/*
Copyright 2015, 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
namespace Opm
{
std::array connectionMultiPhaseUpwind(const std::array& head_diff,
const std::array& mob1,
const std::array& mob2,
const double transmissibility,
const double flux)
{
// Based on the paper "Upstream Differencing for Multiphase Flow in Reservoir Simulation",
// by Yann Brenier and Jérôme Jaffré,
// SIAM J. Numer. Anal., 28(3), 685–696.
// DOI:10.1137/0728036
//
// Notation is based on this paper, except q -> flux, t -> transmissibility.
enum { NumPhases = 3 }; // TODO: remove this restriction.
// Get and sort the g values (also called "weights" in the paper) for this connection.
using ValueAndIndex = std::pair;
std::array g;
for (int phase_idx = 0; phase_idx < NumPhases; ++phase_idx) {
g[phase_idx] = ValueAndIndex(head_diff[phase_idx], phase_idx);
}
std::sort(g.begin(), g.end());
// Compute theta and r.
// Paper notation: subscript l -> ell (for read/searchability)
// Note that since we index phases from 0, r is one less than in the paper.
std::array theta;
int r = -1;
for (int ell = 0; ell < NumPhases; ++ell) {
theta[ell] = flux;
for (int j = 0; j < NumPhases; ++j) {
if (j < ell) {
theta[ell] += transmissibility * (g[ell].first - g[j].first) * mob2[g[j].second];
}
if (j > ell) {
theta[ell] += transmissibility * (g[ell].first - g[j].first) * mob1[g[j].second];
}
}
if (theta[ell] <= 0.0) {
r = ell;
} else {
break; // r is correct, no need to continue
}
}
// Set upwind array and return.
std::array upwind;
for (int ell = 0; ell < NumPhases; ++ell) {
const int phase_idx = g[ell].second;
upwind[phase_idx] = ell > r ? 1.0 : -1.0;
}
return upwind;
}
} // namespace Opm