/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
namespace Opm
{
template
MultisegmentWell::
MultisegmentWell(const Well& well, const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const int first_perf_index,
const std::vector& perf_data)
: Base(well, time_step, param, rate_converter, pvtRegionIdx, num_components, num_phases, index_of_well, first_perf_index, perf_data)
, segment_perforations_(numberOfSegments())
, segment_inlets_(numberOfSegments())
, cell_perforation_depth_diffs_(number_of_perforations_, 0.0)
, cell_perforation_pressure_diffs_(number_of_perforations_, 0.0)
, perforation_segment_depth_diffs_(number_of_perforations_, 0.0)
, segment_fluid_initial_(numberOfSegments(), std::vector(num_components_, 0.0))
, segment_densities_(numberOfSegments(), 0.0)
, segment_viscosities_(numberOfSegments(), 0.0)
, segment_mass_rates_(numberOfSegments(), 0.0)
, segment_depth_diffs_(numberOfSegments(), 0.0)
, upwinding_segments_(numberOfSegments(), 0)
, segment_phase_fractions_(numberOfSegments(), std::vector(num_components_, 0.0)) // number of phase here?
, segment_phase_viscosities_(numberOfSegments(), std::vector(num_components_, 0.0)) // number of phase here?
{
// not handling solvent or polymer for now with multisegment well
if (has_solvent) {
OPM_THROW(std::runtime_error, "solvent is not supported by multisegment well yet");
}
if (has_polymer) {
OPM_THROW(std::runtime_error, "polymer is not supported by multisegment well yet");
}
if (Base::has_energy) {
OPM_THROW(std::runtime_error, "energy is not supported by multisegment well yet");
}
if (Base::has_foam) {
OPM_THROW(std::runtime_error, "foam is not supported by multisegment well yet");
}
if (Base::has_brine) {
OPM_THROW(std::runtime_error, "brine is not supported by multisegment well yet");
}
// since we decide to use the WellSegments from the well parser. we can reuse a lot from it.
// for other facilities needed but not available from parser, we need to process them here
// initialize the segment_perforations_ and update perforation_segment_depth_diffs_
const WellConnections& completion_set = well_ecl_.getConnections();
// index of the perforation within wells struct
// there might be some perforations not active, which causes the number of the perforations in
// well_ecl_ and wells struct different
// the current implementation is a temporary solution for now, it should be corrected from the parser
// side
int i_perf_wells = 0;
perf_depth_.resize(number_of_perforations_, 0.);
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
const Connection& connection = completion_set.get(perf);
if (connection.state() == Connection::State::OPEN) {
const int segment_index = segmentNumberToIndex(connection.segment());
segment_perforations_[segment_index].push_back(i_perf_wells);
perf_depth_[i_perf_wells] = connection.depth();
const double segment_depth = segmentSet()[segment_index].depth();
perforation_segment_depth_diffs_[i_perf_wells] = perf_depth_[i_perf_wells] - segment_depth;
i_perf_wells++;
}
}
// initialize the segment_inlets_
for (int seg = 0; seg < numberOfSegments(); ++seg) {
const Segment& segment = segmentSet()[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segmentNumberToIndex(segment_number);
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
segment_inlets_[outlet_segment_index].push_back(segment_index);
}
}
// calculating the depth difference between the segment and its oulet_segments
// for the top segment, we will make its zero unless we find other purpose to use this value
for (int seg = 1; seg < numberOfSegments(); ++seg) {
const double segment_depth = segmentSet()[seg].depth();
const int outlet_segment_number = segmentSet()[seg].outletSegment();
const Segment& outlet_segment = segmentSet()[segmentNumberToIndex(outlet_segment_number)];
const double outlet_depth = outlet_segment.depth();
segment_depth_diffs_[seg] = segment_depth - outlet_depth;
}
}
template
void
MultisegmentWell::
init(const PhaseUsage* phase_usage_arg,
const std::vector& depth_arg,
const double gravity_arg,
const int num_cells)
{
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells);
// TODO: for StandardWell, we need to update the perf depth here using depth_arg.
// for MultisegmentWell, it is much more complicated.
// It can be specified directly, it can be calculated from the segment depth,
// it can also use the cell center, which is the same for StandardWell.
// For the last case, should we update the depth with the depth_arg? For the
// future, it can be a source of wrong result with Multisegment well.
// An indicator from the opm-parser should indicate what kind of depth we should use here.
// \Note: we do not update the depth here. And it looks like for now, we only have the option to use
// specified perforation depth
initMatrixAndVectors(num_cells);
// calcuate the depth difference between the perforations and the perforated grid block
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
cell_perforation_depth_diffs_[perf] = depth_arg[cell_idx] - perf_depth_[perf];
}
}
template
void
MultisegmentWell::
initMatrixAndVectors(const int num_cells) const
{
duneB_.setBuildMode( OffDiagMatWell::row_wise );
duneC_.setBuildMode( OffDiagMatWell::row_wise );
duneD_.setBuildMode( DiagMatWell::row_wise );
// set the size and patterns for all the matrices and vectors
// [A C^T [x = [ res
// B D] x_well] res_well]
// calculatiing the NNZ for duneD_
// NNZ = number_of_segments + 2 * (number_of_inlets / number_of_outlets)
{
int nnz_d = numberOfSegments();
for (const std::vector& inlets : segment_inlets_) {
nnz_d += 2 * inlets.size();
}
duneD_.setSize(numberOfSegments(), numberOfSegments(), nnz_d);
}
duneB_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
duneC_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
// we need to add the off diagonal ones
for (auto row = duneD_.createbegin(), end = duneD_.createend(); row != end; ++row) {
// the number of the row corrspnds to the segment now
const int seg = row.index();
// adding the item related to outlet relation
const Segment& segment = segmentSet()[seg];
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) { // if there is a outlet_segment
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
row.insert(outlet_segment_index);
}
// Add nonzeros for diagonal
row.insert(seg);
// insert the item related to its inlets
for (const int& inlet : segment_inlets_[seg]) {
row.insert(inlet);
}
}
// make the C matrix
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row != end; ++row) {
// the number of the row corresponds to the segment number now.
for (const int& perf : segment_perforations_[row.index()]) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
// make the B^T matrix
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row != end; ++row) {
// the number of the row corresponds to the segment number now.
for (const int& perf : segment_perforations_[row.index()]) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
resWell_.resize( numberOfSegments() );
primary_variables_.resize(numberOfSegments());
primary_variables_evaluation_.resize(numberOfSegments());
}
template
void
MultisegmentWell::
initPrimaryVariablesEvaluation() const
{
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
primary_variables_evaluation_[seg][eq_idx] = 0.0;
primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]);
primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + numEq, 1.0);
}
}
}
template
void
MultisegmentWell::
assembleWellEq(const Simulator& ebosSimulator,
const std::vector& B_avg,
const double dt,
WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
const bool use_inner_iterations = param_.use_inner_iterations_ms_wells_;
if (use_inner_iterations) {
this->iterateWellEquations(ebosSimulator, B_avg, dt, well_state, deferred_logger);
}
const auto& summary_state = ebosSimulator.vanguard().summaryState();
const auto inj_controls = well_ecl_.isInjector() ? well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0);
const auto prod_controls = well_ecl_.isProducer() ? well_ecl_.productionControls(summary_state) : Well::ProductionControls(0);
assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, deferred_logger);
}
template
void
MultisegmentWell::
updateWellStateWithTarget(const Simulator& ebos_simulator,
WellState& well_state,
Opm::DeferredLogger& deferred_logger) const
{
// segRates and segPressure are used to initilize the primaryvariables for MSW wells
// first initialize wellRates and then use it to compute segRates
// When THP is supported for MSW wells this code and its fried in the standard model
// can be merge.
const auto& well = well_ecl_;
const int well_index = index_of_well_;
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
const auto& pu = phaseUsage();
const int np = well_state.numPhases();
const auto& summaryState = ebos_simulator.vanguard().summaryState();
if (wellIsStopped_) {
for (int p = 0; p convert_coeff(number_of_phases_, 1.0);
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
const double coeff = convert_coeff[phasePos];
well_state.wellRates()[well_index*np + phasePos] = controls.reservoir_rate/coeff;
break;
}
case Well::InjectorCMode::THP:
{
std::vector rates(3, 0.0);
for (int p = 0; p convert_coeff(number_of_phases_, 1.0);
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
double total_res_rate = 0.0;
for (int p = 0; p hrates(number_of_phases_,0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
hrates[pu.phase_pos[Water]] = controls.water_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
}
std::vector hrates_resv(number_of_phases_,0.);
Base::rateConverter_.calcReservoirVoidageRates(/*fipreg*/ 0, Base::pvtRegionIdx_, hrates, hrates_resv);
double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
for (int p = 0; p rates(3, 0.0);
for (int p = 0; p
void
MultisegmentWell::
initSegmentRatesWithWellRates(WellState& well_state) const
{
for (int phase = 0; phase < number_of_phases_; ++phase) {
const double perf_phaserate = well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] / number_of_perforations_;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
well_state.perfPhaseRates()[number_of_phases_ * (first_perf_ + perf) + phase] = perf_phaserate;
}
}
const std::vector perforation_rates(well_state.perfPhaseRates().begin() + number_of_phases_ * first_perf_,
well_state.perfPhaseRates().begin() +
number_of_phases_ * (first_perf_ + number_of_perforations_) );
std::vector segment_rates;
WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, number_of_phases_,
0, segment_rates);
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
std::copy(segment_rates.begin(), segment_rates.end(),
well_state.segRates().begin() + number_of_phases_ * top_segment_index );
// we need to check the top segment rates should be same with the well rates
}
template
ConvergenceReport
MultisegmentWell::
getWellConvergence(const WellState& well_state, const std::vector& B_avg, Opm::DeferredLogger& deferred_logger, const bool relax_tolerance) const
{
assert(int(B_avg.size()) == num_components_);
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
std::vector> abs_residual(numberOfSegments(), std::vector(numWellEq, 0.0));
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
abs_residual[seg][eq_idx] = std::abs(resWell_[seg][eq_idx]);
}
}
std::vector maximum_residual(numWellEq, 0.0);
ConvergenceReport report;
// TODO: the following is a little complicated, maybe can be simplified in some way?
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
for (int seg = 0; seg < numberOfSegments(); ++seg) {
if (eq_idx < num_components_) { // phase or component mass equations
const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
if (flux_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = flux_residual;
}
} else { // pressure or control equation
// for the top segment (seg == 0), it is control equation, will be checked later separately
if (seg > 0) {
// Pressure equation
const double pressure_residual = abs_residual[seg][eq_idx];
if (pressure_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = pressure_residual;
}
}
}
}
}
using CR = ConvergenceReport;
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
if (eq_idx < num_components_) { // phase or component mass equations
const double flux_residual = maximum_residual[eq_idx];
// TODO: the report can not handle the segment number yet.
if (std::isnan(flux_residual)) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, name()});
} else if (flux_residual > param_.max_residual_allowed_) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, name()});
} else if (!relax_tolerance && flux_residual > param_.tolerance_wells_) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, name()});
} else if (flux_residual > param_.relaxed_inner_tolerance_flow_ms_well_) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, name()});
}
} else { // pressure equation
const double pressure_residual = maximum_residual[eq_idx];
const int dummy_component = -1;
if (std::isnan(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, name()});
} else if (std::isinf(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, name()});
} else if (!relax_tolerance && pressure_residual > param_.tolerance_pressure_ms_wells_) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, name()});
} else if (pressure_residual > param_.relaxed_inner_tolerance_pressure_ms_well_) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, name()});
}
}
}
checkConvergenceControlEq(well_state, report, deferred_logger);
return report;
}
template
void
MultisegmentWell::
apply(const BVector& x, BVector& Ax) const
{
BVectorWell Bx(duneB_.N());
duneB_.mv(x, Bx);
// invDBx = duneD^-1 * Bx_
const BVectorWell invDBx = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, Bx);
// Ax = Ax - duneC_^T * invDBx
duneC_.mmtv(invDBx,Ax);
}
template
void
MultisegmentWell::
apply(BVector& r) const
{
// invDrw_ = duneD^-1 * resWell_
const BVectorWell invDrw = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell_);
// r = r - duneC_^T * invDrw
duneC_.mmtv(invDrw, r);
}
#if HAVE_CUDA || HAVE_OPENCL
template
void
MultisegmentWell::
addWellContribution(WellContributions& wellContribs) const
{
unsigned int Nb = duneB_.M(); // number of blockrows in matrix A
unsigned int Mb = duneB_.N(); // number of blockrows in duneB_, duneC_ and duneD_
unsigned int BnumBlocks = duneB_.nonzeroes();
unsigned int DnumBlocks = duneD_.nonzeroes();
// duneC
std::vector Ccols;
std::vector Cvals;
Ccols.reserve(BnumBlocks);
Cvals.reserve(BnumBlocks * numEq * numWellEq);
for (auto rowC = duneC_.begin(); rowC != duneC_.end(); ++rowC) {
for (auto colC = rowC->begin(), endC = rowC->end(); colC != endC; ++colC) {
Ccols.emplace_back(colC.index());
for (int i = 0; i < numWellEq; ++i) {
for (int j = 0; j < numEq; ++j) {
Cvals.emplace_back((*colC)[i][j]);
}
}
}
}
// duneD
Dune::UMFPack umfpackMatrix(duneD_, 0);
double *Dvals = umfpackMatrix.getInternalMatrix().getValues();
int *Dcols = umfpackMatrix.getInternalMatrix().getColStart();
int *Drows = umfpackMatrix.getInternalMatrix().getRowIndex();
// duneB
std::vector Bcols;
std::vector Brows;
std::vector Bvals;
Bcols.reserve(BnumBlocks);
Brows.reserve(Mb+1);
Bvals.reserve(BnumBlocks * numEq * numWellEq);
Brows.emplace_back(0);
unsigned int sumBlocks = 0;
for (auto rowB = duneB_.begin(); rowB != duneB_.end(); ++rowB) {
int sizeRow = 0;
for (auto colB = rowB->begin(), endB = rowB->end(); colB != endB; ++colB) {
Bcols.emplace_back(colB.index());
for (int i = 0; i < numWellEq; ++i) {
for (int j = 0; j < numEq; ++j) {
Bvals.emplace_back((*colB)[i][j]);
}
}
sizeRow++;
}
sumBlocks += sizeRow;
Brows.emplace_back(sumBlocks);
}
wellContribs.addMultisegmentWellContribution(numEq, numWellEq, Nb, Mb, BnumBlocks, Bvals, Bcols, Brows, DnumBlocks, Dvals, Dcols, Drows, Cvals);
}
#endif
template
void
MultisegmentWell::
recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state,
Opm::DeferredLogger& deferred_logger) const
{
BVectorWell xw(1);
recoverSolutionWell(x, xw);
updateWellState(xw, well_state, deferred_logger);
}
template
void
MultisegmentWell::
computeWellPotentials(const Simulator& ebosSimulator,
const std::vector& B_avg,
const WellState& well_state,
std::vector& well_potentials,
Opm::DeferredLogger& deferred_logger)
{
const int np = number_of_phases_;
well_potentials.resize(np, 0.0);
// Stopped wells have zero potential.
if (this->wellIsStopped()) {
return;
}
// If the well is pressure controlled the potential equals the rate.
/* {
bool pressure_controlled_well = false;
if (this->isInjector()) {
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[index_of_well_];
if (current == Well::InjectorCMode::BHP || current == Well::InjectorCMode::THP) {
pressure_controlled_well = true;
}
} else {
const Opm::Well::ProducerCMode& current = well_state.currentProductionControls()[index_of_well_];
if (current == Well::ProducerCMode::BHP || current == Well::ProducerCMode::THP) {
pressure_controlled_well = true;
}
}
if (pressure_controlled_well) {
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
const EvalWell rate = this->getQs(compIdx);
well_potentials[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
}
return;
}
} */
// creating a copy of the well itself, to avoid messing up the explicit informations
// during this copy, the only information not copied properly is the well controls
MultisegmentWell well(*this);
well.debug_cost_counter_ = 0;
well.updatePrimaryVariables(well_state, deferred_logger);
// initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials
// TODO: for computeWellPotentials, no derivative is required actually
well.initPrimaryVariablesEvaluation();
// does the well have a THP related constraint?
const auto& summaryState = ebosSimulator.vanguard().summaryState();
const Well::ProducerCMode& current_control = well_state.currentProductionControls()[this->index_of_well_];
if ( !well.Base::wellHasTHPConstraints(summaryState) || current_control == Well::ProducerCMode::BHP) {
well.computeWellRatesAtBhpLimit(ebosSimulator, B_avg, well_potentials, deferred_logger);
} else {
well_potentials = well.computeWellPotentialWithTHP(ebosSimulator, B_avg, deferred_logger);
}
deferred_logger.debug("Cost in iterations of finding well potential for well "
+ name() + ": " + std::to_string(well.debug_cost_counter_));
}
template
void
MultisegmentWell::
computeWellRatesAtBhpLimit(const Simulator& ebosSimulator,
const std::vector& B_avg,
std::vector& well_flux,
Opm::DeferredLogger& deferred_logger) const
{
if (well_ecl_.isInjector()) {
const auto controls = well_ecl_.injectionControls(ebosSimulator.vanguard().summaryState());
computeWellRatesWithBhp(ebosSimulator, B_avg, controls.bhp_limit, well_flux, deferred_logger);
} else {
const auto controls = well_ecl_.productionControls(ebosSimulator.vanguard().summaryState());
computeWellRatesWithBhp(ebosSimulator, B_avg, controls.bhp_limit, well_flux, deferred_logger);
}
}
template
void
MultisegmentWell::
computeWellRatesWithBhp(const Simulator& ebosSimulator,
const std::vector& B_avg,
const Scalar bhp,
std::vector& well_flux,
Opm::DeferredLogger& deferred_logger) const
{
// creating a copy of the well itself, to avoid messing up the explicit informations
// during this copy, the only information not copied properly is the well controls
MultisegmentWell well_copy(*this);
well_copy.debug_cost_counter_ = 0;
// store a copy of the well state, we don't want to update the real well state
WellState well_state_copy = ebosSimulator.problem().wellModel().wellState();
// Get the current controls.
const auto& summary_state = ebosSimulator.vanguard().summaryState();
auto inj_controls = well_copy.well_ecl_.isInjector()
? well_copy.well_ecl_.injectionControls(summary_state)
: Well::InjectionControls(0);
auto prod_controls = well_copy.well_ecl_.isProducer()
? well_copy.well_ecl_.productionControls(summary_state) :
Well::ProductionControls(0);
// Set current control to bhp, and bhp value in state, modify bhp limit in control object.
if (well_copy.well_ecl_.isInjector()) {
inj_controls.bhp_limit = bhp;
well_state_copy.currentInjectionControls()[index_of_well_] = Well::InjectorCMode::BHP;
} else {
prod_controls.bhp_limit = bhp;
well_state_copy.currentProductionControls()[index_of_well_] = Well::ProducerCMode::BHP;
}
well_state_copy.bhp()[well_copy.index_of_well_] = bhp;
well_copy.calculateExplicitQuantities(ebosSimulator, well_state_copy, deferred_logger);
const double dt = ebosSimulator.timeStepSize();
// iterate to get a solution at the given bhp.
well_copy.iterateWellEqWithControl(ebosSimulator, B_avg, dt, inj_controls, prod_controls, well_state_copy,
deferred_logger);
// compute the potential and store in the flux vector.
well_flux.clear();
const int np = number_of_phases_;
well_flux.resize(np, 0.0);
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
const EvalWell rate = well_copy.getQs(compIdx);
well_flux[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
}
debug_cost_counter_ += well_copy.debug_cost_counter_;
}
template
std::vector
MultisegmentWell::
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
const std::vector& B_avg,
Opm::DeferredLogger& deferred_logger) const
{
std::vector potentials(number_of_phases_, 0.0);
const auto& summary_state = ebos_simulator.vanguard().summaryState();
const auto& well = well_ecl_;
if (well.isInjector()){
auto bhp_at_thp_limit = computeBhpAtThpLimitInj(ebos_simulator, B_avg, summary_state, deferred_logger);
if (bhp_at_thp_limit) {
const auto& controls = well_ecl_.injectionControls(summary_state);
const double bhp = std::min(*bhp_at_thp_limit, controls.bhp_limit);
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
deferred_logger.debug("Converged thp based potential calculation for well "
+ name() + ", at bhp = " + std::to_string(bhp));
} else {
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
"Failed in getting converged thp based potential calculation for well "
+ name() + ". Instead the bhp based value is used");
const auto& controls = well_ecl_.injectionControls(summary_state);
const double bhp = controls.bhp_limit;
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
}
} else {
auto bhp_at_thp_limit = computeBhpAtThpLimitProd(ebos_simulator, B_avg, summary_state, deferred_logger);
if (bhp_at_thp_limit) {
const auto& controls = well_ecl_.productionControls(summary_state);
const double bhp = std::max(*bhp_at_thp_limit, controls.bhp_limit);
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
deferred_logger.debug("Converged thp based potential calculation for well "
+ name() + ", at bhp = " + std::to_string(bhp));
} else {
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
"Failed in getting converged thp based potential calculation for well "
+ name() + ". Instead the bhp based value is used");
const auto& controls = well_ecl_.productionControls(summary_state);
const double bhp = controls.bhp_limit;
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
}
}
return potentials;
}
template
void
MultisegmentWell::
updatePrimaryVariables(const WellState& well_state, Opm::DeferredLogger& /* deferred_logger */) const
{
// TODO: to test using rate conversion coefficients to see if it will be better than
// this default one
const Well& well = Base::wellEcl();
// the index of the top segment in the WellState
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
const std::vector& segment_rates = well_state.segRates();
const PhaseUsage& pu = phaseUsage();
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// calculate the total rate for each segment
double total_seg_rate = 0.0;
const int seg_index = top_segment_index + seg;
// the segment pressure
primary_variables_[seg][SPres] = well_state.segPress()[seg_index];
// TODO: under what kind of circustances, the following will be wrong?
