/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param) { if (param.anyUnused()) { std::cout << "-------------------- Unused parameters: --------------------\n"; param.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } } } // anon namespace // ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; std::cout << "\n================ Test program for fully implicit three-phase black-oil flow ===============\n\n"; parameter::ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); if (!use_deck) { OPM_THROW(std::runtime_error, "This program must be run with an input deck. " "Specify the deck with deck_filename=deckname.data (for example)."); } boost::scoped_ptr deck; boost::scoped_ptr grid; boost::scoped_ptr props; boost::scoped_ptr new_props; boost::scoped_ptr rock_comp; BlackoilState state; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; std::string deck_filename = param.get("deck_filename"); deck.reset(new EclipseGridParser(deck_filename)); Opm::ParserPtr newParser(new Opm::Parser() ); Opm::DeckConstPtr newParserDeck = newParser->parse( deck_filename ); // Grid init grid.reset(new GridManager(*deck)); Opm::EclipseWriter outputWriter(param, share_obj(*deck), share_obj(*grid->c_grid())); // Rock and fluid init #if 0 std::cout << "new parser\n"; props.reset(new BlackoilPropertiesFromDeck(newParserDeck, *grid->c_grid(), param)); new_props.reset(new BlackoilPropsAdFromDeck(newParserDeck, *grid->c_grid())); #else std::cout << "old parser\n"; props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid(), param)); new_props.reset(new BlackoilPropsAdFromDeck(*deck, *grid->c_grid())); #endif // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); // Rock compressibility. rock_comp.reset(new RockCompressibility(*deck)); // Gravity. gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(*grid->c_grid(), *props, param, gravity[2], state); initBlackoilSurfvol(*grid->c_grid(), *props, state); enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour }; const PhaseUsage pu = props->phaseUsage(); if (pu.phase_used[Oil] && pu.phase_used[Gas]) { const int np = props->numPhases(); const int nc = grid->c_grid()->number_of_cells; for (int c = 0; c < nc; ++c) { state.gasoilratio()[c] = state.surfacevol()[c*np + pu.phase_pos[Gas]] / state.surfacevol()[c*np + pu.phase_pos[Oil]]; } } } else { initBlackoilStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state); } bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); const double *grav = use_gravity ? &gravity[0] : 0; // Linear solver. LinearSolverFactory linsolver(param); // Write parameters used for later reference. bool output = param.getDefault("output", true); std::ofstream epoch_os; std::string output_dir; if (output) { output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath); } std::string filename = output_dir + "/epoch_timing.param"; epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out); // open file to clean it. The file is appended to in SimulatorTwophase filename = output_dir + "/step_timing.param"; std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out); step_os.close(); param.writeParam(output_dir + "/simulation.param"); } std::cout << "\n\n================ Starting main simulation loop ===============\n" << " (number of epochs: " << (deck->numberOfEpochs()) << ")\n\n" << std::flush; SimulatorReport rep; // With a deck, we may have more epochs etc. WellState well_state; int step = 0; SimulatorTimer simtimer; // Use timer for last epoch to obtain total time. deck->setCurrentEpoch(deck->numberOfEpochs() - 1); simtimer.init(*deck); const double total_time = simtimer.totalTime(); for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) { // Set epoch index. deck->setCurrentEpoch(epoch); // Update the timer. if (deck->hasField("TSTEP")) { simtimer.init(*deck); } else { if (epoch != 0) { OPM_THROW(std::runtime_error, "No TSTEP in deck for epoch " << epoch); } simtimer.init(param); } simtimer.setCurrentStepNum(step); simtimer.setTotalTime(total_time); // Report on start of epoch. std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------" << "\n (number of steps: " << simtimer.numSteps() - step << ")\n\n" << std::flush; // Create new wells, well_state WellsManager wells(*deck, *grid->c_grid(), props->permeability()); // @@@ HACK: we should really make a new well state and // properly transfer old well state to it every epoch, // since number of wells may change etc. if (epoch == 0) { well_state.init(wells.c_wells(), state); } // Create and run simulator. SimulatorFullyImplicitBlackoil simulator(param, *grid->c_grid(), *new_props, rock_comp->isActive() ? rock_comp.get() : 0, wells, linsolver, grav, outputWriter); if (epoch == 0) { warnIfUnusedParams(param); } SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state); if (output) { epoch_rep.reportParam(epoch_os); } // Update total timing report and remember step number. rep += epoch_rep; step = simtimer.currentStepNum(); } std::cout << "\n\n================ End of simulation ===============\n\n"; rep.report(std::cout); if (output) { std::string filename = output_dir + "/walltime.param"; std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out); rep.reportParam(tot_os); } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }