/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services.
Copyright 2015 NTNU.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED
#define OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef HAVE_DUNE_CORNERPOINT
#include
#include
#include
#endif
namespace Opm
{
class PvtInterface;
/// This class implements the AD-adapted fluid interface for
/// three-phase black-oil. It requires an input deck from which it
/// reads all relevant property data.
///
/// Most methods are available in two overloaded versions, one
/// taking a constant vector and returning the same, and one
/// taking an AD type and returning the same. Derivatives are not
/// returned separately by any method, only implicitly with the AD
/// version of the methods.
class BlackoilPropsAdFromDeck : public BlackoilPropsAdInterface
{
friend class BlackoilPropsDataHandle;
public:
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
const UnstructuredGrid& grid,
const bool init_rock = true );
#ifdef HAVE_DUNE_CORNERPOINT
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
const Dune::CpGrid& grid,
const bool init_rock = true );
#endif
/// \brief Constructor to create properties for a subgrid
///
/// This copies all properties that are not dependant on the
/// grid size from an existing properties object
/// and the number of cells. All properties that do not depend
/// on the grid dimension will be copied. For the rest will have
/// the correct size but the values will be undefined.
///
/// \param props The property object to copy from.
/// \paramm number_of_cells The number of cells of the subgrid.
BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck& props,
const int number_of_cells);
////////////////////////////
// Rock interface //
////////////////////////////
/// \return D, the number of spatial dimensions.
int numDimensions() const;
/// \return N, the number of cells.
int numCells() const;
/// Return an array containing the PVT table index for each
/// grid cell
virtual const int* cellPvtRegionIndex() const
{ return &cellPvtRegionIdx_[0]; }
/// \return Array of N porosity values.
const double* porosity() const;
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* permeability() const;
////////////////////////////
// Fluid interface //
////////////////////////////
typedef AutoDiffBlock ADB;
typedef ADB::V V;
typedef std::vector Cells;
/// \return Number of active phases (also the number of components).
int numPhases() const;
/// \return Object describing the active phases.
PhaseUsage phaseUsage() const;
// ------ Density ------
/// Densities of stock components at surface conditions.
/// \return Array of 3 density values.
const double* surfaceDensity(const int cellIdx = 0) const;
// ------ Viscosity ------
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muWat(const ADB& pw,
const ADB& T,
const Cells& cells) const;
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muOil(const ADB& po,
const ADB& T,
const ADB& rs,
const std::vector& cond,
const Cells& cells) const;
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rv Array of n vapor oil/gas ratios.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB muGas(const ADB& pg,
const ADB& T,
const ADB& rv,
const std::vector& cond,
const Cells& cells) const;
// ------ Formation volume factor (b) ------
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bWat(const ADB& pw,
const ADB& T,
const Cells& cells) const;
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bOil(const ADB& po,
const ADB& T,
const ADB& rs,
const std::vector& cond,
const Cells& cells) const;
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rv Array of n vapor oil/gas ratio
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB bGas(const ADB& pg,
const ADB& T,
const ADB& rv,
const std::vector& cond,
const Cells& cells) const;
// ------ Rs bubble point curve ------
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
V rsSat(const V& po,
const Cells& cells) const;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
V rsSat(const V& po,
const V& so,
const Cells& cells) const;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB rsSat(const ADB& po,
const Cells& cells) const;
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB rsSat(const ADB& po,
const ADB& so,
const Cells& cells) const;
// ------ Rv condensation curve ------
/// Condensation curve for Rv as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n condensation point values for Rv.
ADB rvSat(const ADB& po,
const Cells& cells) const;
/// Condensation curve for Rv as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n condensation point values for Rv.
ADB rvSat(const ADB& po,
const ADB& so,
const Cells& cells) const;
// ------ Relative permeability ------
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector relperm(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const;
/// Capillary pressure for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n capillary pressure values,
/// containing the offsets for each p_g, p_o, p_w. The capillary pressure between
/// two arbitrary phases alpha and beta is then given as p_alpha - p_beta.
std::vector capPress(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const;
/// Saturation update for hysteresis behavior.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
void updateSatHyst(const std::vector& saturation,
const std::vector& cells);
/// Update for max oil saturation.
void updateSatOilMax(const std::vector& saturation);
/// Set capillary pressure scaling according to pressure diff. and initial water saturation.
/// \param[in] saturation Array of n*numPhases saturation values.
/// \param[in] pc Array of n*numPhases capillary pressure values.
void setSwatInitScaling(const std::vector& saturation,
const std::vector& pc);
private:
/// Initializes the properties.
template
void init(Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclState,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const CentroidIterator& begin_cell_centroids,
int dimension,
const bool init_rock);
/// Correction to rs/rv according to kw VAPPARS
void applyVap(V& r,
const V& so,
const std::vector& cells,
const double vap) const;
void applyVap(ADB& r,
const ADB& so,
const std::vector& cells,
const double vap) const;
// Fills pvt_region_ with cellPvtRegionIdx_[cells].
void mapPvtRegions(const std::vector& cells) const;
RockFromDeck rock_;
// This has to be a shared pointer as we must
// be able to make a copy of *this in the parallel case.
std::shared_ptr satprops_;
PhaseUsage phase_usage_;
// bool has_vapoil_;
// bool has_disgas_;
// The PVT region which is to be used for each cell
std::vector cellPvtRegionIdx_;
// Used for storing the region-per-cell array computed in calls
// to pvt functions.
mutable std::vector pvt_region_;
// The PVT properties. One object per active fluid phase.
std::vector > props_;
// Densities, one std::array per PVT region.
std::vector > densities_;
// VAPPARS
double vap1_;
double vap2_;
std::vector satOilMax_;
double vap_satmax_guard_; //Threshold value to promote stability
};
} // namespace Opm
#endif // OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED