/* Copyright 2019 Equinor ASA This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include // for fill() #include #include #include #include #include #include namespace bda { /* Give every node in the matrix (of which only the sparsity pattern in the * form of row pointers and column indices arrays are in the input), a color * in the colors array. Also return the amount of colors in the return integer. * This graph-coloring algorithm is based on the Jones-Plassmann algorithm, proposed in: * "A Parallel Graph Coloring Heuristic" by M.T. Jones and P.E. Plassmann in SIAM Journal of Scientific Computing 14 (1993) */ template int colorBlockedNodes(int rows, const int *CSRRowPointers, const int *CSRColIndices, const int *CSCColPointers, const int *CSCRowIndices, std::vector& colors, int maxRowsPerColor, int maxColsPerColor) { int left, c; const int max_tries = 100; // since coloring is random, it is possible that a coloring fails. In that case, try again. std::vector randoms; randoms.resize(rows); std::vector visitedColumns; visitedColumns.resize(rows); std::fill(visitedColumns.begin(), visitedColumns.end(), false); unsigned int colsInColor; unsigned int additionalColsInRow; for (unsigned int t = 0; t < max_tries; t++) { // (re)initialize data for coloring process std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> uniform(0, std::numeric_limits::max()); { for(int i = 0; i < rows; ++i){ randoms[i] = uniform(gen); } } std::fill(colors.begin(), colors.end(), -1); // actually perform coloring for (c = 0; c < MAX_COLORS; c++) { unsigned int rowsInColor = 0; colsInColor = 0; for (int i = 0; i < rows; i++) { bool iMax = true; // true iff you have max random // ignore nodes colored earlier if ((colors[i] != -1)) continue; int ir = randoms[i]; // look at all nodex that node i is connected to for (int k = CSRRowPointers[i]; k < CSRRowPointers[i + 1]; k++) { // ignore nodes colored earlier (and yourself) int j = CSRColIndices[k]; int jc = colors[j]; if (((jc != -1) && (jc != c)) || (i == j)) { continue; } // node i is not in the current color if one of its neighbours shares this color, if (jc == c) { iMax = false; break; } // or if one of its uncolored neighbours has a higher random value int jr = randoms[j]; if (ir <= jr) { iMax = false; break; } } // look at all nodes that have a connection to node i for (int k = CSCColPointers[i]; k < CSCColPointers[i + 1]; k++) { // ignore nodes colored earlier (and yourself) int j = CSCRowIndices[k]; int jc = colors[j]; if (((jc != -1) && (jc != c)) || (i == j)) { continue; } // node i is not in the current color if one of its neighbours shares this color, if (jc == c) { iMax = false; break; } // or if one of its uncolored neighbours has a higher random value int jr = randoms[j]; if (ir <= jr) { iMax = false; break; } } // assign color if you have the maximum random number if (iMax) { additionalColsInRow = 0; for (int k = CSRRowPointers[i]; k < CSRRowPointers[i + 1]; k++) { int j = CSRColIndices[k]; if (!visitedColumns[j]) { visitedColumns[j] = true; additionalColsInRow += block_size; } } if ((colsInColor + additionalColsInRow) > static_cast(maxColsPerColor)) { break; } colsInColor += additionalColsInRow; colors[i] = c; rowsInColor += block_size; if ((rowsInColor + block_size - 1) >= static_cast(maxRowsPerColor)) { break; } } } // Check if graph coloring is done. left = 0; for (int k = 0; k < rows; k++) { if (colors[k] == -1) { left++; } } if (left == 0) { return c + 1; } } } std::ostringstream oss; oss << "Error could not find a graph coloring with " << c << " colors after " << max_tries << " tries.