/* Copyright (C) 2008-2013 by Andreas Lauser This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ /*! * \file * * \copydoc Ewoms::GroundWaterProblem */ #ifndef EWOMS_GROUND_WATER_PROBLEM_HH #define EWOMS_GROUND_WATER_PROBLEM_HH #include #include #include #include #include #include #include #include #include #include #include #include namespace Ewoms { template class GroundWaterProblem; } namespace Ewoms { namespace Properties { NEW_TYPE_TAG(GroundWaterBaseProblem); NEW_PROP_TAG(LensLowerLeftX); NEW_PROP_TAG(LensLowerLeftY); NEW_PROP_TAG(LensLowerLeftZ); NEW_PROP_TAG(LensUpperRightX); NEW_PROP_TAG(LensUpperRightY); NEW_PROP_TAG(LensUpperRightZ); NEW_PROP_TAG(Permeability); NEW_PROP_TAG(PermeabilityLens); SET_PROP(GroundWaterBaseProblem, Fluid) { private: typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; public: typedef Opm::LiquidPhase > type; }; // Set the grid type SET_TYPE_PROP(GroundWaterBaseProblem, Grid, Dune::YaspGrid<2>); // SET_TYPE_PROP(GroundWaterBaseProblem, Grid, Dune::SGrid<2, 2>); SET_TYPE_PROP(GroundWaterBaseProblem, Problem, Ewoms::GroundWaterProblem); SET_SCALAR_PROP(GroundWaterBaseProblem, LensLowerLeftX, 0.25); SET_SCALAR_PROP(GroundWaterBaseProblem, LensLowerLeftY, 0.25); SET_SCALAR_PROP(GroundWaterBaseProblem, LensLowerLeftZ, 0.25); SET_SCALAR_PROP(GroundWaterBaseProblem, LensUpperRightX, 0.75); SET_SCALAR_PROP(GroundWaterBaseProblem, LensUpperRightY, 0.75); SET_SCALAR_PROP(GroundWaterBaseProblem, LensUpperRightZ, 0.75); SET_SCALAR_PROP(GroundWaterBaseProblem, Permeability, 1e-10); SET_SCALAR_PROP(GroundWaterBaseProblem, PermeabilityLens, 1e-12); // Linear solver settings SET_TYPE_PROP(GroundWaterBaseProblem, LinearSolverWrapper, Ewoms::Linear::SolverWrapperConjugatedGradients); SET_TYPE_PROP(GroundWaterBaseProblem, PreconditionerWrapper, Ewoms::Linear::PreconditionerWrapperILU0); SET_INT_PROP(GroundWaterBaseProblem, LinearSolverVerbosity, 0); // Enable gravity SET_BOOL_PROP(GroundWaterBaseProblem, EnableGravity, true); // The default for the end time of the simulation SET_SCALAR_PROP(GroundWaterBaseProblem, EndTime, 1); // The default for the initial time step size of the simulation SET_SCALAR_PROP(GroundWaterBaseProblem, InitialTimeStepSize, 1); // The default DGF file to load SET_STRING_PROP(GroundWaterBaseProblem, GridFile, "./data/groundwater_2d.dgf"); } // namespace Properties } // namespace Ewoms namespace Ewoms { /*! * \ingroup TestProblems * * \brief Test for the immisicible VCVF discretization with only a single phase * * This problem is inspired by groundwater flow. Don't expect it to be * realistic, though: For two dimensions, the domain size is 1m times * 1m. On the left and right of the domain, no-flow boundaries are * used, while at the top and bottom free flow boundaries with a * pressure of 2 bar and 1 bar are used. The center of the domain is * occupied by a rectangular lens of lower permeability. */ template class GroundWaterProblem : public GET_PROP_TYPE(TypeTag, BaseProblem) { typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType; typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView; typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; // copy some indices for convenience typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices; enum { // Grid and world dimension dim = GridView::dimension, dimWorld = GridView::dimensionworld, // indices of the primary variables pressure0Idx = Indices::pressure0Idx }; typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector; typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector; typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables; typedef typename GET_PROP_TYPE(TypeTag, Model) Model; typedef typename GridView::ctype CoordScalar; typedef Dune::FieldVector GlobalPosition; typedef Dune::FieldMatrix DimMatrix; public: /*! * \copydoc Doxygen::defaultProblemConstructor */ GroundWaterProblem(Simulator &simulator) : ParentType(simulator) { } /*! * \copydoc FvBaseProblem::finishInit */ void finishInit() { ParentType::finishInit(); eps_ = 1.0e-3; lensLowerLeft_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftX); if (dim > 1) lensLowerLeft_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftY); if (dim > 2) lensLowerLeft_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftY); lensUpperRight_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightX); if (dim > 1) lensUpperRight_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightY); if (dim > 2) lensUpperRight_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightY); intrinsicPerm_ = this->toDimMatrix_(EWOMS_GET_PARAM(TypeTag, Scalar, Permeability)); intrinsicPermLens_ = this->toDimMatrix_(EWOMS_GET_PARAM(TypeTag, Scalar, PermeabilityLens)); } /*! * \copydoc FvBaseMultiPhaseProblem::registerParameters */ static void registerParameters() { ParentType::registerParameters(); EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftX, "The x-coordinate of the lens' lower-left corner " "[m]."); EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightX, "The x-coordinate of the lens' upper-right corner " "[m]."); if (dimWorld > 1) { EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftY, "The y-coordinate of the lens' lower-left " "corner [m]."); EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightY, "The y-coordinate of the lens' upper-right " "corner [m]."); } if (dimWorld > 2) { EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftZ, "The z-coordinate of the lens' lower-left " "corner [m]."); EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightZ, "The z-coordinate of the lens' upper-right " "corner [m]."); } EWOMS_REGISTER_PARAM(TypeTag, Scalar, Permeability, "The intrinsic permeability [m^2] of the ambient " "material."); EWOMS_REGISTER_PARAM(TypeTag, Scalar, PermeabilityLens, "The intrinsic permeability [m^2] of the lens."); } /*! * \name Problem parameters */ // \{ /*! * \copydoc FvBaseProblem::name */ std::string name() const { std::ostringstream oss; oss << "groundwater_" << Model::name(); return oss.str(); } /*! * \copydoc FvBaseProblem::endTimeStep */ void endTimeStep() { #ifndef NDEBUG this->model().checkConservativeness(); // Calculate storage terms EqVector storage; this->model().globalStorage(storage); // Write mass balance information for rank 0 if (this->gridView().comm().rank() == 0) { std::cout << "Storage: " << storage << std::endl << std::flush; } #endif // NDEBUG } /*! * \copydoc FvBaseMultiPhaseProblem::temperature */ template Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const { return 273.15 + 10; } // 10C /*! * \copydoc FvBaseMultiPhaseProblem::porosity */ template Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const { return 0.4; } /*! * \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability */ template const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx, int timeIdx) const { return isInLens_(context.pos(spaceIdx, timeIdx)) ? intrinsicPermLens_ : intrinsicPerm_; } //! \} /*! * \name Boundary conditions */ //! \{ /*! * \copydoc FvBaseProblem::boundary */ template void boundary(BoundaryRateVector &values, const Context &context, int spaceIdx, int timeIdx) const { const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx); if (onLowerBoundary_(globalPos) || onUpperBoundary_(globalPos)) { Scalar pressure; Scalar T = temperature(context, spaceIdx, timeIdx); if (onLowerBoundary_(globalPos)) pressure = 2e5; else // on upper boundary pressure = 1e5; Opm::ImmiscibleFluidState fs; fs.setSaturation(/*phaseIdx=*/0, 1.0); fs.setPressure(/*phaseIdx=*/0, pressure); fs.setTemperature(T); // impose an freeflow boundary condition values.setFreeFlow(context, spaceIdx, timeIdx, fs); } else { // no flow boundary values.setNoFlow(); } } //! \} /*! * \name Volumetric terms */ //! \{ /*! * \copydoc FvBaseProblem::initial */ template void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const { // const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx); values[pressure0Idx] = 1.0e+5; // + 9.81*1.23*(20-globalPos[dim-1]); } /*! * \copydoc FvBaseProblem::source */ template void source(RateVector &rate, const Context &context, int spaceIdx, int timeIdx) const { rate = Scalar(0.0); } //! \} private: bool onLowerBoundary_(const GlobalPosition &pos) const { return pos[dim - 1] < eps_; } bool onUpperBoundary_(const GlobalPosition &pos) const { return pos[dim - 1] > this->boundingBoxMax()[dim - 1] - eps_; } bool isInLens_(const GlobalPosition &pos) const { return lensLowerLeft_[0] <= pos[0] && pos[0] <= lensUpperRight_[0] && lensLowerLeft_[1] <= pos[1] && pos[1] <= lensUpperRight_[1]; } GlobalPosition lensLowerLeft_; GlobalPosition lensUpperRight_; DimMatrix intrinsicPerm_; DimMatrix intrinsicPermLens_; Scalar eps_; }; } // namespace Ewoms #endif