/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include namespace Opm { template MultisegmentWell:: MultisegmentWell(const Well& well, const int time_step, const ModelParameters& param, const RateConverterType& rate_converter, const int pvtRegionIdx, const int num_components, const int num_phases, const int index_of_well, const int first_perf_index, const std::vector& perf_data) : Base(well, time_step, param, rate_converter, pvtRegionIdx, num_components, num_phases, index_of_well, first_perf_index, perf_data) , segment_perforations_(numberOfSegments()) , segment_inlets_(numberOfSegments()) , cell_perforation_depth_diffs_(number_of_perforations_, 0.0) , cell_perforation_pressure_diffs_(number_of_perforations_, 0.0) , perforation_segment_depth_diffs_(number_of_perforations_, 0.0) , segment_fluid_initial_(numberOfSegments(), std::vector(num_components_, 0.0)) , segment_densities_(numberOfSegments(), 0.0) , segment_viscosities_(numberOfSegments(), 0.0) , segment_mass_rates_(numberOfSegments(), 0.0) , segment_depth_diffs_(numberOfSegments(), 0.0) , upwinding_segments_(numberOfSegments(), 0) , segment_phase_fractions_(numberOfSegments(), std::vector(num_components_, 0.0)) // number of phase here? , segment_phase_viscosities_(numberOfSegments(), std::vector(num_components_, 0.0)) // number of phase here? { // not handling solvent or polymer for now with multisegment well if (has_solvent) { OPM_THROW(std::runtime_error, "solvent is not supported by multisegment well yet"); } if (has_polymer) { OPM_THROW(std::runtime_error, "polymer is not supported by multisegment well yet"); } if (Base::has_energy) { OPM_THROW(std::runtime_error, "energy is not supported by multisegment well yet"); } if (Base::has_foam) { OPM_THROW(std::runtime_error, "foam is not supported by multisegment well yet"); } if (Base::has_brine) { OPM_THROW(std::runtime_error, "brine is not supported by multisegment well yet"); } // since we decide to use the WellSegments from the well parser. we can reuse a lot from it. // for other facilities needed but not available from parser, we need to process them here // initialize the segment_perforations_ and update perforation_segment_depth_diffs_ const WellConnections& completion_set = well_ecl_.getConnections(); // index of the perforation within wells struct // there might be some perforations not active, which causes the number of the perforations in // well_ecl_ and wells struct different // the current implementation is a temporary solution for now, it should be corrected from the parser // side int i_perf_wells = 0; perf_depth_.resize(number_of_perforations_, 0.); for (size_t perf = 0; perf < completion_set.size(); ++perf) { const Connection& connection = completion_set.get(perf); if (connection.state() == Connection::State::OPEN) { const int segment_index = segmentNumberToIndex(connection.segment()); segment_perforations_[segment_index].push_back(i_perf_wells); perf_depth_[i_perf_wells] = connection.depth(); const double segment_depth = segmentSet()[segment_index].depth(); perforation_segment_depth_diffs_[i_perf_wells] = perf_depth_[i_perf_wells] - segment_depth; i_perf_wells++; } } // initialize the segment_inlets_ for (int seg = 0; seg < numberOfSegments(); ++seg) { const Segment& segment = segmentSet()[seg]; const int segment_number = segment.segmentNumber(); const int outlet_segment_number = segment.outletSegment(); if (outlet_segment_number > 0) { const int segment_index = segmentNumberToIndex(segment_number); const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number); segment_inlets_[outlet_segment_index].push_back(segment_index); } } // calculating the depth difference between the segment and its oulet_segments // for the top segment, we will make its zero unless we find other purpose to use this value for (int seg = 1; seg < numberOfSegments(); ++seg) { const double segment_depth = segmentSet()[seg].depth(); const int outlet_segment_number = segmentSet()[seg].outletSegment(); const Segment& outlet_segment = segmentSet()[segmentNumberToIndex(outlet_segment_number)]; const double outlet_depth = outlet_segment.depth(); segment_depth_diffs_[seg] = segment_depth - outlet_depth; } } template void MultisegmentWell:: init(const PhaseUsage* phase_usage_arg, const std::vector& depth_arg, const double gravity_arg, const int num_cells) { Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells); // TODO: for StandardWell, we need to update the perf depth here using depth_arg. // for MultisegmentWell, it is much more complicated. // It can be specified directly, it can be calculated from the segment depth, // it can also use the cell center, which is the same for StandardWell. // For the last case, should we update the depth with the depth_arg? For the // future, it can be a source of wrong result with Multisegment well. // An indicator from the opm-parser should indicate what kind of depth we should use here. // \Note: we do not update the depth here. And it looks like for now, we only have the option to use // specified perforation depth initMatrixAndVectors(num_cells); // calcuate the depth difference between the perforations and the perforated grid block for (int perf = 0; perf < number_of_perforations_; ++perf) { const int cell_idx = well_cells_[perf]; cell_perforation_depth_diffs_[perf] = depth_arg[cell_idx] - perf_depth_[perf]; } } template void MultisegmentWell:: initMatrixAndVectors(const int num_cells) const { duneB_.setBuildMode( OffDiagMatWell::row_wise ); duneC_.setBuildMode( OffDiagMatWell::row_wise ); duneD_.setBuildMode( DiagMatWell::row_wise ); // set the size and patterns for all the matrices and vectors // [A C^T [x = [ res // B D] x_well] res_well] // calculatiing the NNZ for duneD_ // NNZ = number_of_segments + 2 * (number_of_inlets / number_of_outlets) { int nnz_d = numberOfSegments(); for (const std::vector& inlets : segment_inlets_) { nnz_d += 2 * inlets.size(); } duneD_.setSize(numberOfSegments(), numberOfSegments(), nnz_d); } duneB_.setSize(numberOfSegments(), num_cells, number_of_perforations_); duneC_.setSize(numberOfSegments(), num_cells, number_of_perforations_); // we need to add the off diagonal ones for (auto row = duneD_.createbegin(), end = duneD_.createend(); row != end; ++row) { // the number of the row corrspnds to the segment now const int seg = row.index(); // adding the item related to outlet relation const Segment& segment = segmentSet()[seg]; const int outlet_segment_number = segment.outletSegment(); if (outlet_segment_number > 0) { // if there is a outlet_segment const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number); row.insert(outlet_segment_index); } // Add nonzeros for diagonal row.insert(seg); // insert the item related to its inlets for (const int& inlet : segment_inlets_[seg]) { row.insert(inlet); } } // make the C matrix for (auto row = duneC_.createbegin(), end = duneC_.createend(); row != end; ++row) { // the number of the row corresponds to the segment number now. for (const int& perf : segment_perforations_[row.index()]) { const int cell_idx = well_cells_[perf]; row.insert(cell_idx); } } // make the B^T matrix for (auto row = duneB_.createbegin(), end = duneB_.createend(); row != end; ++row) { // the number of the row corresponds to the segment number now. for (const int& perf : segment_perforations_[row.index()]) { const int cell_idx = well_cells_[perf]; row.insert(cell_idx); } } resWell_.resize( numberOfSegments() ); primary_variables_.resize(numberOfSegments()); primary_variables_evaluation_.resize(numberOfSegments()); } template void MultisegmentWell:: initPrimaryVariablesEvaluation() const { for (int seg = 0; seg < numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { primary_variables_evaluation_[seg][eq_idx] = 0.0; primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]); primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + numEq, 1.0); } } } template void MultisegmentWell:: assembleWellEq(const Simulator& ebosSimulator, const std::vector& B_avg, const double dt, WellState& well_state, Opm::DeferredLogger& deferred_logger) { const bool use_inner_iterations = param_.use_inner_iterations_ms_wells_; if (use_inner_iterations) { this->iterateWellEquations(ebosSimulator, B_avg, dt, well_state, deferred_logger); } const auto& summary_state = ebosSimulator.vanguard().summaryState(); const auto inj_controls = well_ecl_.isInjector() ? well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0); const auto prod_controls = well_ecl_.isProducer() ? well_ecl_.productionControls(summary_state) : Well::ProductionControls(0); assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, deferred_logger); } template void MultisegmentWell:: updateWellStateWithTarget(const Simulator& ebos_simulator, WellState& well_state, Opm::DeferredLogger& deferred_logger) const { // segRates and segPressure are used to initilize the primaryvariables for MSW wells // first initialize wellRates and then use it to compute segRates // When THP is supported for MSW wells this code and its fried in the standard model // can be merge. const auto& well = well_ecl_; const int well_index = index_of_well_; const int top_segment_index = well_state.topSegmentIndex(index_of_well_); const auto& pu = phaseUsage(); const int np = well_state.numPhases(); const auto& summaryState = ebos_simulator.vanguard().summaryState(); if (wellIsStopped_) { for (int p = 0; p convert_coeff(number_of_phases_, 1.0); Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff); const double coeff = convert_coeff[phasePos]; well_state.wellRates()[well_index*np + phasePos] = controls.reservoir_rate/coeff; break; } case Well::InjectorCMode::THP: { std::vector rates(3, 0.0); for (int p = 0; p convert_coeff(number_of_phases_, 1.0); Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff); double total_res_rate = 0.0; for (int p = 0; p hrates(number_of_phases_,0.); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { hrates[pu.phase_pos[Water]] = controls.water_rate; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { hrates[pu.phase_pos[Oil]] = controls.oil_rate; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { hrates[pu.phase_pos[Gas]] = controls.gas_rate; } std::vector hrates_resv(number_of_phases_,0.); Base::rateConverter_.calcReservoirVoidageRates(/*fipreg*/ 0, Base::pvtRegionIdx_, hrates, hrates_resv); double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0); for (int p = 0; p rates(3, 0.0); for (int p = 0; p void MultisegmentWell:: initSegmentRatesWithWellRates(WellState& well_state) const { for (int phase = 0; phase < number_of_phases_; ++phase) { const double perf_phaserate = well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] / number_of_perforations_; for (int perf = 0; perf < number_of_perforations_; ++perf) { well_state.perfPhaseRates()[number_of_phases_ * (first_perf_ + perf) + phase] = perf_phaserate; } } const std::vector perforation_rates(well_state.perfPhaseRates().begin() + number_of_phases_ * first_perf_, well_state.perfPhaseRates().begin() + number_of_phases_ * (first_perf_ + number_of_perforations_) ); std::vector segment_rates; WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, number_of_phases_, 0, segment_rates); const int top_segment_index = well_state.topSegmentIndex(index_of_well_); std::copy(segment_rates.begin(), segment_rates.end(), well_state.segRates().begin() + number_of_phases_ * top_segment_index ); // we need to check the top segment rates should be same with the well rates } template ConvergenceReport MultisegmentWell:: getWellConvergence(const WellState& well_state, const std::vector& B_avg, Opm::DeferredLogger& deferred_logger, const bool relax_tolerance) const { assert(int(B_avg.size()) == num_components_); // checking if any residual is NaN or too large. The two large one is only handled for the well flux std::vector> abs_residual(numberOfSegments(), std::vector(numWellEq, 0.0)); for (int seg = 0; seg < numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { abs_residual[seg][eq_idx] = std::abs(resWell_[seg][eq_idx]); } } std::vector maximum_residual(numWellEq, 0.0); ConvergenceReport report; // TODO: the following is a little complicated, maybe can be simplified in some way? for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { for (int seg = 0; seg < numberOfSegments(); ++seg) { if (eq_idx < num_components_) { // phase or component mass equations const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx]; if (flux_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = flux_residual; } } else { // pressure or control equation // for the top segment (seg == 0), it is control equation, will be checked later separately if (seg > 0) { // Pressure equation const double pressure_residual = abs_residual[seg][eq_idx]; if (pressure_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = pressure_residual; } } } } } using CR = ConvergenceReport; for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { if (eq_idx < num_components_) { // phase or component mass equations const double flux_residual = maximum_residual[eq_idx]; // TODO: the report can not handle the segment number yet. if (std::isnan(flux_residual)) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, name()}); } else if (flux_residual > param_.max_residual_allowed_) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, name()}); } else if (!relax_tolerance && flux_residual > param_.tolerance_wells_) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, name()}); } else if (flux_residual > param_.relaxed_inner_tolerance_flow_ms_well_) { report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, name()}); } } else { // pressure equation const double pressure_residual = maximum_residual[eq_idx]; const int dummy_component = -1; if (std::isnan(pressure_residual)) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, name()}); } else if (std::isinf(pressure_residual)) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, name()}); } else if (!relax_tolerance && pressure_residual > param_.tolerance_pressure_ms_wells_) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, name()}); } else if (pressure_residual > param_.relaxed_inner_tolerance_pressure_ms_well_) { report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, name()}); } } } checkConvergenceControlEq(well_state, report, deferred_logger); return report; } template void MultisegmentWell:: apply(const BVector& x, BVector& Ax) const { BVectorWell Bx(duneB_.N()); duneB_.mv(x, Bx); // invDBx = duneD^-1 * Bx_ const BVectorWell invDBx = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, Bx); // Ax = Ax - duneC_^T * invDBx duneC_.mmtv(invDBx,Ax); } template void MultisegmentWell:: apply(BVector& r) const { // invDrw_ = duneD^-1 * resWell_ const BVectorWell invDrw = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell_); // r = r - duneC_^T * invDrw duneC_.mmtv(invDrw, r); } #if HAVE_CUDA || HAVE_OPENCL template void MultisegmentWell:: addWellContribution(WellContributions& wellContribs) const { unsigned int Nb = duneB_.M(); // number of blockrows in matrix A unsigned int Mb = duneB_.N(); // number of blockrows in duneB_, duneC_ and duneD_ unsigned int BnumBlocks = duneB_.nonzeroes(); unsigned int DnumBlocks = duneD_.nonzeroes(); // duneC std::vector Ccols; std::vector Cvals; Ccols.reserve(BnumBlocks); Cvals.reserve(BnumBlocks * numEq * numWellEq); for (auto rowC = duneC_.begin(); rowC != duneC_.end(); ++rowC) { for (auto colC = rowC->begin(), endC = rowC->end(); colC != endC; ++colC) { Ccols.emplace_back(colC.index()); for (int i = 0; i < numWellEq; ++i) { for (int j = 0; j < numEq; ++j) { Cvals.emplace_back((*colC)[i][j]); } } } } // duneD Dune::UMFPack umfpackMatrix(duneD_, 0); double *Dvals = umfpackMatrix.getInternalMatrix().getValues(); int *Dcols = umfpackMatrix.getInternalMatrix().getColStart(); int *Drows = umfpackMatrix.getInternalMatrix().getRowIndex(); // duneB std::vector Bcols; std::vector Brows; std::vector Bvals; Bcols.reserve(BnumBlocks); Brows.reserve(Mb+1); Bvals.reserve(BnumBlocks * numEq * numWellEq); Brows.emplace_back(0); unsigned int sumBlocks = 0; for (auto rowB = duneB_.begin(); rowB != duneB_.end(); ++rowB) { int sizeRow = 0; for (auto colB = rowB->begin(), endB = rowB->end(); colB != endB; ++colB) { Bcols.emplace_back(colB.index()); for (int i = 0; i < numWellEq; ++i) { for (int j = 0; j < numEq; ++j) { Bvals.emplace_back((*colB)[i][j]); } } sizeRow++; } sumBlocks += sizeRow; Brows.emplace_back(sumBlocks); } wellContribs.addMultisegmentWellContribution(numEq, numWellEq, Nb, Mb, BnumBlocks, Bvals, Bcols, Brows, DnumBlocks, Dvals, Dcols, Drows, Cvals); } #endif template void MultisegmentWell:: recoverWellSolutionAndUpdateWellState(const BVector& x, WellState& well_state, Opm::DeferredLogger& deferred_logger) const { BVectorWell xw(1); recoverSolutionWell(x, xw); updateWellState(xw, well_state, deferred_logger); } template void MultisegmentWell:: computeWellPotentials(const Simulator& ebosSimulator, const std::vector& B_avg, const WellState& well_state, std::vector& well_potentials, Opm::DeferredLogger& deferred_logger) { const int np = number_of_phases_; well_potentials.resize(np, 0.0); // Stopped wells have zero potential. if (this->wellIsStopped()) { return; } // If the well is pressure controlled the potential equals the rate. /* { bool pressure_controlled_well = false; if (this->isInjector()) { const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[index_of_well_]; if (current == Well::InjectorCMode::BHP || current == Well::InjectorCMode::THP) { pressure_controlled_well = true; } } else { const Opm::Well::ProducerCMode& current = well_state.currentProductionControls()[index_of_well_]; if (current == Well::ProducerCMode::BHP || current == Well::ProducerCMode::THP) { pressure_controlled_well = true; } } if (pressure_controlled_well) { for (int compIdx = 0; compIdx < num_components_; ++compIdx) { const EvalWell rate = this->getQs(compIdx); well_potentials[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value(); } return; } } */ // creating a copy of the well itself, to avoid messing up the explicit informations // during this copy, the only information not copied properly is the well controls MultisegmentWell well(*this); well.debug_cost_counter_ = 0; well.updatePrimaryVariables(well_state, deferred_logger); // initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials // TODO: for computeWellPotentials, no derivative is required actually well.initPrimaryVariablesEvaluation(); // does the well have a THP related constraint? const auto& summaryState = ebosSimulator.vanguard().summaryState(); const Well::ProducerCMode& current_control = well_state.currentProductionControls()[this->index_of_well_]; if ( !well.Base::wellHasTHPConstraints(summaryState) || current_control == Well::ProducerCMode::BHP) { well.computeWellRatesAtBhpLimit(ebosSimulator, B_avg, well_potentials, deferred_logger); } else { well_potentials = well.computeWellPotentialWithTHP(ebosSimulator, B_avg, deferred_logger); } deferred_logger.debug("Cost in iterations of finding well potential for well " + name() + ": " + std::to_string(well.debug_cost_counter_)); } template void MultisegmentWell:: computeWellRatesAtBhpLimit(const Simulator& ebosSimulator, const std::vector& B_avg, std::vector& well_flux, Opm::DeferredLogger& deferred_logger) const { if (well_ecl_.isInjector()) { const auto controls = well_ecl_.injectionControls(ebosSimulator.vanguard().summaryState()); computeWellRatesWithBhp(ebosSimulator, B_avg, controls.bhp_limit, well_flux, deferred_logger); } else { const auto controls = well_ecl_.productionControls(ebosSimulator.vanguard().summaryState()); computeWellRatesWithBhp(ebosSimulator, B_avg, controls.bhp_limit, well_flux, deferred_logger); } } template void MultisegmentWell:: computeWellRatesWithBhp(const Simulator& ebosSimulator, const std::vector& B_avg, const Scalar bhp, std::vector& well_flux, Opm::DeferredLogger& deferred_logger) const { // creating a copy of the well itself, to avoid messing up the explicit informations // during this copy, the only information not copied properly is the well controls MultisegmentWell well_copy(*this); well_copy.debug_cost_counter_ = 0; // store a copy of the well state, we don't want to update the real well state WellState well_state_copy = ebosSimulator.problem().wellModel().wellState(); // Get the current controls. const auto& summary_state = ebosSimulator.vanguard().summaryState(); auto inj_controls = well_copy.well_ecl_.isInjector() ? well_copy.well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0); auto prod_controls = well_copy.well_ecl_.isProducer() ? well_copy.well_ecl_.productionControls(summary_state) : Well::ProductionControls(0); // Set current control to bhp, and bhp value in state, modify bhp limit in control object. if (well_copy.well_ecl_.isInjector()) { inj_controls.bhp_limit = bhp; well_state_copy.currentInjectionControls()[index_of_well_] = Well::InjectorCMode::BHP; } else { prod_controls.bhp_limit = bhp; well_state_copy.currentProductionControls()[index_of_well_] = Well::ProducerCMode::BHP; } well_state_copy.bhp()[well_copy.index_of_well_] = bhp; well_copy.calculateExplicitQuantities(ebosSimulator, well_state_copy, deferred_logger); const double dt = ebosSimulator.timeStepSize(); // iterate to get a solution at the given bhp. well_copy.iterateWellEqWithControl(ebosSimulator, B_avg, dt, inj_controls, prod_controls, well_state_copy, deferred_logger); // compute the potential and store in the flux vector. well_flux.clear(); const int np = number_of_phases_; well_flux.resize(np, 0.0); for (int compIdx = 0; compIdx < num_components_; ++compIdx) { const EvalWell rate = well_copy.getQs(compIdx); well_flux[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value(); } debug_cost_counter_ += well_copy.debug_cost_counter_; } template std::vector MultisegmentWell:: computeWellPotentialWithTHP(const Simulator& ebos_simulator, const std::vector& B_avg, Opm::DeferredLogger& deferred_logger) const { std::vector potentials(number_of_phases_, 0.0); const auto& summary_state = ebos_simulator.vanguard().summaryState(); const auto& well = well_ecl_; if (well.isInjector()){ auto bhp_at_thp_limit = computeBhpAtThpLimitInj(ebos_simulator, B_avg, summary_state, deferred_logger); if (bhp_at_thp_limit) { const auto& controls = well_ecl_.injectionControls(summary_state); const double bhp = std::min(*bhp_at_thp_limit, controls.bhp_limit); computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger); deferred_logger.debug("Converged thp based potential calculation for well " + name() + ", at bhp = " + std::to_string(bhp)); } else { deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL", "Failed in getting converged thp based potential calculation for well " + name() + ". Instead the bhp based value is used"); const auto& controls = well_ecl_.injectionControls(summary_state); const double bhp = controls.bhp_limit; computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger); } } else { auto bhp_at_thp_limit = computeBhpAtThpLimitProd(ebos_simulator, B_avg, summary_state, deferred_logger); if (bhp_at_thp_limit) { const auto& controls = well_ecl_.productionControls(summary_state); const double bhp = std::max(*bhp_at_thp_limit, controls.bhp_limit); computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger); deferred_logger.debug("Converged thp based potential calculation for well " + name() + ", at bhp = " + std::to_string(bhp)); } else { deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL", "Failed in getting converged thp based potential calculation for well " + name() + ". Instead the bhp based value is used"); const auto& controls = well_ecl_.productionControls(summary_state); const double bhp = controls.bhp_limit; computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger); } } return potentials; } template void MultisegmentWell:: updatePrimaryVariables(const WellState& well_state, Opm::DeferredLogger& /* deferred_logger */) const { // TODO: to test using rate conversion coefficients to see if it will be better than // this default one const Well& well = Base::wellEcl(); // the index of the top segment in the WellState const int top_segment_index = well_state.topSegmentIndex(index_of_well_); const std::vector& segment_rates = well_state.segRates(); const PhaseUsage& pu = phaseUsage(); for (int seg = 0; seg < numberOfSegments(); ++seg) { // calculate the total rate for each segment double total_seg_rate = 0.0; const int seg_index = top_segment_index + seg; // the segment pressure primary_variables_[seg][SPres] = well_state.segPress()[seg_index]; // TODO: under what kind of circustances, the following will be wrong? // the definition of g makes the gas phase is always the last phase for (int p = 0; p < number_of_phases_; p++) { total_seg_rate += scalingFactor(p) * segment_rates[number_of_phases_ * seg_index + p]; } primary_variables_[seg][GTotal] = total_seg_rate; if (std::abs(total_seg_rate) > 0.) { if (has_water) { const int water_pos = pu.phase_pos[Water]; primary_variables_[seg][WFrac] = scalingFactor(water_pos) * segment_rates[number_of_phases_ * seg_index + water_pos] / total_seg_rate; } if (has_gas) { const int gas_pos = pu.phase_pos[Gas]; primary_variables_[seg][GFrac] = scalingFactor(gas_pos) * segment_rates[number_of_phases_ * seg_index + gas_pos] / total_seg_rate; } } else { // total_seg_rate == 0 if (this->isInjector()) { // only single phase injection handled auto phase = well.getInjectionProperties().injectorType; if (has_water) { if (phase == InjectorType::WATER) { primary_variables_[seg][WFrac] = 1.0; } else { primary_variables_[seg][WFrac] = 0.0; } } if (has_gas) { if (phase == InjectorType::GAS) { primary_variables_[seg][GFrac] = 1.0; } else { primary_variables_[seg][GFrac] = 0.0; } } } else if (this->isProducer()) { // producers if (has_water) { primary_variables_[seg][WFrac] = 1.0 / number_of_phases_; } if (has_gas) { primary_variables_[seg][GFrac] = 1.0 / number_of_phases_; } } } } } template void MultisegmentWell:: recoverSolutionWell(const BVector& x, BVectorWell& xw) const { BVectorWell resWell = resWell_; // resWell = resWell - B * x duneB_.mmv(x, resWell); // xw = D^-1 * resWell xw = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell); } template void MultisegmentWell:: solveEqAndUpdateWellState(WellState& well_state, Opm::DeferredLogger& deferred_logger) { // We assemble the well equations, then we check the convergence, // which is why we do not put the assembleWellEq here. const BVectorWell dx_well = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell_); updateWellState(dx_well, well_state, deferred_logger); } template void MultisegmentWell:: computePerfCellPressDiffs(const Simulator& ebosSimulator) { for (int perf = 0; perf < number_of_perforations_; ++perf) { std::vector kr(number_of_phases_, 0.0); std::vector density(number_of_phases_, 0.0); const int cell_idx = well_cells_[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); const auto& fs = intQuants.fluidState(); double sum_kr = 0.; const PhaseUsage& pu = phaseUsage(); if (pu.phase_used[Water]) { const int water_pos = pu.phase_pos[Water]; kr[water_pos] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value(); sum_kr += kr[water_pos]; density[water_pos] = fs.density(FluidSystem::waterPhaseIdx).value(); } if (pu.phase_used[Oil]) { const int oil_pos = pu.phase_pos[Oil]; kr[oil_pos] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value(); sum_kr += kr[oil_pos]; density[oil_pos] = fs.density(FluidSystem::oilPhaseIdx).value(); } if (pu.phase_used[Gas]) { const int gas_pos = pu.phase_pos[Gas]; kr[gas_pos] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value(); sum_kr += kr[gas_pos]; density[gas_pos] = fs.density(FluidSystem::gasPhaseIdx).value(); } assert(sum_kr != 0.); // calculate the average density double average_density = 0.; for (int p = 0; p < number_of_phases_; ++p) { average_density += kr[p] * density[p]; } average_density /= sum_kr; cell_perforation_pressure_diffs_[perf] = gravity_ * average_density * cell_perforation_depth_diffs_[perf]; } } template void MultisegmentWell:: computeInitialSegmentFluids(const Simulator& ebos_simulator) { for (int seg = 0; seg < numberOfSegments(); ++seg) { // TODO: trying to reduce the times for the surfaceVolumeFraction calculation const double surface_volume = getSegmentSurfaceVolume(ebos_simulator, seg).value(); for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { segment_fluid_initial_[seg][comp_idx] = surface_volume * surfaceVolumeFraction(seg, comp_idx).value(); } } } template void MultisegmentWell:: updateWellState(const BVectorWell& dwells, WellState& well_state, Opm::DeferredLogger& deferred_logger, const double relaxation_factor) const { const double dFLimit = param_.dwell_fraction_max_; const double max_pressure_change = param_.max_pressure_change_ms_wells_; const std::vector > old_primary_variables = primary_variables_; for (int seg = 0; seg < numberOfSegments(); ++seg) { if (has_water) { const int sign = dwells[seg][WFrac] > 0. ? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]) * relaxation_factor, dFLimit); primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited; } if (has_gas) { const int sign = dwells[seg][GFrac] > 0. ? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]) * relaxation_factor, dFLimit); primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited; } // handling the overshooting or undershooting of the fractions processFractions(seg); // update the segment pressure { const int sign = dwells[seg][SPres] > 0.? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]) * relaxation_factor, max_pressure_change); primary_variables_[seg][SPres] = std::max( old_primary_variables[seg][SPres] - dx_limited, 1e5); } // update the total rate // TODO: should we have a limitation of the total rate change? { primary_variables_[seg][GTotal] = old_primary_variables[seg][GTotal] - relaxation_factor * dwells[seg][GTotal]; // make sure that no injector produce and no producer inject if (seg == 0) { if (this->isInjector()) { primary_variables_[seg][GTotal] = std::max( primary_variables_[seg][GTotal], 0.0); } else { primary_variables_[seg][GTotal] = std::min( primary_variables_[seg][GTotal], 0.0); } } } } updateWellStateFromPrimaryVariables(well_state, deferred_logger); Base::calculateReservoirRates(well_state); } template void MultisegmentWell:: calculateExplicitQuantities(const Simulator& ebosSimulator, const WellState& well_state, Opm::DeferredLogger& deferred_logger) { updatePrimaryVariables(well_state, deferred_logger); initPrimaryVariablesEvaluation(); computePerfCellPressDiffs(ebosSimulator); computeInitialSegmentFluids(ebosSimulator); } template void MultisegmentWell:: addWellContributions(SparseMatrixAdapter& /* jacobian */) const { OPM_THROW(std::runtime_error, "addWellContributions is not supported by multisegment well yet"); } template const WellSegments& MultisegmentWell:: segmentSet() const { return well_ecl_.getSegments(); } template int MultisegmentWell:: numberOfSegments() const { return segmentSet().size(); } template int MultisegmentWell:: numberOfPerforations() const { return segmentSet().number_of_perforations_; } template WellSegments::CompPressureDrop MultisegmentWell:: compPressureDrop() const { return segmentSet().compPressureDrop(); } template int MultisegmentWell:: segmentNumberToIndex(const int segment_number) const { return