/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include #include #include #include #include namespace Opm { BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, const UnstructuredGrid& grid, bool init_rock) { std::vector compressedToCartesianIdx = compressedToCartesian(grid.number_of_cells, grid.global_cell); auto materialLawManager = std::make_shared(); materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx); init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims, init_rock); } BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, const UnstructuredGrid& grid, const ParameterGroup& param, bool init_rock) { std::vector compressedToCartesianIdx = compressedToCartesian(grid.number_of_cells, grid.global_cell); auto materialLawManager = std::make_shared(); materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx); init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims, param, init_rock); } BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, int number_of_cells, const int* global_cell, const int* cart_dims, bool init_rock) { std::vector compressedToCartesianIdx = compressedToCartesian(number_of_cells, global_cell); auto materialLawManager = std::make_shared(); materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx); init(deck, eclState, materialLawManager, number_of_cells, global_cell, cart_dims, init_rock); } BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, int number_of_cells, const int* global_cell, const int* cart_dims, const ParameterGroup& param, bool init_rock) { std::vector compressedToCartesianIdx = compressedToCartesian(number_of_cells, global_cell); auto materialLawManager = std::make_shared(); materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx); init(deck, eclState, materialLawManager, number_of_cells, global_cell, cart_dims, param, init_rock); } BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, int number_of_cells, const int* global_cell, const int* cart_dims, const ParameterGroup& param, bool init_rock) { init(deck, eclState, materialLawManager, number_of_cells, global_cell, cart_dims, param, init_rock); } inline void BlackoilPropertiesFromDeck::init(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, int number_of_cells, const int* global_cell, const int* cart_dims, bool init_rock) { // retrieve the cell specific PVT table index from the deck // and using the grid... extractPvtTableIndex(cellPvtRegionIdx_, eclState, number_of_cells, global_cell); if (init_rock){ rock_.init(eclState, number_of_cells, global_cell, cart_dims); } phaseUsage_ = phaseUsageFromDeck(deck); initSurfaceDensities_(deck); oilPvt_.initFromDeck(deck, eclState); gasPvt_.initFromDeck(deck, eclState); waterPvt_.initFromDeck(deck, eclState); SaturationPropsFromDeck* ptr = new SaturationPropsFromDeck(); ptr->init(phaseUsageFromDeck(deck), materialLawManager); satprops_.reset(ptr); } inline void BlackoilPropertiesFromDeck::init(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, int number_of_cells, const int* global_cell, const int* cart_dims, const ParameterGroup& param, bool init_rock) { // retrieve the cell specific PVT table index from the deck // and using the grid... extractPvtTableIndex(cellPvtRegionIdx_, eclState, number_of_cells, global_cell); if(init_rock){ rock_.init(eclState, number_of_cells, global_cell, cart_dims); } phaseUsage_ = phaseUsageFromDeck(deck); initSurfaceDensities_(deck); oilPvt_.initFromDeck(deck, eclState); gasPvt_.initFromDeck(deck, eclState); waterPvt_.initFromDeck(deck, eclState); // Unfortunate lack of pointer smartness here... std::string threephase_model = param.getDefault("threephase_model", "gwseg"); if (deck.hasKeyword("ENDSCALE") && threephase_model != "gwseg") { OPM_THROW(std::runtime_error, "Sorry, end point scaling currently available for the 'gwseg' model only."); } SaturationPropsFromDeck* ptr = new SaturationPropsFromDeck(); ptr->init(phaseUsageFromDeck(deck), materialLawManager); satprops_.reset(ptr); } BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck() { } /// \return D, the number of spatial dimensions. int