/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include "config.h"
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
const UnstructuredGrid& grid,
bool init_rock)
{
std::vector compressedToCartesianIdx
= compressedToCartesian(grid.number_of_cells, grid.global_cell);
auto materialLawManager = std::make_shared();
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims,
init_rock);
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
const UnstructuredGrid& grid,
const ParameterGroup& param,
bool init_rock)
{
std::vector compressedToCartesianIdx
= compressedToCartesian(grid.number_of_cells, grid.global_cell);
auto materialLawManager = std::make_shared();
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims, param, init_rock);
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
bool init_rock)
{
std::vector compressedToCartesianIdx
= compressedToCartesian(number_of_cells, global_cell);
auto materialLawManager = std::make_shared();
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
init(deck, eclState, materialLawManager, number_of_cells, global_cell, cart_dims,
init_rock);
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const ParameterGroup& param,
bool init_rock)
{
std::vector compressedToCartesianIdx
= compressedToCartesian(number_of_cells, global_cell);
auto materialLawManager = std::make_shared();
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
init(deck,
eclState,
materialLawManager,
number_of_cells,
global_cell,
cart_dims,
param,
init_rock);
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
std::shared_ptr materialLawManager,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const ParameterGroup& param,
bool init_rock)
{
init(deck,
eclState,
materialLawManager,
number_of_cells,
global_cell,
cart_dims,
param,
init_rock);
}
inline void BlackoilPropertiesFromDeck::init(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
std::shared_ptr materialLawManager,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
bool init_rock)
{
// retrieve the cell specific PVT table index from the deck
// and using the grid...
extractPvtTableIndex(cellPvtRegionIdx_, eclState, number_of_cells, global_cell);
if (init_rock){
rock_.init(eclState, number_of_cells, global_cell, cart_dims);
}
phaseUsage_ = phaseUsageFromDeck(deck);
initSurfaceDensities_(deck);
oilPvt_.initFromDeck(deck, eclState);
gasPvt_.initFromDeck(deck, eclState);
waterPvt_.initFromDeck(deck, eclState);
SaturationPropsFromDeck* ptr
= new SaturationPropsFromDeck();
ptr->init(phaseUsageFromDeck(deck), materialLawManager);
satprops_.reset(ptr);
}
inline void BlackoilPropertiesFromDeck::init(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
std::shared_ptr materialLawManager,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const ParameterGroup& param,
bool init_rock)
{
// retrieve the cell specific PVT table index from the deck
// and using the grid...
extractPvtTableIndex(cellPvtRegionIdx_, eclState, number_of_cells, global_cell);
if(init_rock){
rock_.init(eclState, number_of_cells, global_cell, cart_dims);
}
phaseUsage_ = phaseUsageFromDeck(deck);
initSurfaceDensities_(deck);
oilPvt_.initFromDeck(deck, eclState);
gasPvt_.initFromDeck(deck, eclState);
waterPvt_.initFromDeck(deck, eclState);
// Unfortunate lack of pointer smartness here...
std::string threephase_model = param.getDefault("threephase_model", "gwseg");
if (deck.hasKeyword("ENDSCALE") && threephase_model != "gwseg") {
OPM_THROW(std::runtime_error, "Sorry, end point scaling currently available for the 'gwseg' model only.");
}
SaturationPropsFromDeck* ptr
= new SaturationPropsFromDeck();
ptr->init(phaseUsageFromDeck(deck), materialLawManager);
satprops_.reset(ptr);
}
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
{
}
/// \return D, the number of spatial dimensions.
int BlackoilPropertiesFromDeck::numDimensions() const
{
return rock_.numDimensions();
}
/// \return N, the number of cells.
int BlackoilPropertiesFromDeck::numCells() const
{
return rock_.numCells();
}
/// \return Array of N porosity values.
const double* BlackoilPropertiesFromDeck::porosity() const
{
return rock_.porosity();
}
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* BlackoilPropertiesFromDeck::permeability() const
{
return rock_.permeability();
}
// ---- Fluid interface ----
/// \return P, the number of phases (also the number of components).
int BlackoilPropertiesFromDeck::numPhases() const
{
return phaseUsage_.num_phases;
}
/// \return Object describing the active phases.
PhaseUsage BlackoilPropertiesFromDeck::phaseUsage() const
{
return phaseUsage_;
}
/// \param[in] n Number of data points.
/// \param[in] p Array of n pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] z Array of nP surface volume values.
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
/// \param[out] mu Array of nP viscosity values, array must be valid before calling.