\nNumber of colorless nodes: " << left; OPM_THROW(std::logic_error, oss.str()); return -1; } /* Reorder a matrix by a specified input order. * Both a to order array, which contains for every node from the old matrix where it will move in the new matrix, * and the from order, which contains for every node in the new matrix where it came from in the old matrix.*/ template void reorderBlockedMatrixByPattern(BlockedMatrix *mat, int *toOrder, int *fromOrder, BlockedMatrix *rmat) { const unsigned int bs = block_size; int rIndex = 0; int i, k; unsigned int j; rmat->rowPointers[0] = 0; for (i = 0; i < mat->Nb; i++) { int thisRow = fromOrder[i]; // put thisRow from the old matrix into row i of the new matrix rmat->rowPointers[i + 1] = rmat->rowPointers[i] + mat->rowPointers[thisRow + 1] - mat->rowPointers[thisRow]; for (k = mat->rowPointers[thisRow]; k < mat->rowPointers[thisRow + 1]; k++) { for (j = 0; j < bs * bs; j++){ rmat->nnzValues[rIndex * bs * bs + j] = mat->nnzValues[k * bs * bs + j]; } rmat->colIndices[rIndex] = mat->colIndices[k]; rIndex++; } } // re-assign column indices according to the new positions of the nodes referenced by the column indices for (i = 0; i < mat->nnzbs; i++) { rmat->colIndices[i] = toOrder[rmat->colIndices[i]]; } // re-sort the column indices of every row. for (i = 0; i < mat->Nb; i++) { sortBlockedRow(rmat->colIndices, rmat->nnzValues, rmat->rowPointers[i], rmat->rowPointers[i + 1] - 1); } } /* Reorder a matrix according to the colors that every node of the matrix has received*/ void colorsToReordering(int Nb, std::vector& colors, int numColors, int *toOrder, int *fromOrder, std::vector& rowsPerColor) { int reordered = 0; // Find reordering patterns for (int c = 0; c < numColors; c++) { for (int i = 0; i < Nb; i++) { if (colors[i] == c) { rowsPerColor[c]++; toOrder[i] = reordered; fromOrder[reordered] = i; reordered++; } } } } // Reorder a vector according to a reordering pattern template void reorderBlockedVectorByPattern(int Nb, double *vector, int *fromOrder, double *rVector) { for (int i = 0; i < Nb; i++) { for (unsigned int j = 0; j < block_size; j++) { rVector[block_size * i + j] = vector[block_size * fromOrder[i] + j]; } } } /* Check is operations on a node in the matrix can be started * A node can only be started if all nodes that it depends on during sequential execution have already completed.*/ bool canBeStarted(const int rowIndex, const int *rowPointers, const int *colIndices, const std::vector& doneRows) { bool canStart = !doneRows[rowIndex]; int i, thisDependency; if (canStart) { for (i = rowPointers[rowIndex]; i < rowPointers[rowIndex + 1]; i++) { thisDependency = colIndices[i]; // Only dependencies on rows that should execute before the current one are relevant if (thisDependency >= rowIndex) break; // Check if dependency has been resolved if (!doneRows[thisDependency]) { return false; } } } return canStart; } /* * The level scheduling of a non-symmetric, blocked matrix requires access to a CSC encoding and a CSR encoding of the sparsity pattern of the input matrix. * This function is based on a standard level scheduling algorithm, like the one described in: * "Iterative methods for Sparse Linear Systems" by Yousef Saad in section 11.6.3 */ void findLevelScheduling(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices, int *CSCColPointers, int Nb, int *numColors, int *toOrder, int* fromOrder, std::vector& rowsPerColor) { int activeRowIndex = 0, colorEnd, nextActiveRowIndex = 0; int thisRow; std::vector doneRows(Nb, false); std::vector rowsToStart; // since emplace_back() is used to fill, the vector must be empty