BlackoilPropertiesFromDeck::numDimensions() const { return rock_.numDimensions(); } /// \return N, the number of cells. int BlackoilPropertiesFromDeck::numCells() const { return rock_.numCells(); } /// \return Array of N porosity values. const double* BlackoilPropertiesFromDeck::porosity() const { return rock_.porosity(); } /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). const double* BlackoilPropertiesFromDeck::permeability() const { return rock_.permeability(); } // ---- Fluid interface ---- /// \return P, the number of phases (also the number of components). int BlackoilPropertiesFromDeck::numPhases() const { return phaseUsage_.num_phases; } /// \return Object describing the active phases. PhaseUsage BlackoilPropertiesFromDeck::phaseUsage() const { return phaseUsage_; } /// \param[in] n Number of data points. /// \param[in] p Array of n pressure values. /// \param[in] T Array of n temperature values. /// \param[in] z Array of nP surface volume values. /// \param[in] cells Array of n cell indices to be associated with the p and z values. /// \param[out] mu Array of nP viscosity values, array must be valid before calling. /// \param[out] dmudp If non-null: array of nP viscosity derivative values, /// array must be valid before calling. void BlackoilPropertiesFromDeck::viscosity(const int n, const double* p, const double* T, const double* z, const int* cells, double* mu, double* dmudp) const { const auto& pu = phaseUsage(); const int np = numPhases(); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 0.0; Eval RsEval = 0.0; Eval RvEval = 0.0; Eval muEval = 0.0; pEval.setDerivative(0, 1.0); R_.resize(n*np); this->compute_R_(n, p, T, z, cells, &R_[0]); for (int i = 0; i < n; ++ i) { int cellIdx = cells[i]; int pvtRegionIdx = cellPvtRegionIdx_[cellIdx]; pEval.setValue(p[i]); TEval.setValue(T[i]); if (pu.phase_used[BlackoilPhases::Aqua]) { muEval = waterPvt_.viscosity(pvtRegionIdx, TEval, pEval); int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Aqua]; mu[offset] = muEval.value(); dmudp[offset] = muEval.derivative(0); } if (pu.phase_used[BlackoilPhases::Liquid]) { RsEval.setValue(R_[i*np + pu.phase_pos[BlackoilPhases::Liquid]]); muEval = oilPvt_.viscosity(pvtRegionIdx, TEval, pEval, RsEval); int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Liquid]; mu[offset] = muEval.value(); dmudp[offset] = muEval.derivative(0); } if (pu.phase_used[BlackoilPhases::Vapour]) { RvEval.setValue(R_[i*np + pu.phase_pos[BlackoilPhases::Vapour]]); muEval = gasPvt_.viscosity(pvtRegionIdx, TEval, pEval, RvEval); int offset = pu.num_phases*cellIdx + pu.phase_pos[BlackoilPhases::Vapour]; mu[offset] = muEval.value(); dmudp[offset] = muEval.derivative(0); } } } /// \param[in] n Number of data points. /// \param[in] p Array of n pressure values. /// \param[in] T Array of n temperature values. /// \param[in] z Array of nP surface volume values. /// \param[in] cells Array of n cell indices to be associated with the p and z values. /// \param[out] A Array of nP^2 values, array must be valid before calling. /// The P^2 values for a cell give the matrix A = RB^{-1} which /// relates z to u by z = Au. The matrices are output in Fortran order. /// \param[out] dAdp If non-null: array of nP^2 matrix derivative values, /// array must be valid before calling. The matrices are output /// in Fortran order. void BlackoilPropertiesFromDeck::matrix(const int n, const double* p, const double* T, const double* z, const int* cells, double* A, double* dAdp) const { const int np = numPhases(); B_.resize(n*np); R_.resize(n*np); if (dAdp) { dB_.resize(n*np); dR_.resize(n*np); this->compute_dBdp_(n, p, T, z, cells, &B_[0], &dB_[0]); this->compute_dRdp_(n, p, T, z, cells, &R_[0], &dR_[0]); } else { this->compute_B_(n, p, T, z, cells, &B_[0]); this->compute_R_(n, p, T, z, cells, &R_[0]); } const auto& pu = phaseUsage(); bool oil_and_gas = pu.phase_used[BlackoilPhases::Liquid] && pu.phase_used[BlackoilPhases::Vapour]; const int o = pu.phase_pos[BlackoilPhases::Liquid]; const int g = pu.phase_pos[BlackoilPhases::Vapour]; // Compute