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
/// array must be valid before calling.
void BlackoilPropertiesFromDeck::viscosity(const int n,
const double* p,
const double* T,
const double* z,
const int* cells,
double* mu,
double* dmudp) const
{
const auto& pu = phaseUsage();
const int np = numPhases();
typedef Opm::DenseAd::Evaluation Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
Eval RsEval = 0.0;
Eval RvEval = 0.0;
Eval muEval = 0.0;
pEval.setDerivative(0, 1.0);
R_.resize(n*np);
this->compute_R_(n, p, T, z, cells, &R_[0]);
for (int i = 0; i < n; ++ i) {
int cellIdx = cells[i];
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
pEval.setValue(p[i]);
TEval.setValue(T[i]);
if (pu.phase_used[BlackoilPhases::Aqua]) {
muEval = waterPvt_.viscosity(pvtRegionIdx, TEval, pEval);
int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Aqua];
mu[offset] = muEval.value();
dmudp[offset] = muEval.derivative(0);
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
RsEval.setValue(R_[i*np + pu.phase_pos[BlackoilPhases::Liquid]]);
muEval = oilPvt_.viscosity(pvtRegionIdx, TEval, pEval, RsEval);
int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Liquid];
mu[offset] = muEval.value();
dmudp[offset] = muEval.derivative(0);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
RvEval.setValue(R_[i*np + pu.phase_pos[BlackoilPhases::Vapour]]);
muEval = gasPvt_.viscosity(pvtRegionIdx, TEval, pEval, RvEval);
int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Vapour];
mu[offset] = muEval.value();
dmudp[offset] = muEval.derivative(0);
}
}
}
/// \param[in] n Number of data points.
/// \param[in] p Array of n pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] z Array of nP surface volume values.
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
/// \param[out] A Array of nP^2 values, array must be valid before calling.
/// The P^2 values for a cell give the matrix A = RB^{-1} which
/// relates z to u by z = Au. The matrices are output in Fortran order.
/// \param[out] dAdp If non-null: array of nP^2 matrix derivative values,
/// array must be valid before calling. The matrices are output
/// in Fortran order.
void BlackoilPropertiesFromDeck::matrix(const int n,
const double* p,
const double* T,
const double* z,
const int* cells,
double* A,
double* dAdp) const
{
const int np = numPhases();
B_.resize(n*np);
R_.resize(n*np);
if (dAdp) {
dB_.resize(n*np);
dR_.resize(n*np);
this->compute_dBdp_(n, p, T, z, cells, &B_[0], &dB_[0]);
this->compute_dRdp_(n, p, T, z, cells, &R_[0], &dR_[0]);
} else {
this->compute_B_(n, p, T, z, cells, &B_[0]);
this->compute_R_(n, p, T, z, cells, &R_[0]);
}
const auto& pu = phaseUsage();
bool oil_and_gas = pu.phase_used[BlackoilPhases::Liquid] &&
pu.phase_used[BlackoilPhases::Vapour];
const int o = pu.phase_pos[BlackoilPhases::Liquid];
const int g = pu.phase_pos[BlackoilPhases::Vapour];
// Compute A matrix
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
double* m = A + i*np*np;
std::fill(m, m + np*np, 0.0);
// Diagonal entries.
for (int phase = 0; phase < np; ++phase) {
m[phase + phase*np] = 1.0/B_[i*np + phase];
}
// Off-diagonal entries.
if (oil_and_gas) {
m[o + g*np] = R_[i*np + g]/B_[i*np + g];
m[g + o*np] = R_[i*np + o]/B_[i*np + o];
}
}
// Derivative of A matrix.
// A = R*inv(B) whence
//
// dA/dp = (dR/dp*inv(B) + R*d(inv(B))/dp)
// = (dR/dp*inv(B) - R*inv(B)*(dB/dp)*inv(B))
// = (dR/dp - A*(dB/dp)) * inv(B)
//
// The B matrix is diagonal and that fact is exploited in the
// following implementation.
if (dAdp) {
// #pragma omp parallel for
// (1): dA/dp <- A
std::copy(A, A + n*np*np, dAdp);
for (int i = 0; i < n; ++i) {
double* m = dAdp + i*np*np;
// (2): dA/dp <- -dA/dp*(dB/dp) == -A*(dB/dp)
const double* dB = & dB_[i * np];
for (int col = 0; col < np; ++col) {
for (int row = 0; row < np; ++row) {
m[col*np + row] *= - dB[ col ]; // Note sign.