// the definition of g makes the gas phase is always the last phase
for (int p = 0; p < number_of_phases_; p++) {
total_seg_rate += scalingFactor(p) * segment_rates[number_of_phases_ * seg_index + p];
}
primary_variables_[seg][GTotal] = total_seg_rate;
if (std::abs(total_seg_rate) > 0.) {
if (has_water) {
const int water_pos = pu.phase_pos[Water];
primary_variables_[seg][WFrac] = scalingFactor(water_pos) * segment_rates[number_of_phases_ * seg_index + water_pos] / total_seg_rate;
}
if (has_gas) {
const int gas_pos = pu.phase_pos[Gas];
primary_variables_[seg][GFrac] = scalingFactor(gas_pos) * segment_rates[number_of_phases_ * seg_index + gas_pos] / total_seg_rate;
}
} else { // total_seg_rate == 0
if (this->isInjector()) {
// only single phase injection handled
auto phase = well.getInjectionProperties().injectorType;
if (has_water) {
if (phase == InjectorType::WATER) {
primary_variables_[seg][WFrac] = 1.0;
} else {
primary_variables_[seg][WFrac] = 0.0;
}
}
if (has_gas) {
if (phase == InjectorType::GAS) {
primary_variables_[seg][GFrac] = 1.0;
} else {
primary_variables_[seg][GFrac] = 0.0;
}
}
} else if (this->isProducer()) { // producers
if (has_water) {
primary_variables_[seg][WFrac] = 1.0 / number_of_phases_;
}
if (has_gas) {
primary_variables_[seg][GFrac] = 1.0 / number_of_phases_;
}
}
}
}
}
template
void
MultisegmentWell::
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
{
BVectorWell resWell = resWell_;
// resWell = resWell - B * x
duneB_.mmv(x, resWell);
// xw = D^-1 * resWell
xw = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell);
}
template
void
MultisegmentWell::
solveEqAndUpdateWellState(WellState& well_state, Opm::DeferredLogger& deferred_logger)
{
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
const BVectorWell dx_well = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell_);
updateWellState(dx_well, well_state, deferred_logger);
}
template
void
MultisegmentWell::
computePerfCellPressDiffs(const Simulator& ebosSimulator)
{
for (int perf = 0; perf < number_of_perforations_; ++perf) {
std::vector kr(number_of_phases_, 0.0);
std::vector density(number_of_phases_, 0.0);
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
double sum_kr = 0.;
const PhaseUsage& pu = phaseUsage();
if (pu.phase_used[Water]) {
const int water_pos = pu.phase_pos[Water];
kr[water_pos] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value();
sum_kr += kr[water_pos];
density[water_pos] = fs.density(FluidSystem::waterPhaseIdx).value();
}
if (pu.phase_used[Oil]) {
const int oil_pos = pu.phase_pos[Oil];
kr[oil_pos] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value();
sum_kr += kr[oil_pos];
density[oil_pos] = fs.density(FluidSystem::oilPhaseIdx).value();
}
if (pu.phase_used[Gas]) {
const int gas_pos = pu.phase_pos[Gas];
kr[gas_pos] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value();
sum_kr += kr[gas_pos];
density[gas_pos] = fs.density(FluidSystem::gasPhaseIdx).value();
}
assert(sum_kr != 0.);
// calculate the average density
double average_density = 0.;
for (int p = 0; p < number_of_phases_; ++p) {
average_density += kr[p] * density[p];
}
average_density /= sum_kr;
cell_perforation_pressure_diffs_[perf] = gravity_ * average_density * cell_perforation_depth_diffs_[perf];
}
}
template
void
MultisegmentWell::
computeInitialSegmentFluids(const Simulator& ebos_simulator)
{
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// TODO: trying to reduce the times for the surfaceVolumeFraction calculation
const double surface_volume = getSegmentSurfaceVolume(ebos_simulator, seg).value();
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
segment_fluid_initial_[seg][comp_idx] = surface_volume * surfaceVolumeFraction(seg, comp_idx).value();
}
}
}
template
void
MultisegmentWell::
updateWellState(const BVectorWell& dwells,
WellState& well_state,
Opm::DeferredLogger& deferred_logger,
const double relaxation_factor) const
{
const double dFLimit = param_.dwell_fraction_max_;
const double max_pressure_change = param_.max_pressure_change_ms_wells_;
const std::vector > old_primary_variables = primary_variables_;
for (int seg = 0; seg < numberOfSegments(); ++seg) {
if (has_water) {
const int sign = dwells[seg][WFrac] > 0. ? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]) * relaxation_factor, dFLimit);
primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited;
}
if (has_gas) {
const int sign = dwells[seg][GFrac] > 0. ? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]) * relaxation_factor, dFLimit);
primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited;
}
// handling the overshooting or undershooting of the fractions
processFractions(seg);
// update the segment pressure
{
const int sign = dwells[seg][SPres] > 0.? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]) * relaxation_factor, max_pressure_change);
primary_variables_[seg][SPres] = std::max( old_primary_variables[seg][SPres] - dx_limited, 1e5);
}
// update the total rate // TODO: should we have a limitation of the total rate change?
{
primary_variables_[seg][GTotal] = old_primary_variables[seg][GTotal] - relaxation_factor * dwells[seg][GTotal];
// make sure that no injector produce and no producer inject
if (seg == 0) {
if (this->isInjector()) {
primary_variables_[seg][GTotal] = std::max( primary_variables_[seg][GTotal], 0.0);
} else {
primary_variables_[seg][GTotal] = std::min( primary_variables_[seg][GTotal], 0.0);
}
}
}
}
updateWellStateFromPrimaryVariables(well_state, deferred_logger);
Base::calculateReservoirRates(well_state);
}
template
void
MultisegmentWell::
calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
updatePrimaryVariables(well_state, deferred_logger);
initPrimaryVariablesEvaluation();
computePerfCellPressDiffs(ebosSimulator);
computeInitialSegmentFluids(ebosSimulator);
}
template
void
MultisegmentWell::
addWellContributions(SparseMatrixAdapter& /* jacobian */) const
{
OPM_THROW(std::runtime_error, "addWellContributions is not supported by multisegment well yet");
}
template
const WellSegments&
MultisegmentWell::
segmentSet() const
{
return well_ecl_.getSegments();
}
template
int
MultisegmentWell::
numberOfSegments() const
{
return segmentSet().size();
}
template
int
MultisegmentWell::
numberOfPerforations() const
{
return segmentSet().number_of_perforations_;
}
template
WellSegments::CompPressureDrop
MultisegmentWell::
compPressureDrop() const
{
return segmentSet().compPressureDrop();
}
template
int
MultisegmentWell::
segmentNumberToIndex(const int segment_number) const
{
return segmentSet().segmentNumberToIndex(segment_number);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
volumeFraction(const int seg, const unsigned compIdx) const
{
if (has_water && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
return primary_variables_evaluation_[seg][WFrac];
}
if (has_gas && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[seg][GFrac];
}
// Oil fraction
EvalWell oil_fraction = 1.0;
if (has_water) {
oil_fraction -= primary_variables_evaluation_[seg][WFrac];
}
if (has_gas) {
oil_fraction -= primary_variables_evaluation_[seg][GFrac];
}
/* if (has_solvent) {
oil_fraction -= primary_variables_evaluation_[seg][SFrac];
} */
return oil_fraction;
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
volumeFractionScaled(const int seg, const int comp_idx) const
{
// For reservoir rate control, the distr in well control is used for the
// rate conversion coefficients. For the injection well, only the distr of the injection
// phase is not zero.
const double scale = scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
if (scale > 0.) {
return volumeFraction(seg, comp_idx) / scale;
}
return volumeFraction(seg, comp_idx);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
surfaceVolumeFraction(const int seg, const int comp_idx) const
{
EvalWell sum_volume_fraction_scaled = 0.;
for (int idx = 0; idx < num_components_; ++idx) {
sum_volume_fraction_scaled += volumeFractionScaled(seg, idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled;
}
template
void
MultisegmentWell::
computePerfRatePressure(const IntensiveQuantities& int_quants,
const std::vector& mob_perfcells,
const int seg,
const int perf,
const EvalWell& segment_pressure,
const bool& allow_cf,
std::vector& cq_s,
EvalWell& perf_press,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
Opm::DeferredLogger& deferred_logger) const
{
std::vector cmix_s(num_components_, 0.0);
// the composition of the components inside wellbore
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
cmix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
}
const auto& fs = int_quants.fluidState();
const EvalWell pressure_cell = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
const EvalWell rs = extendEval(fs.Rs());
const EvalWell rv = extendEval(fs.Rv());
// not using number_of_phases_ because of solvent
std::vector b_perfcells(num_components_, 0.0);
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
b_perfcells[compIdx] = extendEval(fs.invB(phaseIdx));
}
// pressure difference between the segment and the perforation
const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf];
// pressure difference between the perforation and the grid cell
const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf];
perf_press = pressure_cell - cell_perf_press_diff;
// Pressure drawdown (also used to determine direction of flow)
// TODO: not 100% sure about the sign of the seg_perf_press_diff
const EvalWell drawdown = perf_press - (segment_pressure + perf_seg_press_diff);
// producing perforations
if ( drawdown > 0.0) {
// Do nothing is crossflow is not allowed
if (!allow_cf && this->isInjector()) {
return;
}
// compute component volumetric rates at standard conditions
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell cq_p = - well_index_[perf] * (mob_perfcells[comp_idx] * drawdown);
cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell cq_s_oil = cq_s[oilCompIdx];
const EvalWell cq_s_gas = cq_s[gasCompIdx];
cq_s[gasCompIdx] += rs * cq_s_oil;
cq_s[oilCompIdx] += rv * cq_s_gas;
}
} else { // injecting perforations
// Do nothing if crossflow is not allowed
if (!allow_cf && this->isProducer()) {
return;
}
// for injecting perforations, we use total mobility
EvalWell total_mob = mob_perfcells[0];
for (int comp_idx = 1; comp_idx < num_components_; ++comp_idx) {
total_mob += mob_perfcells[comp_idx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - well_index_[perf] * (total_mob * drawdown);
// compute volume ratio between connection and at standard conditions
EvalWell volume_ratio = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volume_ratio += cmix_s[waterCompIdx] / b_perfcells[waterCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
// TODO: not sure we use rs rv from the perforation cells when handling injecting perforations
// basically, for injecting perforations, the wellbore is the upstreaming side.
const EvalWell d = 1.0 - rv * rs;
if (d.value() == 0.0) {
OPM_DEFLOG_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv, deferred_logger);
}
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
volume_ratio += tmp_oil / b_perfcells[oilCompIdx];
const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
volume_ratio += tmp_gas / b_perfcells[gasCompIdx];
} else { // not having gas and oil at the same time
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
volume_ratio += cmix_s[oilCompIdx] / b_perfcells[oilCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
volume_ratio += cmix_s[gasCompIdx] / b_perfcells[gasCompIdx];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i / volume_ratio;
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is;
}
} // end for injection perforations
// calculating the perforation solution gas rate and solution oil rates
if (this->isProducer()) {
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// TODO: the formulations here remain to be tested with cases with strong crossflow through production wells
// s means standard condition, r means reservoir condition
// q_os = q_or * b_o + rv * q_gr * b_g
// q_gs = q_gr * g_g + rs * q_or * b_o
// d = 1.0 - rs * rv
// q_or = 1 / (b_o * d) * (q_os - rv * q_gs)
// q_gr = 1 / (b_g * d) * (q_gs - rs * q_os)
const double d = 1.0 - rv.value() * rs.value();
// vaporized oil into gas
// rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d
perf_vap_oil_rate = rv.value() * (cq_s[gasCompIdx].value() - rs.value() * cq_s[oilCompIdx].value()) / d;
// dissolved of gas in oil
// rs * q_or * b_o = rs * (q_os - rv * q_gs) / d
perf_dis_gas_rate = rs.value() * (cq_s[oilCompIdx].value() - rv.value() * cq_s[gasCompIdx].value()) / d;
}
}
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eq_idx = 0; eq_idx < numEq;++eq_idx) {
out.setDerivative(eq_idx, in.derivative(eq_idx));
}
return out;
}
template
void
MultisegmentWell::
computeSegmentFluidProperties(const Simulator& ebosSimulator)
{
// TODO: the concept of phases and components are rather confusing in this function.
// needs to be addressed sooner or later.
// get the temperature for later use. It is only useful when we are not handling
// thermal related simulation
// basically, it is a single value for all the segments
EvalWell temperature;
EvalWell saltConcentration;
// not sure how to handle the pvt region related to segment
// for the current approach, we use the pvt region of the first perforated cell
// although there are some text indicating using the pvt region of the lowest
// perforated cell
// TODO: later to investigate how to handle the pvt region
int pvt_region_index;
{
// using the first perforated cell
const int cell_idx = well_cells_[0];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
saltConcentration = extendEval(fs.saltConcentration());
pvt_region_index = fs.pvtRegionIndex();
}
std::vector surf_dens(num_components_);
// Surface density.
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index );
}
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// the compostion of the components inside wellbore under surface condition
std::vector mix_s(num_components_, 0.0);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
}
std::vector b(num_components_, 0.0);
std::vector visc(num_components_, 0.0);
const EvalWell seg_pressure = getSegmentPressure(seg);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
b[waterCompIdx] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration);
visc[waterCompIdx] =
FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure, saltConcentration);
}
EvalWell rv(0.0);
// gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[oilCompIdx] > 0.0) {
if (mix_s[gasCompIdx] > 0.0) {
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
}
if (rv > rvmax) {
rv = rvmax;
}
b[gasCompIdx] =
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv);
visc[gasCompIdx] =
FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv);
} else { // no oil exists
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[gasCompIdx] =
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[gasCompIdx] =
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
}
EvalWell rs(0.0);
// oil phase
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[gasCompIdx] > 0.0) {
if (mix_s[oilCompIdx] > 0.0) {
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
}
if (rs > rsmax) {
rs = rsmax;
}
b[oilCompIdx] =
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
visc[oilCompIdx] =
FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs);
} else { // no oil exists
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[oilCompIdx] =
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[oilCompIdx] =
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
}
segment_phase_viscosities_[seg] = visc;
std::vector mix(mix_s);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell d = 1.0 - rs * rv;
if (rs != 0.0) { // rs > 0.0?
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d;
}
if (rv != 0.0) { // rv > 0.0?
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d;
}
}
EvalWell volrat(0.0);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
volrat += mix[comp_idx] / b[comp_idx];
}
segment_viscosities_[seg] = 0.;
// calculate the average viscosity
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell fraction = mix[comp_idx] / b[comp_idx] / volrat;
// TODO: a little more work needs to be done to handle the negative fractions here
segment_phase_fractions_[seg][comp_idx] = fraction; // >= 0.0 ? fraction : 0.0;
segment_viscosities_[seg] += visc[comp_idx] * segment_phase_fractions_[seg][comp_idx];
}
EvalWell density(0.0);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
density += surf_dens[comp_idx] * mix_s[comp_idx];
}
segment_densities_[seg] = density / volrat;
// calculate the mass rates
segment_mass_rates_[seg] = 0.;
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell rate = getSegmentRateUpwinding(seg, comp_idx);
segment_mass_rates_[seg] += rate * surf_dens[comp_idx];
}
}
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentPressure(const int seg) const
{
return primary_variables_evaluation_[seg][SPres];
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getBhp() const
{
return getSegmentPressure(0);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentRate(const int seg,
const int comp_idx) const
{
return primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg, comp_idx);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getQs(const int comp_idx) const
{
return getSegmentRate(0, comp_idx);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentRateUpwinding(const int seg,
const size_t comp_idx) const
{
const int seg_upwind = upwinding_segments_[seg];
// the result will contain the derivative with resepct to GTotal in segment seg,
// and the derivatives with respect to WFrac GFrac in segment seg_upwind.
// the derivative with respect to SPres should be zero.
if (seg == 0 && this->isInjector()) {
const Well& well = Base::wellEcl();
auto phase = well.getInjectionProperties().injectorType;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)
&& Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == comp_idx
&& phase == InjectorType::WATER)
return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)
&& Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == comp_idx
&& phase == InjectorType::OIL)
return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)
&& Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == comp_idx
&& phase == InjectorType::GAS)
return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
return 0.0;
}
const EvalWell segment_rate = primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg_upwind, comp_idx);
assert(segment_rate.derivative(SPres + numEq) == 0.);
return segment_rate;
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentGTotal(const int seg) const
{
return primary_variables_evaluation_[seg][GTotal];
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getWQTotal() const
{
return getSegmentGTotal(0);
}
template
void
MultisegmentWell::
getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector& mob) const
{
// TODO: most of this function, if not the whole function, can be moved to the base class
const int cell_idx = well_cells_[perf];
assert (int(mob.size()) == num_components_);
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
}
// if (has_solvent) {
// mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
// }
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
}
}
}
template
void
MultisegmentWell::
assembleControlEq(const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
Opm::DeferredLogger& deferred_logger)
{
EvalWell control_eq(0.0);
const auto& well = well_ecl_;
auto getRates = [&]() {
std::vector rates(3, 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (wellIsStopped_) {
control_eq = getWQTotal();
} else if (this->isInjector() ) {
// Find scaling factor to get injection rate,
const InjectorType injectorType = inj_controls.injector_type;
double scaling = 1.0;
const auto& pu = phaseUsage();
switch (injectorType) {
case InjectorType::WATER:
{
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
break;
}
case InjectorType::OIL:
{
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
break;
}
case InjectorType::GAS:
{
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
const EvalWell injection_rate = getWQTotal() / scaling;
// Setup function for evaluation of BHP from THP (used only if needed).
auto bhp_from_thp = [&]() {
const auto rates = getRates();
return calculateBhpFromThp(rates, well, summaryState, deferred_logger);
};
// Call generic implementation.
Base::assembleControlEqInj(well_state, schedule, summaryState, inj_controls, getBhp(), injection_rate, bhp_from_thp, control_eq, deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
auto bhp_from_thp = [&]() {
return calculateBhpFromThp(rates, well, summaryState, deferred_logger);
};
// Call generic implementation.
Base::assembleControlEqProd(well_state, schedule, summaryState, prod_controls, getBhp(), rates, bhp_from_thp, control_eq, deferred_logger);
}
// using control_eq to update the matrix and residuals
resWell_[0][SPres] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + numEq);
}
}
template
void
MultisegmentWell::
updateThp(WellState& well_state, Opm::DeferredLogger& deferred_logger) const
{
// When there is no vaild VFP table provided, we set the thp to be zero.
if (!this->isVFPActive(deferred_logger) || this->wellIsStopped()) {
well_state.thp()[index_of_well_] = 0.;
return;
}
// the well is under other control types, we calculate the thp based on bhp and rates
std::vector rates(3, 0.0);
const Opm::PhaseUsage& pu = phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ];
}
const double bhp = well_state.bhp()[index_of_well_];
well_state.thp()[index_of_well_] = calculateThpFromBhp(rates, bhp, deferred_logger);
}
template
double
MultisegmentWell::
calculateThpFromBhp(const std::vector& rates,
const double bhp,
Opm::DeferredLogger& deferred_logger) const
{
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
const double aqua = rates[Water];
const double liquid = rates[Oil];
const double vapour = rates[Gas];
// pick the density in the top segment
const double rho = segment_densities_[0].value();
double thp = 0.0;
if (this->isInjector()) {
const int table_id = well_ecl_.vfp_table_number();
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
thp = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
}
else if (this->isProducer()) {
const int table_id = well_ecl_.vfp_table_number();
const double alq = well_ecl_.alq_value();
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
thp = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
}
else {
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
}
return thp;
}
template
template
ValueType
MultisegmentWell::
calculateBhpFromThp(const std::vector& rates,
const Well& well,
const SummaryState& summaryState,
Opm::DeferredLogger& deferred_logger) const
{
// TODO: when well is under THP control, the BHP is dependent on the rates,
// the well rates is also dependent on the BHP, so it might need to do some iteration.
