/* Copyright 2016 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_FLOWMAINSEQUENTIAL_HEADER_INCLUDED #define OPM_FLOWMAINSEQUENTIAL_HEADER_INCLUDED #include namespace Opm { // The FlowMainSequential class is for a black-oil simulator using the sequential models. template class FlowMainSequential : public FlowMainBase, Grid, Simulator> { protected: using Base = FlowMainBase, Grid, Simulator>; using Base::eclipse_state_; using Base::schedule_; using Base::summary_config_; using Base::param_; using Base::fis_solver_; using Base::parallel_information_; friend Base; // ------------ Methods ------------ // Print startup message if on output rank. void printStartupMessage() { if (Base::output_cout_) { const std::string version = moduleVersionName(); std::cout << "**********************************************************************\n"; std::cout << "* *\n"; std::cout << "* This is Flow-Sequential (version " << version << ")" << std::string(17 - version.size(), ' ') << "*\n"; std::cout << "* *\n"; std::cout << "* Flow-Sequential is a simulator for fully implicit three-phase, *\n"; std::cout << "* black-oil flow, and is part of OPM. *\n"; std::cout << "* For more information see https://opm-project.org *\n"; std::cout << "* *\n"; std::cout << "**********************************************************************\n\n"; } } // Setup linear solver. // Writes to: // fis_solver_ // param_ (conditionally) // The CPR solver cannot be used with the sequential model. // Also, the interleaved solver requires the full sparsity pattern option. void setupLinearSolver() { const std::string cprSolver = "cpr"; const std::string interleavedSolver = "interleaved"; const std::string directSolver = "direct"; std::string flowDefaultSolver = interleavedSolver; if (!param_.has("solver_approach")) { if (eclipse_state_->getSimulationConfig().useCPR()) { flowDefaultSolver = cprSolver; } } const std::string solver_approach = param_.getDefault("solver_approach", flowDefaultSolver); if (solver_approach == cprSolver) { OPM_THROW( std::runtime_error , "CPR solver is not ready for use with sequential simulator."); } else if (solver_approach == interleavedSolver) { if (!param_.has("require_full_sparsity_pattern")) { param_.insertParameter("require_full_sparsity_pattern", "true"); } fis_solver_.reset(new NewtonIterationBlackoilInterleaved(param_, parallel_information_)); } else if (solver_approach == directSolver) { fis_solver_.reset(new NewtonIterationBlackoilSimple(param_, parallel_information_)); } else { OPM_THROW( std::runtime_error , "Internal error - solver approach " << solver_approach << " not recognized."); } } // Create simulator instance. // Writes to: // simulator_ void createSimulator() { // We must override the min_iter argument unless it was already supplied, to avoid requiring iteration. if (!param_.has("min_iter")) { param_.insertParameter("min_iter", "0"); } // Create the simulator instance. Base::simulator_.reset(new Simulator(Base::param_, Base::grid_init_->grid(), *Base::geoprops_, *Base::fluidprops_, Base::rock_comp_->isActive() ? Base::rock_comp_.get() : nullptr, *Base::fis_solver_, Base::gravity_.data(), Base::deck_->hasKeyword("DISGAS"), Base::deck_->hasKeyword("VAPOIL"), Base::eclipse_state_, Base::schedule_, Base::summary_config_, *Base::output_writer_, Base::threshold_pressures_)); } }; } // namespace Opm #endif // OPM_FLOWMAINSEQUENTIAL_HEADER_INCLUDED