}
}
if (oil_and_gas) {
// (2b): dA/dp += dR/dp (== dR/dp - A*(dB/dp))
const double* dR = & dR_[i * np];
m[o*np + g] += dR[ o ];
m[g*np + o] += dR[ g ];
}
// (3): dA/dp *= inv(B) (== final result)
const double* B = & B_[i * np];
for (int col = 0; col < np; ++col) {
for (int row = 0; row < np; ++row) {
m[col*np + row] /= B[ col ];
}
}
}
}
}
void BlackoilPropertiesFromDeck::compute_B_(const int n,
const double* p,
const double* T,
const double* z,
const int* cells,
double* B) const
{
const auto& pu = phaseUsage();
typedef double Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
Eval RsEval = 0.0;
Eval RvEval = 0.0;
for (int i = 0; i < n; ++ i) {
int cellIdx = cells[i];
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
pEval = p[i];
TEval = T[i];
int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid];
int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour];
int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua];
if (pu.phase_used[BlackoilPhases::Aqua]) {
Eval BEval = 1.0/waterPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
B[waterOffset] = BEval;
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
double currentRs = 0.0;
double maxRs = 0.0;
if (pu.phase_used[BlackoilPhases::Vapour]) {
currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset];
maxRs = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval);
}
Eval BEval;
if (currentRs >= maxRs) {
BEval = 1.0/oilPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
}
else {
RsEval = currentRs;
BEval = 1.0/oilPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RsEval);
}
B[oilOffset] = BEval;
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
double currentRv = 0.0;
double maxRv = 0.0;
if (pu.phase_used[BlackoilPhases::Liquid]) {
currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset];
maxRv = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval);
}
Eval BEval;
if (currentRv >= maxRv) {
BEval = 1.0/gasPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
}
else {
RvEval = currentRv;
BEval = 1.0/gasPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RvEval);
}
B[gasOffset] = BEval;
}
}
}
void BlackoilPropertiesFromDeck::compute_dBdp_(const int n,
const double* p,
const double* T,
const double* z,
const int* cells,
double* B,
double* dBdp) const
{
const auto& pu = phaseUsage();
typedef Opm::DenseAd::Evaluation Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
Eval RsEval = 0.0;
Eval RvEval = 0.0;
pEval.setDerivative(0, 1.0);
for (int i = 0; i < n; ++ i) {
int cellIdx = cells[i];
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
pEval.setValue(p[i]);
TEval.setValue(T[i]);
int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid];
int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour];
int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua];
if (pu.phase_used[BlackoilPhases::Aqua]) {
Eval BEval = 1.0/waterPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
B[waterOffset] = BEval.value();
dBdp[waterOffset] = BEval.derivative(0);
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
double currentRs = 0.0;
double maxRs = 0.0;
if (pu.phase_used[BlackoilPhases::Vapour]) {
currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset];
maxRs = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval.value(), pEval.value());
}
Eval BEval;
if (currentRs >= maxRs) {
BEval = 1.0/oilPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
}
else {
RsEval.setValue(currentRs);
BEval = 1.0/oilPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RsEval);
}
B[oilOffset] = BEval.value();
dBdp[oilOffset] = BEval.derivative(0);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
double currentRv = 0.0;
double maxRv = 0.0;
if (pu.phase_used[BlackoilPhases::Liquid]) {
currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset];
maxRv = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval.value(), pEval.value());
}
Eval BEval;
if (currentRv >= maxRv) {
BEval = 1.0/gasPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
}
else {
RvEval.setValue(currentRv);
BEval = 1.0/gasPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RvEval);
}
B[gasOffset] = BEval.value();
dBdp[gasOffset] = BEval.derivative(0);
}
}
}
void BlackoilPropertiesFromDeck::compute_R_(const int n,
const double* p,
const double* T,
const double* z,
const int* cells,
double* R) const
{
const auto& pu = phaseUsage();
typedef double Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
for (int i = 0; i < n; ++ i) {
int cellIdx = cells[i];
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
pEval = p[i];
TEval = T[i];
int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid];
int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour];
int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua];
if (pu.phase_used[BlackoilPhases::Aqua]) {
R[waterOffset] = 0.0; // water is always immiscible!