// However, when group control is involved, change of the rates might impacts other wells
// so iterations on a higher level will be required. Some investigation might be needed when
// we face problems under THP control.
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
const ValueType aqua = rates[Water];
const ValueType liquid = rates[Oil];
const ValueType vapour = rates[Gas];
// pick the density in the top layer
// TODO: it is possible it should be a Evaluation
const double rho = segment_densities_[0].value();
if (well.isInjector() )
{
const auto& controls = well.injectionControls(summaryState);
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(controls.vfp_table_number)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
return vfp_properties_->getInj()->bhp(controls.vfp_table_number, aqua, liquid, vapour, controls.thp_limit) - dp;
}
else if (well.isProducer()) {
const auto& controls = well.productionControls(summaryState);
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(controls.vfp_table_number)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
return vfp_properties_->getProd()->bhp(controls.vfp_table_number, aqua, liquid, vapour, controls.thp_limit, controls.alq_value) - dp;
}
else {
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
}
}
template
void
MultisegmentWell::
assemblePressureEq(const int seg, WellState& well_state) const
{
assert(seg != 0); // not top segment
// for top segment, the well control equation will be used.
EvalWell pressure_equation = getSegmentPressure(seg);
// we need to handle the pressure difference between the two segments
// we only consider the hydrostatic pressure loss first
// TODO: we might be able to add member variables to store these values, then we update well state
// after converged
const auto hydro_pressure_drop = getHydroPressureLoss(seg);
well_state.segPressDropHydroStatic()[seg] = hydro_pressure_drop.value();
pressure_equation -= hydro_pressure_drop;
if (frictionalPressureLossConsidered()) {
const auto friction_pressure_drop = getFrictionPressureLoss(seg);
pressure_equation -= friction_pressure_drop;
well_state.segPressDropFriction()[seg] = friction_pressure_drop.value();
}
resWell_[seg][SPres] = pressure_equation.value();
const int seg_upwind = upwinding_segments_[seg];
duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + numEq);
duneD_[seg][seg][SPres][GTotal] += pressure_equation.derivative(GTotal + numEq);
if (has_water) {
duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + numEq);
}
if (has_gas) {
duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + numEq);
}
// contribution from the outlet segment
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
resWell_[seg][SPres] -= outlet_pressure.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
}
if (accelerationalPressureLossConsidered()) {
handleAccelerationPressureLoss(seg, well_state);
}
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getHydroPressureLoss(const int seg) const
{
return segment_densities_[seg] * gravity_ * segment_depth_diffs_[seg];
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getFrictionPressureLoss(const int seg) const
{
const EvalWell mass_rate = segment_mass_rates_[seg];
const int seg_upwind = upwinding_segments_[seg];
EvalWell density = segment_densities_[seg_upwind];
EvalWell visc = segment_viscosities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
density.clearDerivatives();
visc.clearDerivatives();
}
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
const double length = segmentSet()[seg].totalLength() - segmentSet()[outlet_segment_index].totalLength();
assert(length > 0.);
const double roughness = segmentSet()[seg].roughness();
const double area = segmentSet()[seg].crossArea();
const double diameter = segmentSet()[seg].internalDiameter();
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc);
}
template
void
MultisegmentWell::
handleAccelerationPressureLoss(const int seg, WellState& well_state) const
{
const double area = segmentSet()[seg].crossArea();
const EvalWell mass_rate = segment_mass_rates_[seg];
const int seg_upwind = upwinding_segments_[seg];
EvalWell density = segment_densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
density.clearDerivatives();
}
EvalWell accelerationPressureLoss = mswellhelpers::velocityHead(area, mass_rate, density);
// handling the velocity head of intlet segments
for (const int inlet : segment_inlets_[seg]) {
const int seg_upwind_inlet = upwinding_segments_[inlet];
const double inlet_area = segmentSet()[inlet].crossArea();
EvalWell inlet_density = segment_densities_[seg_upwind_inlet];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (inlet != seg_upwind_inlet) {
inlet_density.clearDerivatives();
}
const EvalWell inlet_mass_rate = segment_mass_rates_[inlet];
accelerationPressureLoss -= mswellhelpers::velocityHead(std::max(inlet_area, area), inlet_mass_rate, inlet_density);
}
// We change the sign of the accelerationPressureLoss for injectors.
// Is this correct? Testing indicates that this is what the reference simulator does
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
accelerationPressureLoss *= sign;
well_state.segPressDropAcceleration()[seg] = accelerationPressureLoss.value();
resWell_[seg][SPres] -= accelerationPressureLoss.value();
duneD_[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + numEq);
duneD_[seg][seg][SPres][GTotal] -= accelerationPressureLoss.derivative(GTotal + numEq);
if (has_water) {
duneD_[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + numEq);
}
if (has_gas) {
duneD_[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + numEq);
}
}
template
void
MultisegmentWell::
processFractions(const int seg) const
{
const PhaseUsage& pu = phaseUsage();
std::vector fractions(number_of_phases_, 0.0);
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
const int oil_pos = pu.phase_pos[Oil];
fractions[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
fractions[water_pos] = primary_variables_[seg][WFrac];
fractions[oil_pos] -= fractions[water_pos];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
fractions[gas_pos] = primary_variables_[seg][GFrac];
fractions[oil_pos] -= fractions[gas_pos];
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = pu.phase_pos[Water];
if (fractions[water_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[water_pos]);
}
fractions[oil_pos] /= (1.0 - fractions[water_pos]);
fractions[water_pos] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = pu.phase_pos[Gas];
if (fractions[gas_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[gas_pos]);
}
fractions[oil_pos] /= (1.0 - fractions[gas_pos]);
fractions[gas_pos] = 0.0;
}
}
if (fractions[oil_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[oil_pos]);
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[oil_pos]);
}
fractions[oil_pos] = 0.0;
}
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
primary_variables_[seg][WFrac] = fractions[pu.phase_pos[Water]];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
primary_variables_[seg][GFrac] = fractions[pu.phase_pos[Gas]];
}
}
template
void
MultisegmentWell::
checkWellOperability(const Simulator& /* ebos_simulator */,
const WellState& /* well_state */,
Opm::DeferredLogger& deferred_logger)
{
const bool checkOperability = EWOMS_GET_PARAM(TypeTag, bool, EnableWellOperabilityCheck);
if (!checkOperability) {
return;
}
// focusing on PRODUCER for now
if (this->isInjector()) {
return;
}
if (!this->underPredictionMode() ) {
return;
}
const std::string msg = "Support of well operability checking for multisegment wells is not implemented "
"yet, checkWellOperability() for " + name() + " will do nothing";
deferred_logger.warning("NO_OPERATABILITY_CHECKING_MS_WELLS", msg);
}
template
void
MultisegmentWell::
updateWellStateFromPrimaryVariables(WellState& well_state, Opm::DeferredLogger& deferred_logger) const
{
const PhaseUsage& pu = phaseUsage();
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
const int oil_pos = pu.phase_pos[Oil];
for (int seg = 0; seg < numberOfSegments(); ++seg) {
std::vector fractions(number_of_phases_, 0.0);
fractions[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
fractions[water_pos] = primary_variables_[seg][WFrac];
fractions[oil_pos] -= fractions[water_pos];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
fractions[gas_pos] = primary_variables_[seg][GFrac];
fractions[oil_pos] -= fractions[gas_pos];
}
// convert the fractions to be Q_p / G_total to calculate the phase rates
for (int p = 0; p < number_of_phases_; ++p) {
const double scale = scalingFactor(p);
// for injection wells, there should only one non-zero scaling factor
if (scale > 0.) {
fractions[p] /= scale;
} else {
// this should only happens to injection wells
fractions[p] = 0.;
}
}
// calculate the phase rates based on the primary variables
const double g_total = primary_variables_[seg][GTotal];
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
for (int p = 0; p < number_of_phases_; ++p) {
const double phase_rate = g_total * fractions[p];
well_state.segRates()[(seg + top_segment_index) * number_of_phases_ + p] = phase_rate;
if (seg == 0) { // top segment
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = phase_rate;
}
}
// update the segment pressure
well_state.segPress()[seg + top_segment_index] = primary_variables_[seg][SPres];
if (seg == 0) { // top segment
well_state.bhp()[index_of_well_] = well_state.segPress()[seg + top_segment_index];
}
}
updateThp(well_state, deferred_logger);
}
template
bool
MultisegmentWell::
frictionalPressureLossConsidered() const
{
// HF- and HFA needs to consider frictional pressure loss
return (segmentSet().compPressureDrop() != WellSegments::CompPressureDrop::H__);
}
template
bool
MultisegmentWell::
accelerationalPressureLossConsidered() const
{
return (segmentSet().compPressureDrop() == WellSegments::CompPressureDrop::HFA);
}
template
bool
MultisegmentWell::
iterateWellEqWithControl(const Simulator& ebosSimulator,
const std::vector& B_avg,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
const int max_iter_number = param_.max_inner_iter_ms_wells_;
const WellState well_state0 = well_state;
const std::vector residuals0 = getWellResiduals(B_avg);
std::vector > residual_history;
std::vector measure_history;
int it = 0;
// relaxation factor
double relaxation_factor = 1.;
const double min_relaxation_factor = 0.6;
bool converged = false;
int stagnate_count = 0;
bool relax_convergence = false;
for (; it < max_iter_number; ++it, ++debug_cost_counter_) {
assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, deferred_logger);
const BVectorWell dx_well = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell_);
if (it > param_.strict_inner_iter_ms_wells_)
relax_convergence = true;
const auto report = getWellConvergence(well_state, B_avg, deferred_logger, relax_convergence);
if (report.converged()) {
converged = true;
break;
}
residual_history.push_back(getWellResiduals(B_avg));
measure_history.push_back(getResidualMeasureValue(well_state, residual_history[it], deferred_logger) );
bool is_oscillate = false;
bool is_stagnate = false;
detectOscillations(measure_history, it, is_oscillate, is_stagnate);
// TODO: maybe we should have more sophiscated strategy to recover the relaxation factor,
// for example, to recover it to be bigger
if (is_oscillate || is_stagnate) {
// HACK!
std::ostringstream sstr;
if (relaxation_factor == min_relaxation_factor) {
// Still stagnating, terminate iterations if 5 iterations pass.
++stagnate_count;
if (stagnate_count == 6) {
sstr << " well " << name() << " observes severe stagnation and/or oscillation. We relax the tolerance and check for convergence. \n";
const auto reportStag = getWellConvergence(well_state, B_avg, deferred_logger, true);
if (reportStag.converged()) {
converged = true;
sstr << " well " << name() << " manages to get converged with relaxed tolerances in " << it << " inner iterations";
deferred_logger.debug(sstr.str());
return converged;
}
}
}
// a factor value to reduce the relaxation_factor
const double reduction_mutliplier = 0.9;
relaxation_factor = std::max(relaxation_factor * reduction_mutliplier, min_relaxation_factor);
// debug output
if (is_stagnate) {
sstr << " well " << name() << " observes stagnation in inner iteration " << it << "\n";
}
if (is_oscillate) {
sstr << " well " << name() << " observes oscillation in inner iteration " << it << "\n";
}
sstr << " relaxation_factor is " << relaxation_factor << " now\n";
deferred_logger.debug(sstr.str());
}
updateWellState(dx_well, well_state, deferred_logger, relaxation_factor);
initPrimaryVariablesEvaluation();
}
// TODO: we should decide whether to keep the updated well_state, or recover to use the old well_state
if (converged) {
std::ostringstream sstr;
sstr << " Well " << name() << " converged in " << it << " inner iterations.";
if (relax_convergence)
sstr << " (A relaxed tolerance was used after "<< param_.strict_inner_iter_ms_wells_ << " iterations)";
deferred_logger.debug(sstr.str());
} else {
std::ostringstream sstr;
sstr << " Well " << name() << " did not converge in " << it << " inner iterations.";
#define EXTRA_DEBUG_MSW 0
#if EXTRA_DEBUG_MSW
sstr << "***** Outputting the residual history for well " << name() << " during inner iterations:";
for (int i = 0; i < it; ++i) {
const auto& residual = residual_history[i];
sstr << " residual at " << i << "th iteration ";
for (const auto& res : residual) {
sstr << " " << res;
}
sstr << " " << measure_history[i] << " \n";
}
#endif
deferred_logger.debug(sstr.str());
}
return converged;
}
template
void
MultisegmentWell::
assembleWellEqWithoutIteration(const Simulator& ebosSimulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState& well_state,
Opm::DeferredLogger& deferred_logger)
{
// update the upwinding segments
updateUpwindingSegments();
// calculate the fluid properties needed.
computeSegmentFluidProperties(ebosSimulator);
// clear all entries
duneB_ = 0.0;
duneC_ = 0.0;
duneD_ = 0.0;
resWell_ = 0.0;
duneDSolver_.reset();
well_state.wellVaporizedOilRates()[index_of_well_] = 0.;
well_state.wellDissolvedGasRates()[index_of_well_] = 0.;
// for the black oil cases, there will be four equations,
// the first three of them are the mass balance equations, the last one is the pressure equations.
//
// but for the top segment, the pressure equation will be the well control equation, and the other three will be the same.
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator);
const int nseg = numberOfSegments();
for (int seg = 0; seg < nseg; ++seg) {
// calculating the accumulation term
// TODO: without considering the efficiencty factor for now
{
const EvalWell segment_surface_volume = getSegmentSurfaceVolume(ebosSimulator, seg);
// Add a regularization_factor to increase the accumulation term
// This will make the system less stiff and help convergence for
// difficult cases
const Scalar regularization_factor = param_.regularization_factor_ms_wells_;
// for each component
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell accumulation_term = regularization_factor * (segment_surface_volume * surfaceVolumeFraction(seg, comp_idx)
- segment_fluid_initial_[seg][comp_idx]) / dt;
resWell_[seg][comp_idx] += accumulation_term.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + numEq);
}
}
}
// considering the contributions due to flowing out from the segment
{
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell segment_rate = getSegmentRateUpwinding(seg, comp_idx) * well_efficiency_factor_;
const int seg_upwind = upwinding_segments_[seg];
// segment_rate contains the derivatives with respect to GTotal in seg,
// and WFrac and GFrac in seg_upwind
resWell_[seg][comp_idx] -= segment_rate.value();
duneD_[seg][seg][comp_idx][GTotal] -= segment_rate.derivative(GTotal + numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
duneD_[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
duneD_[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + numEq);
}
// pressure derivative should be zero
}
}
// considering the contributions from the inlet segments
{
for (const int inlet : segment_inlets_[seg]) {
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell inlet_rate = getSegmentRateUpwinding(inlet, comp_idx) * well_efficiency_factor_;
const int inlet_upwind = upwinding_segments_[inlet];
// inlet_rate contains the derivatives with respect to GTotal in inlet,
// and WFrac and GFrac in inlet_upwind
resWell_[seg][comp_idx] += inlet_rate.value();
duneD_[seg][inlet][comp_idx][GTotal] += inlet_rate.derivative(GTotal + numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
duneD_[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
duneD_[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + numEq);
}
// pressure derivative should be zero
}
}
}
// calculating the perforation rate for each perforation that belongs to this segment
const EvalWell seg_pressure = getSegmentPressure(seg);
for (const int perf : segment_perforations_[seg]) {
const int cell_idx = well_cells_[perf];
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector mob(num_components_, 0.0);
getMobility(ebosSimulator, perf, mob);
std::vector cq_s(num_components_, 0.0);
EvalWell perf_press;
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRatePressure(int_quants, mob, seg, perf, seg_pressure, allow_cf, cq_s, perf_press, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger);
// updating the solution gas rate and solution oil rate
if (this->isProducer()) {
well_state.wellDissolvedGasRates()[index_of_well_] += perf_dis_gas_rate;
well_state.wellVaporizedOilRates()[index_of_well_] += perf_vap_oil_rate;
}
// store the perf pressure and rates
const int rate_start_offset = (first_perf_ + perf) * number_of_phases_;
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
well_state.perfPhaseRates()[rate_start_offset + ebosCompIdxToFlowCompIdx(comp_idx)] = cq_s[comp_idx].value();
}
well_state.perfPress()[first_perf_ + perf] = perf_press.value();
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[comp_idx] * well_efficiency_factor_;
connectionRates_[perf][comp_idx] = Base::restrictEval(cq_s_effective);
// subtract sum of phase fluxes in the well equations.
resWell_[seg][comp_idx] += cq_s_effective.value();
// assemble the jacobians
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + numEq); // intput in transformed matrix
// the index name for the D should be eq_idx / pv_idx
duneD_[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + numEq);
}
for (int pv_idx = 0; pv_idx < numEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneB_[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
}
}
}
// the fourth dequation, the pressure drop equation
if (seg == 0) { // top segment, pressure equation is the control equation
const auto& summaryState = ebosSimulator.vanguard().summaryState();
const Opm::Schedule& schedule = ebosSimulator.vanguard().schedule();
assembleControlEq(well_state, schedule, summaryState, inj_controls, prod_controls, deferred_logger);
} else {
// TODO: maybe the following should go to the function assemblePressureEq()
switch(segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
assembleSICDPressureEq(seg, well_state);
break;
case Segment::SegmentType::VALVE :
assembleValvePressureEq(seg, well_state);
break;
default :
assemblePressureEq(seg, well_state);
}
}
well_state.segPressDrop()[seg] = well_state.segPressDropHydroStatic()[seg] +
well_state.segPressDropFriction()[seg] +
well_state.segPressDropAcceleration()[seg];
}
}
template
bool
MultisegmentWell::
openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const
{
return !getAllowCrossFlow() && allDrawDownWrongDirection(ebos_simulator);
}
template
bool
MultisegmentWell::
allDrawDownWrongDirection(const Simulator& ebos_simulator) const
{
bool all_drawdown_wrong_direction = true;
const int nseg = numberOfSegments();
for (int seg = 0; seg < nseg; ++seg) {
const EvalWell segment_pressure = getSegmentPressure(seg);
for (const int perf : segment_perforations_[seg]) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
// pressure difference between the segment and the perforation
const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf];
// pressure difference between the perforation and the grid cell
const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf];
const double pressure_cell = (fs.pressure(FluidSystem::oilPhaseIdx)).value();
const double perf_press = pressure_cell - cell_perf_press_diff;
// Pressure drawdown (also used to determine direction of flow)
// TODO: not 100% sure about the sign of the seg_perf_press_diff
const EvalWell drawdown = perf_press - (segment_pressure + perf_seg_press_diff);
// for now, if there is one perforation can produce/inject in the correct
// direction, we consider this well can still produce/inject.