assert(rowsPerColor.size() == 0); // find starting rows: rows that are independent from all rows that come before them. for (thisRow = 0; thisRow < Nb; thisRow++) { if (canBeStarted(thisRow, CSCColPointers, CSCRowIndices, doneRows)) { fromOrder[nextActiveRowIndex] = thisRow; toOrder[thisRow] = nextActiveRowIndex; nextActiveRowIndex++; } } // 'do' compute on all active rows for (colorEnd = 0; colorEnd < nextActiveRowIndex; colorEnd++) { doneRows[fromOrder[colorEnd]] = true; } rowsPerColor.emplace_back(nextActiveRowIndex - activeRowIndex); while (colorEnd < Nb) { // Go over all rows active from the last color, and check which of their neighbours can be activated this color for (; activeRowIndex < colorEnd; activeRowIndex++) { thisRow = fromOrder[activeRowIndex]; for (int i = CSCColPointers[thisRow]; i < CSCColPointers[thisRow + 1]; i++) { int thatRow = CSCRowIndices[i]; if (canBeStarted(thatRow, CSRRowPointers, CSRColIndices, doneRows)) { rowsToStart.emplace_back(thatRow); } } } // 'do' compute on all active rows for (unsigned int i = 0; i < rowsToStart.size(); i++) { thisRow = rowsToStart[i]; if (!doneRows[thisRow]) { doneRows[thisRow] = true; fromOrder[nextActiveRowIndex] = thisRow; toOrder[thisRow] = nextActiveRowIndex; nextActiveRowIndex++; } } colorEnd = nextActiveRowIndex; rowsPerColor.emplace_back(nextActiveRowIndex - activeRowIndex); } *numColors = rowsPerColor.size(); } /* Perform the complete graph coloring algorithm on a matrix. Return an array with the amount of nodes per color.*/ template void findGraphColoring(const int *CSRColIndices, const int *CSRRowPointers, const int *CSCRowIndices, const int *CSCColPointers, int Nb, int maxRowsPerColor, int maxColsPerColor, int *numColors, int *toOrder, int *fromOrder, std::vector& rowsPerColor) { std::vector rowColor(Nb); *numColors = colorBlockedNodes(Nb, CSRRowPointers, CSRColIndices, CSCColPointers, CSCRowIndices, rowColor, maxRowsPerColor, maxColsPerColor); rowsPerColor.resize(*numColors); colorsToReordering(Nb, rowColor, *numColors, toOrder, fromOrder, rowsPerColor); } // based on the scipy package from python, scipy/sparse/sparsetools/csr.h on github void csrPatternToCsc(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices, int *CSCColPointers, int Nb) { int nnz = CSRRowPointers[Nb]; // compute number of nnzs per column std::fill(CSCColPointers, CSCColPointers + Nb, 0); for (int n = 0; n < nnz; ++n) { CSCColPointers[CSRColIndices[n]]++; } // cumsum the nnz per col to get CSCColPointers for (int col = 0, cumsum = 0; col < Nb; ++col) { int temp = CSCColPointers[col]; CSCColPointers[col] = cumsum; cumsum += temp; } CSCColPointers[Nb] = nnz; for (int row = 0; row < Nb; ++row) { for (int j = CSRRowPointers[row]; j < CSRRowPointers[row + 1]; ++j) { int col = CSRColIndices[j]; int dest = CSCColPointers[col]; CSCRowIndices[dest] = row; CSCColPointers[col]++; } } for (int col = 0, last = 0; col <= Nb; ++col) { int temp = CSCColPointers[col]; CSCColPointers[col] = last; last = temp; } } #define INSTANTIATE_BDA_FUNCTIONS(n) \ template int colorBlockedNodes(int, const int *, const int *, const int *, const int *, std::vector&, int, int); \ template void reorderBlockedMatrixByPattern(BlockedMatrix *, int *, int *, BlockedMatrix *); \ template void reorderBlockedVectorByPattern(int, double*, int*, double*); \ template void findGraphColoring(const int *, const int *, const int *, const int *, int, int, int, int *, int *, int *, std::vector&); \ INSTANTIATE_BDA_FUNCTIONS(1); INSTANTIATE_BDA_FUNCTIONS(2); INSTANTIATE_BDA_FUNCTIONS(3); INSTANTIATE_BDA_FUNCTIONS(4); #undef INSTANTIATE_BDA_FUNCTIONS } //namespace bda