A matrix // #pragma omp parallel for for (int i = 0; i < n; ++i) { double* m = A + i*np*np; std::fill(m, m + np*np, 0.0); // Diagonal entries. for (int phase = 0; phase < np; ++phase) { m[phase + phase*np] = 1.0/B_[i*np + phase]; } // Off-diagonal entries. if (oil_and_gas) { m[o + g*np] = R_[i*np + g]/B_[i*np + g]; m[g + o*np] = R_[i*np + o]/B_[i*np + o]; } } // Derivative of A matrix. // A = R*inv(B) whence // // dA/dp = (dR/dp*inv(B) + R*d(inv(B))/dp) // = (dR/dp*inv(B) - R*inv(B)*(dB/dp)*inv(B)) // = (dR/dp - A*(dB/dp)) * inv(B) // // The B matrix is diagonal and that fact is exploited in the // following implementation. if (dAdp) { // #pragma omp parallel for // (1): dA/dp <- A std::copy(A, A + n*np*np, dAdp); for (int i = 0; i < n; ++i) { double* m = dAdp + i*np*np; // (2): dA/dp <- -dA/dp*(dB/dp) == -A*(dB/dp) const double* dB = & dB_[i * np]; for (int col = 0; col < np; ++col) { for (int row = 0; row < np; ++row) { m[col*np + row] *= - dB[ col ]; // Note sign. } } if (oil_and_gas) { // (2b): dA/dp += dR/dp (== dR/dp - A*(dB/dp)) const double* dR = & dR_[i * np]; m[o*np + g] += dR[ o ]; m[g*np + o] += dR[ g ]; } // (3): dA/dp *= inv(B) (== final result) const double* B = & B_[i * np]; for (int col = 0; col < np; ++col) { for (int row = 0; row < np; ++row) { m[col*np + row] /= B[ col ]; } } } } } void BlackoilPropertiesFromDeck::compute_B_(const int n, const double* p, const double* T, const double* z, const int* cells, double* B) const { const auto& pu = phaseUsage(); typedef double Eval; Eval pEval = 0.0; Eval TEval = 0.0; Eval RsEval = 0.0; Eval RvEval = 0.0; for (int i = 0; i < n; ++ i) { int cellIdx = cells[i]; int pvtRegionIdx = cellPvtRegionIdx_[cellIdx]; pEval = p[i]; TEval = T[i]; int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid]; int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour]; int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua]; if (pu.phase_used[BlackoilPhases::Aqua]) { Eval BEval = 1.0/waterPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); B[waterOffset] = BEval; } if (pu.phase_used[BlackoilPhases::Liquid]) { double currentRs = 0.0; double maxRs = 0.0; if (pu.phase_used[BlackoilPhases::Vapour]) { currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset]; maxRs = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval); } Eval BEval; if (currentRs >= maxRs) { BEval = 1.0/oilPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); } else { RsEval = currentRs; BEval = 1.0/oilPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RsEval); } B[oilOffset] = BEval; } if (pu.phase_used[BlackoilPhases::Vapour]) { double currentRv = 0.0; double maxRv = 0.0; if (pu.phase_used[BlackoilPhases::Liquid]) { currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset]; maxRv = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval); } Eval BEval; if (currentRv >= maxRv) { BEval = 1.0/gasPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); } else { RvEval = currentRv; BEval = 1.0/gasPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RvEval); } B[gasOffset] = BEval; } } } void BlackoilPropertiesFromDeck::compute_dBdp_(const int n, const double* p, const double* T, const double* z, const int* cells, double* B, double* dBdp) const { const auto& pu = phaseUsage(); typedef Opm::DenseAd::Evaluation Eval; Eval pEval = 0.0; Eval TEval = 0.0; Eval RsEval = 0.0; Eval RvEval = 0.0; pEval.setDerivative(0, 1.0); for (int i = 0; i < n; ++ i) { int cellIdx = cells[i]; int pvtRegionIdx = cellPvtRegionIdx_[cellIdx]; pEval.setValue(p[i]); TEval.setValue(T[i]); int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid]; int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour]; int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua]; if (pu.phase_used[BlackoilPhases::Aqua]) { Eval BEval = 1.0/waterPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); B[waterOffset] = BEval.value(); dBdp[waterOffset] = BEval.derivative(0); } if (pu.phase_used[BlackoilPhases::Liquid]) { double currentRs = 0.0; double maxRs = 0.0; if (pu.phase_used[BlackoilPhases::Vapour]) { currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset]; maxRs = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval.value(), pEval.value()); } Eval BEval; if (currentRs >= maxRs) { BEval = 1.0/oilPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); } else { RsEval.setValue(currentRs); BEval = 1.0/oilPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RsEval); } B[oilOffset] = BEval.value(); dBdp[oilOffset] = BEval.derivative(0); } if (pu.phase_used[BlackoilPhases::Vapour]) { double currentRv = 0.0; double maxRv = 0.0; if (pu.phase_used[BlackoilPhases::Liquid]) { currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset]; maxRv = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval.value(), pEval.value()); } Eval BEval; if (currentRv >= maxRv) { BEval = 1.0/gasPvt_.saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval); } else { RvEval.setValue(currentRv); BEval = 1.0/gasPvt_.inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RvEval); } B[gasOffset] = BEval.value(); dBdp[gasOffset] = BEval.derivative(0); } } } void BlackoilPropertiesFromDeck::compute_R_(const int n, const double* p, const double* T, const double* z, const int* cells, double* R) const { const auto& pu = phaseUsage(); typedef double Eval; Eval pEval = 0.0; Eval TEval = 0.0; for (int i = 0; i < n; ++ i) { int cellIdx = cells[i]; int pvtRegionIdx = cellPvtRegionIdx_[cellIdx]; pEval = p[i]; TEval = T[i]; int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid]; int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour]; int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua]; if (pu.phase_used[BlackoilPhases::Aqua]) { R[waterOffset] = 0.0; // water is always immiscible! } if (pu.phase_used[BlackoilPhases::Liquid]) { Eval RsSatEval = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval); double currentRs = 0.0; if (pu.phase_used[BlackoilPhases::Vapour]) { currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset]; } RsSatEval = std::min(RsSatEval, currentRs); R[oilOffset] = RsSatEval; } if (pu.phase_used[BlackoilPhases::Vapour]) { Eval RvSatEval = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval); double currentRv = 0.0; if (pu.phase_used[BlackoilPhases::Liquid]) { currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset]; } RvSatEval = std::min(RvSatEval, currentRv); R[gasOffset] = RvSatEval; } } } void BlackoilPropertiesFromDeck::compute_dRdp_(const int n, const double* p, const double* T, const double* z, const int* cells, double* R, double* dRdp) const { const auto& pu = phaseUsage(); typedef Opm::DenseAd::Evaluation Eval; typedef Opm::MathToolbox Toolbox; Eval pEval = 0.0; Eval TEval = 0.0; pEval.setDerivative(0, 1.0); for (int i = 0; i < n; ++ i) { int cellIdx = cells[i]; int pvtRegionIdx = cellPvtRegionIdx_[cellIdx]; pEval.setValue(p[i]); TEval.setValue(T[i]); int oilOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Liquid]; int gasOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Vapour]; int waterOffset = pu.num_phases*i + pu.phase_pos[BlackoilPhases::Aqua]; if (pu.phase_used[BlackoilPhases::Aqua]) { R[waterOffset] = 0.0; // water is always immiscible! } if (pu.phase_used[BlackoilPhases::Liquid]) { Eval RsSatEval = oilPvt_.saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval); Eval currentRs = 0.0; if (pu.phase_used[BlackoilPhases::Vapour]) { currentRs = (z[oilOffset] == 0.0) ? 0.0 : z[gasOffset]/z[oilOffset]; } RsSatEval = Toolbox::min(RsSatEval, currentRs); R[oilOffset] = RsSatEval.value(); dRdp[oilOffset] = RsSatEval.derivative(0); } if (pu.phase_used[BlackoilPhases::Vapour]) { Eval RvSatEval = gasPvt_.saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval); Eval currentRv = 0.0; if (pu.phase_used[BlackoilPhases::Liquid]) { currentRv = (z[gasOffset] == 0.0) ? 