// TODO: it can be more complicated than this to cause wrong-signed rates
if ( (drawdown < 0. && this->isInjector()) ||
(drawdown > 0. && this->isProducer()) ) {
all_drawdown_wrong_direction = false;
break;
}
}
}
return all_drawdown_wrong_direction;
}
template
void
MultisegmentWell::
wellTestingPhysical(const Simulator& /* simulator */, const std::vector& /* B_avg */,
const double /* simulation_time */, const int /* report_step */,
WellState& /* well_state */, WellTestState& /* welltest_state */, Opm::DeferredLogger& deferred_logger)
{
const std::string msg = "Support of well testing for physical limits for multisegment wells is not "
"implemented yet, wellTestingPhysical() for " + name() + " will do nothing";
deferred_logger.warning("NO_WELLTESTPHYSICAL_CHECKING_MS_WELLS", msg);
}
template
void
MultisegmentWell::
updateWaterThroughput(const double dt OPM_UNUSED, WellState& well_state OPM_UNUSED) const
{
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentSurfaceVolume(const Simulator& ebos_simulator, const int seg_idx) const
{
EvalWell temperature;
EvalWell saltConcentration;
int pvt_region_index;
{
// using the pvt region of first perforated cell
// TODO: it should be a member of the WellInterface, initialized properly
const int cell_idx = well_cells_[0];
const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
saltConcentration = extendEval(fs.saltConcentration());
pvt_region_index = fs.pvtRegionIndex();
}
const EvalWell seg_pressure = getSegmentPressure(seg_idx);
std::vector mix_s(num_components_, 0.0);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
mix_s[comp_idx] = surfaceVolumeFraction(seg_idx, comp_idx);
}
std::vector b(num_components_, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
b[waterCompIdx] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration);
}
EvalWell rv(0.0);
// gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
if (rvmax < 0.0) { // negative rvmax can happen if the seg_pressure is outside the range of the table
rvmax = 0.0;
}
if (mix_s[oilCompIdx] > 0.0) {
if (mix_s[gasCompIdx] > 0.0) {
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
}
if (rv > rvmax) {
rv = rvmax;
}
b[gasCompIdx] =
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv);
} else { // no oil exists
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
}
EvalWell rs(0.0);
// oil phase
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
if (rsmax < 0.0) { // negative rsmax can happen if the seg_pressure is outside the range of the table
rsmax = 0.0;
}
if (mix_s[gasCompIdx] > 0.0) {
if (mix_s[oilCompIdx] > 0.0) {
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
}
// std::cout << " rs " << rs.value() << " rsmax " << rsmax.value() << std::endl;
if (rs > rsmax) {
rs = rsmax;
}
b[oilCompIdx] =
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
} else { // no oil exists
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
} else { // no gas phase
// it is the same with zero mix_s[Gas]
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
}
std::vector mix(mix_s);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell d = 1.0 - rs * rv;
if (d <= 0.0 || d > 1.0) {
OPM_THROW(Opm::NumericalIssue, "Problematic d value " << d << " obtained for well " << name()
<< " during convertion to surface volume with rs " << rs
<< ", rv " << rv << " and pressure " << seg_pressure
<< " obtaining d " << d);
}
if (rs > 0.0) { // rs > 0.0?
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d;
}
if (rv > 0.0) { // rv > 0.0?
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d;
}
}
EvalWell vol_ratio(0.0);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
vol_ratio += mix[comp_idx] / b[comp_idx];
}
// We increase the segment volume with a factor 10 to stabilize the system.
const double volume = segmentSet()[seg_idx].volume();
return volume / vol_ratio;
}
template
std::vector::Scalar>
MultisegmentWell::
getWellResiduals(const std::vector& B_avg) const
{
assert(int(B_avg.size() ) == num_components_);
std::vector residuals(numWellEq + 1, 0.0);
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
double residual = 0.;
if (eq_idx < num_components_) {
residual = std::abs(resWell_[seg][eq_idx]) * B_avg[eq_idx];
} else {
if (seg > 0) {
residual = std::abs(resWell_[seg][eq_idx]);
}
}
if (std::isnan(residual) || std::isinf(residual)) {
OPM_THROW(Opm::NumericalIssue, "nan or inf value for residal get for well " << name()
<< " segment " << seg << " eq_idx " << eq_idx);
}
if (residual > residuals[eq_idx]) {
residuals[eq_idx] = residual;
}
}
}
// handling the control equation residual
{
const double control_residual = std::abs(resWell_[0][numWellEq - 1]);
if (std::isnan(control_residual) || std::isinf(control_residual)) {
OPM_THROW(Opm::NumericalIssue, "nan or inf value for control residal get for well " << name());
}
residuals[numWellEq] = control_residual;
}
return residuals;
}
/// Detect oscillation or stagnation based on the residual measure history
template
void
MultisegmentWell::
detectOscillations(const std::vector& measure_history,
const int it, bool& oscillate, bool& stagnate) const
{
if ( it < 2 ) {
oscillate = false;
stagnate = false;
return;
}
stagnate = true;
const double F0 = measure_history[it];
const double F1 = measure_history[it - 1];
const double F2 = measure_history[it - 2];
const double d1 = std::abs((F0 - F2) / F0);
const double d2 = std::abs((F0 - F1) / F0);
const double oscillaton_rel_tol = 0.2;
oscillate = (d1 < oscillaton_rel_tol) && (oscillaton_rel_tol < d2);
const double stagnation_rel_tol = 1.e-2;
stagnate = std::abs((F1 - F2) / F2) <= stagnation_rel_tol;
}
template
double
MultisegmentWell::
getResidualMeasureValue(const WellState& well_state,
const std::vector& residuals,
DeferredLogger& deferred_logger) const
{
assert(int(residuals.size()) == numWellEq + 1);
const double rate_tolerance = param_.tolerance_wells_;
int count = 0;
double sum = 0;
for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) {
if (residuals[eq_idx] > rate_tolerance) {
sum += residuals[eq_idx] / rate_tolerance;
++count;
}
}
const double pressure_tolerance = param_.tolerance_pressure_ms_wells_;
if (residuals[SPres] > pressure_tolerance) {
sum += residuals[SPres] / pressure_tolerance;
++count;
}
const double control_tolerance = getControlTolerance(well_state, deferred_logger);
if (residuals[SPres + 1] > control_tolerance) {
sum += residuals[SPres + 1] / control_tolerance;
++count;
}
// if (count == 0), it should be converged.
assert(count != 0);
return sum;
}
template
double
MultisegmentWell::
getControlTolerance(const WellState& well_state,
DeferredLogger& deferred_logger) const
{
double control_tolerance = 0.;
const int well_index = index_of_well_;
if (this->isInjector() )
{
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
switch(current) {
case Well::InjectorCMode::THP:
control_tolerance = param_.tolerance_pressure_ms_wells_;
break;
case Well::InjectorCMode::BHP:
control_tolerance = param_.tolerance_wells_;
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
control_tolerance = param_.tolerance_wells_;
break;
case Well::InjectorCMode::GRUP:
control_tolerance = param_.tolerance_wells_;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
}
}
if (this->isProducer() )
{
const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index];
switch(current) {
case Well::ProducerCMode::THP:
control_tolerance = param_.tolerance_pressure_ms_wells_; // 0.1 bar
break;
case Well::ProducerCMode::BHP:
control_tolerance = param_.tolerance_wells_; // 0.01 bar
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
control_tolerance = param_.tolerance_wells_; // smaller tolerance for rate control
break;
case Well::ProducerCMode::GRUP:
control_tolerance = param_.tolerance_wells_; // smaller tolerance for rate control
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
}
}
return control_tolerance;
}
template
void
MultisegmentWell::
checkConvergenceControlEq(const WellState& well_state,
ConvergenceReport& report,
DeferredLogger& deferred_logger) const
{
double control_tolerance = 0.;
using CR = ConvergenceReport;
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
const int well_index = index_of_well_;
if (this->isInjector() )
{
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
switch(current) {
case Well::InjectorCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = param_.tolerance_pressure_ms_wells_;
break;
case Well::InjectorCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = param_.tolerance_pressure_ms_wells_;
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = param_.tolerance_wells_;
break;
case Well::InjectorCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = param_.tolerance_wells_;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
}
}
if (this->isProducer() )
{
const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index];
switch(current) {
case Well::ProducerCMode::THP:
ctrltype = CR::WellFailure::Type::ControlTHP;
control_tolerance = param_.tolerance_pressure_ms_wells_;
break;
case Well::ProducerCMode::BHP:
ctrltype = CR::WellFailure::Type::ControlBHP;
control_tolerance = param_.tolerance_pressure_ms_wells_;
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = param_.tolerance_wells_;
break;
case Well::ProducerCMode::GRUP:
ctrltype = CR::WellFailure::Type::ControlRate;
control_tolerance = param_.tolerance_wells_;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger);
}
}
const double well_control_residual = std::abs(resWell_[0][SPres]);
const int dummy_component = -1;
const double max_residual_allowed = param_.max_residual_allowed_;
if (std::isnan(well_control_residual)) {
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, name()});
} else if (well_control_residual > max_residual_allowed * 10.) {
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, name()});
} else if ( well_control_residual > control_tolerance) {
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, name()});
}
}
template
void
MultisegmentWell::
updateUpwindingSegments()
{
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// special treatment is needed for segment 0
if (seg == 0) {
// we are not supposed to have injecting producers and producing injectors
assert( ! (this->isProducer() && primary_variables_evaluation_[seg][GTotal] > 0.) );
assert( ! (this->isInjector() && primary_variables_evaluation_[seg][GTotal] < 0.) );
upwinding_segments_[seg] = seg;
continue;
}
// for other normal segments
if (primary_variables_evaluation_[seg][GTotal] <= 0.) {
upwinding_segments_[seg] = seg;
} else {
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
upwinding_segments_[seg] = outlet_segment_index;
}
}
}
template
void
MultisegmentWell::
assembleSICDPressureEq(const int seg, WellState& well_state) const
{
// TODO: upwinding needs to be taken care of
// top segment can not be a spiral ICD device
assert(seg != 0);
// the pressure equation is something like
// p_seg - deltaP - p_outlet = 0.
// the major part is how to calculate the deltaP
EvalWell pressure_equation = getSegmentPressure(seg);
const auto sicd_pressure_drop = pressureDropSpiralICD(seg);
pressure_equation = pressure_equation - sicd_pressure_drop;
well_state.segPressDropFriction()[seg] = sicd_pressure_drop.value();
const int seg_upwind = upwinding_segments_[seg];
resWell_[seg][SPres] = pressure_equation.value();
duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + numEq);
duneD_[seg][seg][SPres][GTotal] += pressure_equation.derivative(GTotal + numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + numEq);
}
// contribution from the outlet segment
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
resWell_[seg][SPres] -= outlet_pressure.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
}
}
template
void
MultisegmentWell::
assembleValvePressureEq(const int seg, WellState& well_state) const
{
// top segment can not be a spiral ICD device
assert(seg != 0);
// const Valve& valve = *segmentSet()[seg].Valve();
// the pressure equation is something like
// p_seg - deltaP - p_outlet = 0.
// the major part is how to calculate the deltaP
EvalWell pressure_equation = getSegmentPressure(seg);
const int seg_upwind = upwinding_segments_[seg];
const auto valve_pressure_drop = pressureDropValve(seg);
pressure_equation = pressure_equation - valve_pressure_drop;
well_state.segPressDropFriction()[seg] = valve_pressure_drop.value();
resWell_[seg][SPres] = pressure_equation.value();
duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + numEq);
duneD_[seg][seg][SPres][GTotal] += pressure_equation.derivative(GTotal + numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + numEq);
}
// contribution from the outlet segment
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
resWell_[seg][SPres] -= outlet_pressure.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
}
}
template
std::optional
MultisegmentWell::
computeBhpAtThpLimitProd(const Simulator& ebos_simulator,
const std::vector& B_avg,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) should be returned.
// Make the fbhp() function.
const auto& controls = well_ecl_.productionControls(summary_state);
const auto& table = *(vfp_properties_->getProd()->getTable(controls.vfp_table_number));
const double vfp_ref_depth = table.getDatumDepth();
const double rho = segment_densities_[0].value(); // Use the density at the top perforation.
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
auto fbhp = [this, &controls, dp](const std::vector& rates) {
assert(rates.size() == 3);
return this->vfp_properties_->getProd()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit, controls.alq_value) - dp;
};
// Make the flo() function.
auto flo_type = table.getFloType();
auto flo = [flo_type](const std::vector& rates) {
return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type);
};
// Make the frates() function.
auto frates = [this, &ebos_simulator, &B_avg, &deferred_logger](const double bhp) {
// Not solving the well equations here, which means we are
// calculating at the current Fg/Fw values of the
// well. This does not matter unless the well is
// crossflowing, and then it is likely still a good
// approximation.
std::vector rates(3);
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, rates, deferred_logger);
return rates;
};
// Find the bhp-point where production becomes nonzero.
double bhp_max = 0.0;
{
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
double low = controls.bhp_limit;
double high = maxPerfPress(ebos_simulator) + 1.0 * unit::barsa;
double f_low = fflo(low);
double f_high = fflo(high);
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" f(low) = " + std::to_string(f_low) +
" f(high) = " + std::to_string(f_high));
int adjustments = 0;
const int max_adjustments = 10;
const double adjust_amount = 5.0 * unit::barsa;
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
// Same sign, adjust high to see if we can flip it.
high += adjust_amount;
f_high = fflo(high);
++adjustments;
}
if (f_low * f_high > 0.0) {
if (f_low > 0.0) {
// Even at the BHP limit, we are injecting.
// There will be no solution here, return an
// empty optional.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
"Robust bhp(thp) solve failed due to inoperability for well " + name());
return std::optional();
} else {
// Still producing, even at high bhp.
assert(f_high < 0.0);
bhp_max = high;
}
} else {
// Bisect to find a bhp point where we produce, but
// not a large amount ('eps' below).
const double eps = 0.1 * std::fabs(table.getFloAxis().front());
const int maxit = 50;
int it = 0;
while (std::fabs(f_low) > eps && it < maxit) {
const double curr = 0.5*(low + high);
const double f_curr = fflo(curr);
if (f_curr * f_low > 0.0) {
low = curr;
f_low = f_curr;
} else {
high = curr;
f_high = f_curr;
}
++it;
}
bhp_max = low;
}
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" f(low) = " + std::to_string(f_low) +
" f(high) = " + std::to_string(f_high) +
" bhp_max = " + std::to_string(bhp_max));
}
// Define the equation we want to solve.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// Find appropriate brackets for the solution.
double low = controls.bhp_limit;
double high = bhp_max;
{
double eq_high = eq(high);
double eq_low = eq(low);
const double eq_bhplimit = eq_low;
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
" low = " + std::to_string(low) +
" high = " + std::to_string(high) +
" eq(low) = " + std::to_string(eq_low) +
" eq(high) = " + std::to_string(eq_high));
if (eq_low * eq_high > 0.0) {
// Failed to bracket the zero.
// If this is due to having two solutions, bisect until bracketed.
double abs_low = std::fabs(eq_low);
double abs_high = std::fabs(eq_high);
int bracket_attempts = 0;
const int max_bracket_attempts = 20;
double interval = high - low;
const double min_interval = 1.0 * unit::barsa;
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
if (abs_high < abs_low) {
low = 0.5 * (low + high);
eq_low = eq(low);
abs_low = std::fabs(eq_low);
} else {
high = 0.5 * (low + high);
eq_high = eq(high);
abs_high = std::fabs(eq_high);
}
++bracket_attempts;
}
if (eq_low * eq_high > 0.0) {
// Still failed bracketing!
const double limit = 3.0 * unit::barsa;
if (std::min(abs_low, abs_high) < limit) {
// Return the least bad solution if less off than 3 bar.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
"Robust bhp(thp) not solved precisely for well " + name());
return abs_low < abs_high ? low : high;
} else {
// Return failure.
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
"Robust bhp(thp) solve failed due to bracketing failure for well " + name());
return std::optional();
}
}
}
// We have a bracket!
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
// If so, that is the bracket we shall use, choosing the solution with the
// highest flow.
if (eq_low * eq_bhplimit <= 0.0) {
high = low;
low = controls.bhp_limit;
}
}
// Solve for the proper solution in the given interval.
const int max_iteration = 100;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection::
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
return solved_bhp;
}
catch (...) {
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + name());
return std::optional();
}
}
template
std::optional
MultisegmentWell::
computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
const std::vector& B_avg,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const
{
// Given a VFP function returning bhp as a function of phase
// rates and thp:
// fbhp(rates, thp),
// a function extracting the particular flow rate used for VFP
// lookups:
// flo(rates)
// and the inflow function (assuming the reservoir is fixed):
// frates(bhp)
// we want to solve the equation:
// fbhp(frates(bhp, thplimit)) - bhp = 0
// for bhp.
//
// This may result in 0, 1 or 2 solutions. If two solutions,
// the one corresponding to the lowest bhp (and therefore
// highest rate) is returned.
//
// In order to detect these situations, we will find piecewise
// linear approximations both to the inverse of the frates
// function and to the fbhp function.
//
// We first take the FLO sample points of the VFP curve, and
// find the corresponding bhp values by solving the equation:
// flo(frates(bhp)) - flo_sample = 0
// for bhp, for each flo_sample. The resulting (flo_sample,
// bhp_sample) values give a piecewise linear approximation to
// the true inverse inflow function, at the same flo values as
// the VFP data.
//
// Then we extract a piecewise linear approximation from the
// multilinear fbhp() by evaluating it at the flo_sample
// points, with fractions given by the frates(bhp_sample)
// values.
//
// When we have both piecewise linear curves defined on the
// same flo_sample points, it is easy to distinguish between
// the 0, 1 or 2 solution cases, and obtain the right interval
// in which to solve for the solution we want (with highest
// flow in case of 2 solutions).
// Make the fbhp() function.
const auto& controls = well_ecl_.injectionControls(summary_state);
const auto& table = *(vfp_properties_->getInj()->getTable(controls.vfp_table_number));
const double vfp_ref_depth = table.getDatumDepth();
const double rho = segment_densities_[0].value(); // Use the density at the top perforation.
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
auto fbhp = [this, &controls, dp](const std::vector& rates) {
assert(rates.size() == 3);
return this->vfp_properties_->getInj()
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit) - dp;
};
// Make the flo() function.
auto flo_type = table.getFloType();
auto flo = [flo_type](const std::vector& rates) {
return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type);
};
// Make the frates() function.
auto frates = [this, &ebos_simulator, &B_avg, &deferred_logger](const double bhp) {
// Not solving the well equations here, which means we are
// calculating at the current Fg/Fw values of the
// well. This does not matter unless the well is
// crossflowing, and then it is likely still a good
// approximation.
std::vector rates(3);
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, rates, deferred_logger);
return rates;
};
// Get the flo samples, add extra samples at low rates and bhp
// limit point if necessary.
std::vector flo_samples = table.getFloAxis();
if (flo_samples[0] > 0.0) {
const double f0 = flo_samples[0];
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
}
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
if (flo_samples.back() < flo_bhp_limit) {
flo_samples.push_back(flo_bhp_limit);
}
// Find bhp values for inflow relation corresponding to flo samples.
std::vector bhp_samples;
for (double flo_sample : flo_samples) {
if (flo_sample > flo_bhp_limit) {
// We would have to go over the bhp limit to obtain a
// flow of this magnitude. We associate all such flows
// with simply the bhp limit. The first one
// encountered is considered valid, the rest not. They
// are therefore skipped.
bhp_samples.push_back(controls.bhp_limit);
break;
}
auto eq = [&flo, &frates, flo_sample](double bhp) {
return flo(frates(bhp)) - flo_sample;
};
// TODO: replace hardcoded low/high limits.
const double low = 10.0 * unit::barsa;
const double high = 800.0 * unit::barsa;
const int max_iteration = 100;
const double flo_tolerance = 0.05 * std::fabs(flo_samples.back());
int iteration = 0;
try {
const double solved_bhp = RegulaFalsiBisection::
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
bhp_samples.push_back(solved_bhp);
}
catch (...) {
// Use previous value (or max value if at start) if we failed.
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + name());
}
}
// Find bhp values for VFP relation corresponding to flo samples.
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
std::vector fbhp_samples(num_samples);
for (int ii = 0; ii < num_samples; ++ii) {
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
}
// #define EXTRA_THP_DEBUGGING
#ifdef EXTRA_THP_DEBUGGING
std::string dbgmsg;
dbgmsg += "flo: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(flo_samples[ii]);
}
dbgmsg += "\nbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(bhp_samples[ii]);
}
dbgmsg += "\nfbhp: ";
for (int ii = 0; ii < num_samples; ++ii) {
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
}
OpmLog::debug(dbgmsg);
#endif // EXTRA_THP_DEBUGGING
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
// We only look at the valid
int sign_change_index = -1;
for (int ii = 0; ii < num_samples - 1; ++ii) {
const double curr = fbhp_samples[ii] - bhp_samples[ii];
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
if (curr * next < 0.0) {
// Sign change in the [ii, ii + 1] interval.
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
}
}
// Handle the no solution case.
if (sign_change_index == -1) {
return std::optional();
}
// Solve for the proper solution in the given interval.
auto eq = [&fbhp, &frates](double bhp) {
return fbhp(frates(bhp)) - bhp;
};
// TODO: replace hardcoded low/high limits.
const double low = bhp_samples[sign_change_index + 1];
const double high = bhp_samples[sign_change_index];
const int max_iteration = 100;
const double bhp_tolerance = 0.01 * unit::barsa;
int iteration = 0;
if (low == high) {
// We are in the high flow regime where the bhp_samples
// are all equal to the bhp_limit.
assert(low == controls.bhp_limit);
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
"Robust bhp(thp) solve failed for well " + name());
return std::optional