRdp(n, p, z, &R_[0], &dR_[0]); } else { pvt_.B(n, p, z, &B_[0]); pvt_.R(n, p, z, &R_[0]); } const int* phase_pos = pvt_.phasePosition(); bool oil_and_gas = pvt_.phaseUsed()[BlackoilPhases::Liquid] && pvt_.phaseUsed()[BlackoilPhases::Vapour]; const int o = phase_pos[BlackoilPhases::Liquid]; const int g = phase_pos[BlackoilPhases::Vapour]; // Compute A matrix // #pragma omp parallel for for (int i = 0; i < n; ++i) { double* m = A + i*np*np; std::fill(m, m + np*np, 0.0); // Diagonal entries. for (int phase = 0; phase < np; ++phase) { m[phase + phase*np] = 1.0/B_[i*np + phase]; } // Off-diagonal entries. if (oil_and_gas) { m[o + g*np] = R_[i*np + g]/B_[i*np + g]; m[g + o*np] = R_[i*np + o]/B_[i*np + o]; } } // Derivative of A matrix. // A = R*inv(B) whence // // dA/dp = (dR/dp*inv(B) + R*d(inv(B))/dp) // = (dR/dp*inv(B) - R*inv(B)*(dB/dp)*inv(B)) // = (dR/dp - A*(dB/dp)) * inv(B) // // The B matrix is diagonal and that fact is exploited in the // following implementation. if (dAdp) { // #pragma omp parallel for // (1): dA/dp <- A std::copy(A, A + n*np*np, dAdp); for (int i = 0; i < n; ++i) { double* m = dAdp + i*np*np; // (2): dA/dp <- -dA/dp*(dB/dp) == -A*(dB/dp) const double* dB = & dB_[i * np]; for (int col = 0; col < np; ++col) { for (int row = 0; row < np; ++row) { m[col*np + row] *= - dB[ col ]; // Note sign. } } if (oil_and_gas) { // (2b): dA/dp += dR/dp (== dR/dp - A*(dB/dp)) const double* dR = & dR_[i * np]; m[o*np + g] += dR[ o ]; m[g*np + o] += dR[ g ]; } // (3): dA/dp *= inv(B) (== final result) const double* B = & B_[i * np]; for (int col = 0; col < np; ++col) { for (int row = 0; row < np; ++row) { m[col*np + row] /= B[ col ]; } } } } } /// \param[in] n Number of data points. /// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the /// matrix A = RB^{-1} which relates z to u by z = Au. The matrices /// are assumed to be in Fortran order, and are typically the result /// of a call to the method matrix(). /// \param[out] rho Array of nP density values, array must be valid before calling. void BlackoilPropertiesFromDeck::density(const int n, const double* A, double* rho) const { const int np = numPhases(); const double* sdens = pvt_.surfaceDensities(); // #pragma omp parallel for for (int i = 0; i < n; ++i) { for (int phase = 0; phase < np; ++phase) { rho[np*i + phase] = 0.0; for (int comp = 0; comp < np; ++comp) { rho[np*i + phase] += A[i*np*np + np*phase + comp]*sdens[comp]; } } } } /// Densities of stock components at surface conditions. /// \return Array of P density values. const double* BlackoilPropertiesFromDeck::surfaceDensity() const { return pvt_.surfaceDensities(); } /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] kr Array of nP relperm values, array must be valid before calling. /// \param[out] dkrds If non-null: array of nP^2 relperm derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dkr_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m01 ...) void BlackoilPropertiesFromDeck::relperm(const int n, const double* s, const int* cells, double* kr, double* dkrds) const { satprops_->relperm(n, s, cells, kr, dkrds); } /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] pc Array of nP capillary pressure values, array must be valid before calling. /// \param[out] dpcds If non-null: array of nP^2 derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dpc_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m01 ...) void BlackoilPropertiesFromDeck::capPress(const int n, const double* s, const int* cells, double* pc, double* dpcds) const { satprops_->capPress(n, s, cells, pc, dpcds); } /// Obtain the range of allowable saturation values. /// In cell cells[i], saturation of phase p is allowed to be /// in the interval [smin[i*P + p], smax[i*P + p]]. /// \param[in] n Number of data points. /// \param[in] cells Array of n cell indices. /// \param[out] smin Array of nP minimum s values, array must be valid before calling. /// \param[out] smax Array of nP maximum s values, array must be valid before calling. void BlackoilPropertiesFromDeck::satRange(const int n, const int* cells, double* smin, double* smax) const { satprops_->satRange(n, cells, smin, smax); } } // namespace Opm