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
Eval RsSatEval = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval);
double currentRs = 0.0;
if (pu.phase_used[BlackoilPhases::Vapour]) {
currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset];
}
RsSatEval = std::min(RsSatEval, currentRs);
R[oilOffset] = RsSatEval;
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
Eval RvSatEval = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval);
double currentRv = 0.0;
if (pu.phase_used[BlackoilPhases::Liquid]) {
currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset];
}
RvSatEval = std::min(RvSatEval, currentRv);
R[gasOffset] = RvSatEval;
}
}
}
void BlackoilPropertiesFromDeck::compute_dRdp_(const int n,
const double* p,
const double* T,
const double* z,
const int* cells,
double* R,
double* dRdp) const
{
const auto& pu = phaseUsage();
typedef Opm::DenseAd::Evaluation Eval;
typedef Opm::MathToolbox Toolbox;
Eval pEval = 0.0;
Eval TEval = 0.0;
pEval.setDerivative(0, 1.0);
for (int i = 0; i < n; ++ i) {
int cellIdx = cells[i];
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
pEval.setValue(p[i]);
TEval.setValue(T[i]);
int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid];
int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour];
int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua];
if (pu.phase_used[BlackoilPhases::Aqua]) {
R[waterOffset] = 0.0; // water is always immiscible!
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
Eval RsSatEval = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval);
Eval currentRs = 0.0;
if (pu.phase_used[BlackoilPhases::Vapour]) {
currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset];
}
RsSatEval = Toolbox::min(RsSatEval, currentRs);
R[oilOffset] = RsSatEval.value();
dRdp[oilOffset] = RsSatEval.derivative(0);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
Eval RvSatEval = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval);
Eval currentRv = 0.0;
if (pu.phase_used[BlackoilPhases::Liquid]) {
currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset];
}
RvSatEval = Toolbox::min(RvSatEval, currentRv);
R[gasOffset] = RvSatEval.value();
dRdp[gasOffset] = RvSatEval.derivative(0);
}
}
}
/// \param[in] n Number of data points.
/// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the
/// matrix A = RB^{-1} which relates z to u by z = Au. The matrices
/// are assumed to be in Fortran order, and are typically the result
/// of a call to the method matrix().
/// \param[in] cells The index of the grid cell of each data point.
/// \param[out] rho Array of nP density values, array must be valid before calling.
void BlackoilPropertiesFromDeck::density(const int n,
const double* A,
const int* cells,
double* rho) const
{
const int np = numPhases();
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
int cellIdx = cells?cells[i]:i;
const double *sdens = surfaceDensity(cellIdx);
for (int phase = 0; phase < np; ++phase) {
rho[np*i + phase] = 0.0;
for (int comp = 0; comp < np; ++comp) {
rho[np*i + phase] += A[i*np*np + np*phase + comp]*sdens[comp];
}
}
}
}
/// Densities of stock components at surface conditions.
/// \return Array of P density values.
const double* BlackoilPropertiesFromDeck::surfaceDensity(int cellIdx) const
{
const auto& pu = phaseUsage();
int pvtRegionIdx = getTableIndex_(cellPvtRegionIndex(), cellIdx);
return &surfaceDensities_[pvtRegionIdx*pu.num_phases];
}
void BlackoilPropertiesFromDeck::initSurfaceDensities_(const Opm::Deck& deck)
{
const auto& pu = phaseUsage();
int np = pu.num_phases;
int numPvtRegions = 1;
if (deck.hasKeyword("TABDIMS")) {
const auto& tabdimsKeyword = deck.getKeyword("TABDIMS");
numPvtRegions = tabdimsKeyword.getRecord(0).getItem("NTPVT").template get(0);
}
const auto& densityKeyword = deck.getKeyword("DENSITY");
surfaceDensities_.resize(np*numPvtRegions);
for (int pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++pvtRegionIdx) {
if (pu.phase_used[BlackoilPhases::Aqua])
surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Aqua]] =
densityKeyword.getRecord(pvtRegionIdx).getItem("WATER").getSIDouble(0);
if (pu.phase_used[BlackoilPhases::Liquid])
surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Liquid]] =
densityKeyword.getRecord(pvtRegionIdx).getItem("OIL").getSIDouble(0);
if (pu.phase_used[BlackoilPhases::Vapour])
surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Vapour]] =
densityKeyword.getRecord(pvtRegionIdx).getItem("GAS").getSIDouble(0);
}
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesFromDeck::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
satprops_->relperm(n, s, cells, kr, dkrds);
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesFromDeck::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
satprops_->capPress(n, s, cells, pc, dpcds);
}
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void BlackoilPropertiesFromDeck::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
{
satprops_->satRange(n, cells, smin, smax);
}
/// Update capillary pressure scaling according to pressure diff. and initial water saturation.
/// \param[in] cell Cell index.
/// \param[in] pcow P_oil - P_water.
/// \param[in/out] swat Water saturation. / Possibly modified Water saturation.
void BlackoilPropertiesFromDeck::swatInitScaling(const int cell,
const double pcow,
double & swat)
{
satprops_->swatInitScaling(cell, pcow, swat);
}
} // namespace Opm