0.0 : z[oilOffset]/z[gasOffset]; } RvSatEval = Toolbox::min(RvSatEval, currentRv); R[gasOffset] = RvSatEval.value(); dRdp[gasOffset] = RvSatEval.derivative(0); } } } /// \param[in] n Number of data points. /// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the /// matrix A = RB^{-1} which relates z to u by z = Au. The matrices /// are assumed to be in Fortran order, and are typically the result /// of a call to the method matrix(). /// \param[in] cells The index of the grid cell of each data point. /// \param[out] rho Array of nP density values, array must be valid before calling. void BlackoilPropertiesFromDeck::density(const int n, const double* A, const int* cells, double* rho) const { const int np = numPhases(); // #pragma omp parallel for for (int i = 0; i < n; ++i) { int cellIdx = cells?cells[i]:i; const double *sdens = surfaceDensity(cellIdx); for (int phase = 0; phase < np; ++phase) { rho[np*i + phase] = 0.0; for (int comp = 0; comp < np; ++comp) { rho[np*i + phase] += A[i*np*np + np*phase + comp]*sdens[comp]; } } } } /// Densities of stock components at surface conditions. /// \return Array of P density values. const double* BlackoilPropertiesFromDeck::surfaceDensity(int cellIdx) const { const auto& pu = phaseUsage(); int pvtRegionIdx = getTableIndex_(cellPvtRegionIndex(), cellIdx); return &surfaceDensities_[pvtRegionIdx*pu.num_phases]; } void BlackoilPropertiesFromDeck::initSurfaceDensities_(const Opm::Deck& deck) { const auto& pu = phaseUsage(); int np = pu.num_phases; int numPvtRegions = 1; if (deck.hasKeyword("TABDIMS")) { const auto& tabdimsKeyword = deck.getKeyword("TABDIMS"); numPvtRegions = tabdimsKeyword.getRecord(0).getItem("NTPVT").template get(0); } const auto& densityKeyword = deck.getKeyword("DENSITY"); surfaceDensities_.resize(np*numPvtRegions); for (int pvtRegionIdx = 0; pvtRegionIdx < numPvtRegions; ++pvtRegionIdx) { if (pu.phase_used[BlackoilPhases::Aqua]) surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Aqua]] = densityKeyword.getRecord(pvtRegionIdx).getItem("WATER").getSIDouble(0); if (pu.phase_used[BlackoilPhases::Liquid]) surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Liquid]] = densityKeyword.getRecord(pvtRegionIdx).getItem("OIL").getSIDouble(0); if (pu.phase_used[BlackoilPhases::Vapour]) surfaceDensities_[np*pvtRegionIdx + pu.phase_pos[BlackoilPhases::Vapour]] = densityKeyword.getRecord(pvtRegionIdx).getItem("GAS").getSIDouble(0); } } /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] kr Array of nP relperm values, array must be valid before calling. /// \param[out] dkrds If non-null: array of nP^2 relperm derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dkr_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m01 ...) void BlackoilPropertiesFromDeck::relperm(const int n, const double* s, const int* cells, double* kr, double* dkrds) const { satprops_->relperm(n, s, cells, kr, dkrds); } /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] pc Array of nP capillary pressure values, array must be valid before calling. /// \param[out] dpcds If non-null: array of nP^2 derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dpc_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m01 ...) void BlackoilPropertiesFromDeck::capPress(const int n, const double* s, const int* cells, double* pc, double* dpcds) const { satprops_->capPress(n, s, cells, pc, dpcds); } /// Obtain the range of allowable saturation values. /// In cell cells[i], saturation of phase p is allowed to be /// in the interval [smin[i*P + p], smax[i*P + p]]. /// \param[in] n Number of data points. /// \param[in] cells Array of n cell indices. /// \param[out] smin Array of nP minimum s values, array must be valid before calling. /// \param[out] smax Array of nP maximum s values, array must be valid before calling. void BlackoilPropertiesFromDeck::satRange(const int n, const int* cells, double* smin, double* smax) const { satprops_->satRange(n, cells, smin, smax); } /// Update capillary pressure scaling according to pressure diff. and initial water saturation. /// \param[in] cell Cell index. /// \param[in] pcow P_oil - P_water. /// \param[in/out] swat Water saturation. / Possibly modified Water saturation. void BlackoilPropertiesFromDeck::swatInitScaling(const int cell, const double pcow, double & swat) { satprops_->swatInitScaling(cell, pcow, swat); } } // namespace Opm