segmentSet().segmentNumberToIndex(segment_number); } template typename MultisegmentWell::EvalWell MultisegmentWell:: volumeFraction(const int seg, const unsigned compIdx) const { if (has_water && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) { return primary_variables_evaluation_[seg][WFrac]; } if (has_gas && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) { return primary_variables_evaluation_[seg][GFrac]; } // Oil fraction EvalWell oil_fraction = 1.0; if (has_water) { oil_fraction -= primary_variables_evaluation_[seg][WFrac]; } if (has_gas) { oil_fraction -= primary_variables_evaluation_[seg][GFrac]; } /* if (has_solvent) { oil_fraction -= primary_variables_evaluation_[seg][SFrac]; } */ return oil_fraction; } template typename MultisegmentWell::EvalWell MultisegmentWell:: volumeFractionScaled(const int seg, const int comp_idx) const { // For reservoir rate control, the distr in well control is used for the // rate conversion coefficients. For the injection well, only the distr of the injection // phase is not zero. const double scale = scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx)); if (scale > 0.) { return volumeFraction(seg, comp_idx) / scale; } return volumeFraction(seg, comp_idx); } template typename MultisegmentWell::EvalWell MultisegmentWell:: surfaceVolumeFraction(const int seg, const int comp_idx) const { EvalWell sum_volume_fraction_scaled = 0.; for (int idx = 0; idx < num_components_; ++idx) { sum_volume_fraction_scaled += volumeFractionScaled(seg, idx); } assert(sum_volume_fraction_scaled.value() != 0.); return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled; } template void MultisegmentWell:: computePerfRatePressure(const IntensiveQuantities& int_quants, const std::vector& mob_perfcells, const int seg, const int perf, const EvalWell& segment_pressure, const bool& allow_cf, std::vector& cq_s, EvalWell& perf_press, double& perf_dis_gas_rate, double& perf_vap_oil_rate, Opm::DeferredLogger& deferred_logger) const { std::vector cmix_s(num_components_, 0.0); // the composition of the components inside wellbore for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { cmix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx); } const auto& fs = int_quants.fluidState(); const EvalWell pressure_cell = extendEval(fs.pressure(FluidSystem::oilPhaseIdx)); const EvalWell rs = extendEval(fs.Rs()); const EvalWell rv = extendEval(fs.Rv()); // not using number_of_phases_ because of solvent std::vector b_perfcells(num_components_, 0.0); for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); b_perfcells[compIdx] = extendEval(fs.invB(phaseIdx)); } // pressure difference between the segment and the perforation const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf]; // pressure difference between the perforation and the grid cell const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf]; perf_press = pressure_cell - cell_perf_press_diff; // Pressure drawdown (also used to determine direction of flow) // TODO: not 100% sure about the sign of the seg_perf_press_diff const EvalWell drawdown = perf_press - (segment_pressure + perf_seg_press_diff); // producing perforations if ( drawdown > 0.0) { // Do nothing is crossflow is not allowed if (!allow_cf && this->isInjector()) { return; } // compute component volumetric rates at standard conditions for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { const EvalWell cq_p = - well_index_[perf] * (mob_perfcells[comp_idx] * drawdown); cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const EvalWell cq_s_oil = cq_s[oilCompIdx]; const EvalWell cq_s_gas = cq_s[gasCompIdx]; cq_s[gasCompIdx] += rs * cq_s_oil; cq_s[oilCompIdx] += rv * cq_s_gas; } } else { // injecting perforations // Do nothing if crossflow is not allowed if (!allow_cf && this->isProducer()) { return; } // for injecting perforations, we use total mobility EvalWell total_mob = mob_perfcells[0]; for (int comp_idx = 1; comp_idx < num_components_; ++comp_idx) { total_mob += mob_perfcells[comp_idx]; } // injection perforations total volume rates const EvalWell cqt_i = - well_index_[perf] * (total_mob * drawdown); // compute volume ratio between connection and at standard conditions EvalWell volume_ratio = 0.0; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); volume_ratio += cmix_s[waterCompIdx] / b_perfcells[waterCompIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // Incorporate RS/RV factors if both oil and gas active // TODO: not sure we use rs rv from the perforation cells when handling injecting perforations // basically, for injecting perforations, the wellbore is the upstreaming side. const EvalWell d = 1.0 - rv * rs; if (d.value() == 0.0) { OPM_DEFLOG_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation" << " with rs " << rs << " and rv " << rv, deferred_logger); } const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d; volume_ratio += tmp_oil / b_perfcells[oilCompIdx]; const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d; volume_ratio += tmp_gas / b_perfcells[gasCompIdx]; } else { // not having gas and oil at the same time if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); volume_ratio += cmix_s[oilCompIdx] / b_perfcells[oilCompIdx]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); volume_ratio += cmix_s[gasCompIdx] / b_perfcells[gasCompIdx]; } } // injecting connections total volumerates at standard conditions EvalWell cqt_is = cqt_i / volume_ratio; for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is; } } // end for injection perforations // calculating the perforation solution gas rate and solution oil rates if (this->isProducer()) { if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // TODO: the formulations here remain to be tested with cases with strong crossflow through production wells // s means standard condition, r means reservoir condition // q_os = q_or * b_o + rv * q_gr * b_g // q_gs = q_gr * g_g + rs * q_or * b_o // d = 1.0 - rs * rv // q_or = 1 / (b_o * d) * (q_os - rv * q_gs) // q_gr = 1 / (b_g * d) * (q_gs - rs * q_os) const double d = 1.0 - rv.value() * rs.value(); // vaporized oil into gas // rv * q_gr * b_g = rv * (q_gs - rs * q_os) / d perf_vap_oil_rate = rv.value() * (cq_s[gasCompIdx].value() - rs.value() * cq_s[oilCompIdx].value()) / d; // dissolved of gas in oil // rs * q_or * b_o = rs * (q_os - rv * q_gs) / d perf_dis_gas_rate = rs.value() * (cq_s[oilCompIdx].value() - rv.value() * cq_s[gasCompIdx].value()) / d; } } } template typename MultisegmentWell::EvalWell MultisegmentWell:: extendEval(const Eval& in) const { EvalWell out = 0.0; out.setValue(in.value()); for(int eq_idx = 0; eq_idx < numEq;++eq_idx) { out.setDerivative(eq_idx, in.derivative(eq_idx)); } return out; } template void MultisegmentWell:: computeSegmentFluidProperties(const Simulator& ebosSimulator) { // TODO: the concept of phases and components are rather confusing in this function. // needs to be addressed sooner or later. // get the temperature for later use. It is only useful when we are not handling // thermal related simulation // basically, it is a single value for all the segments EvalWell temperature; EvalWell saltConcentration; // not sure how to handle the pvt region related to segment // for the current approach, we use the pvt region of the first perforated cell // although there are some text indicating using the pvt region of the lowest // perforated cell // TODO: later to investigate how to handle the pvt region int pvt_region_index; { // using the first perforated cell const int cell_idx = well_cells_[0]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value()); saltConcentration = extendEval(fs.saltConcentration()); pvt_region_index = fs.pvtRegionIndex(); } std::vector surf_dens(num_components_); // Surface density. for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index ); } for (int seg = 0; seg < numberOfSegments(); ++seg) { // the compostion of the components inside wellbore under surface condition std::vector mix_s(num_components_, 0.0); for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx); } std::vector b(num_components_, 0.0); std::vector visc(num_components_, 0.0); const EvalWell seg_pressure = getSegmentPressure(seg); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); b[waterCompIdx] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration); visc[waterCompIdx] = FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure, saltConcentration); } EvalWell rv(0.0); // gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[oilCompIdx] > 0.0) { if (mix_s[gasCompIdx] > 0.0) { rv = mix_s[oilCompIdx] / mix_s[gasCompIdx]; } if (rv > rvmax) { rv = rvmax; } b[gasCompIdx] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv); visc[gasCompIdx] = FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv); } else { // no oil exists b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gasCompIdx] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gasCompIdx] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[gasCompIdx] > 0.0) { if (mix_s[oilCompIdx] > 0.0) { rs = mix_s[gasCompIdx] / mix_s[oilCompIdx]; } if (rs > rsmax) { rs = rsmax; } b[oilCompIdx] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); visc[oilCompIdx] = FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs); } else { // no oil exists b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilCompIdx] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilCompIdx] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } segment_phase_viscosities_[seg] = visc; std::vector mix(mix_s); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell d = 1.0 - rs * rv; if (rs != 0.0) { // rs > 0.0? mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d; } if (rv != 0.0) { // rv > 0.0? mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d; } } EvalWell volrat(0.0); for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { volrat += mix[comp_idx] / b[comp_idx]; } segment_viscosities_[seg] = 0.; // calculate the average viscosity for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { const EvalWell fraction = mix[comp_idx] / b[comp_idx] / volrat; // TODO: a little more work needs to be done to handle the negative fractions here segment_phase_fractions_[seg][comp_idx] = fraction; // >= 0.0 ? fraction : 0.0; segment_viscosities_[seg] += visc[comp_idx] * segment_phase_fractions_[seg][comp_idx]; } EvalWell density(0.0); for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { density += surf_dens[comp_idx] * mix_s[comp_idx]; } segment_densities_[seg] = density / volrat; // calculate the mass rates segment_mass_rates_[seg] = 0.; for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { const EvalWell rate = getSegmentRateUpwinding(seg, comp_idx); segment_mass_rates_[seg] += rate * surf_dens[comp_idx]; } } } template typename MultisegmentWell::EvalWell MultisegmentWell:: getSegmentPressure(const int seg) const { return primary_variables_evaluation_[seg][SPres]; } template typename MultisegmentWell::EvalWell MultisegmentWell:: getBhp() const { return getSegmentPressure(0); } template typename MultisegmentWell::EvalWell MultisegmentWell:: getSegmentRate(const int seg, const int comp_idx) const { return primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg, comp_idx); } template typename MultisegmentWell::EvalWell MultisegmentWell:: getQs(const int comp_idx) const { return getSegmentRate(0, comp_idx); } template typename MultisegmentWell::EvalWell MultisegmentWell:: getSegmentRateUpwinding(const int seg, const size_t comp_idx) const { const int seg_upwind = upwinding_segments_[seg]; // the result will contain the derivative with resepct to GTotal in segment seg, // and the derivatives with respect to WFrac GFrac in segment seg_upwind. // the derivative with respect to SPres should be zero. if (seg == 0 && this->isInjector()) { const Well& well = Base::wellEcl(); auto phase = well.getInjectionProperties().injectorType; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == comp_idx && phase == InjectorType::WATER) return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx)); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == comp_idx && phase == InjectorType::OIL) return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx)); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == comp_idx && phase == InjectorType::GAS) return primary_variables_evaluation_[seg][GTotal] / scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx)); return 0.0; } const EvalWell segment_rate = primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg_upwind, comp_idx); assert(segment_rate.derivative(SPres + numEq) == 0.); return segment_rate; } template typename MultisegmentWell::EvalWell MultisegmentWell:: getSegmentGTotal(const int seg) const { return primary_variables_evaluation_[seg][GTotal]; } template typename MultisegmentWell::EvalWell MultisegmentWell:: getWQTotal() const { return getSegmentGTotal(0); } template void MultisegmentWell:: getMobility(const Simulator& ebosSimulator, const int perf, std::vector& mob) const { // TODO: most of this function, if not the whole function, can be moved to the base class const int cell_idx = well_cells_[perf]; assert (int(mob.size()) == num_components_); const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& materialLawManager = ebosSimulator.problem().materialLawManager(); // either use mobility of the perforation cell or calcualte its own // based on passing the saturation table index const int satid = saturation_table_number_[perf] - 1; const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx); if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx)); } // if (has_solvent) { // mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility()); // } } else { const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx); Eval relativePerms[3] = { 0.0, 0.0, 0.0 }; MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState()); // reset the satnumvalue back to original materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx); // compute the mobility for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx)); } } } template void MultisegmentWell:: assembleControlEq(const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const Well::InjectionControls& inj_controls, const Well::ProductionControls& prod_controls, Opm::DeferredLogger& deferred_logger) { EvalWell control_eq(0.0); const auto& well = well_ecl_; auto getRates = [&]() { std::vector rates(3, 0.0); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)); } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx)); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)); } return rates; }; if (wellIsStopped_) { control_eq = getWQTotal(); } else if (this->isInjector() ) { // Find scaling factor to get injection rate, const InjectorType injectorType = inj_controls.injector_type; double scaling = 1.0; const auto& pu = phaseUsage(); switch (injectorType) { case InjectorType::WATER: { scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]); break; } case InjectorType::OIL: { scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]); break; } case InjectorType::GAS: { scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]); break; } default: throw("Expected WATER, OIL or GAS as type for injectors " + well.name()); } const EvalWell injection_rate = getWQTotal() / scaling; // Setup function for evaluation of BHP from THP (used only if needed). auto bhp_from_thp = [&]() { const auto rates = getRates(); return calculateBhpFromThp(rates, well, summaryState, deferred_logger); }; // Call generic implementation. Base::assembleControlEqInj(well_state, schedule, summaryState, inj_controls, getBhp(), injection_rate, bhp_from_thp, control_eq, deferred_logger); } else { // Find rates. const auto rates = getRates(); // Setup function for evaluation of BHP from THP (used only if needed). auto bhp_from_thp = [&]() { return calculateBhpFromThp(rates, well, summaryState, deferred_logger); }; // Call generic implementation. Base::assembleControlEqProd(well_state, schedule, summaryState, prod_controls, getBhp(), rates, bhp_from_thp, control_eq, deferred_logger); } // using control_eq to update the matrix and residuals resWell_[0][SPres] = control_eq.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + numEq); } } template void MultisegmentWell:: updateThp(WellState& well_state, Opm::DeferredLogger& deferred_logger) const { // When there is no vaild VFP table provided, we set the thp to be zero. if (!this->isVFPActive(deferred_logger) || this->wellIsStopped()) { well_state.thp()[index_of_well_] = 0.; return; } // the well is under other control types, we calculate the thp based on bhp and rates std::vector rates(3, 0.0); const Opm::PhaseUsage& pu = phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ]; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ]; } const double bhp = well_state.bhp()[index_of_well_]; well_state.thp()[index_of_well_] = calculateThpFromBhp(rates, bhp, deferred_logger); } template double MultisegmentWell:: calculateThpFromBhp(const std::vector& rates, const double bhp, Opm::DeferredLogger& deferred_logger) const { assert(int(rates.size()) == 3); // the vfp related only supports three phases now. const double aqua = rates[Water]; const double liquid = rates[Oil]; const double vapour = rates[Gas]; // pick the density in the top segment const double rho = segment_densities_[0].value(); double thp = 0.0; if (this->isInjector()) { const int table_id = well_ecl_.vfp_table_number(); const double vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); thp = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp); } else if (this->isProducer()) { const int table_id = well_ecl_.vfp_table_number(); const double alq = well_ecl_.alq_value(); const double vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); thp = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq); } else { OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger); } return thp; } template template ValueType MultisegmentWell:: calculateBhpFromThp(const std::vector& rates, const Well& well, const SummaryState& summaryState, Opm::DeferredLogger& deferred_logger) const { // TODO: when well is under THP control, the BHP is dependent on the rates, // the well rates is also dependent on the BHP, so it might need to do some iteration. // However, when group control is involved, change of the rates might impacts other wells // so iterations on a higher level will be required. Some investigation might be needed when // we face problems under THP control. assert(int(rates.size()) == 3); // the vfp related only supports three phases now. const ValueType aqua = rates[Water]; const ValueType liquid = rates[Oil]; const ValueType vapour = rates[Gas]; // pick the density in the top layer // TODO: it is possible it should be a Evaluation const double rho = segment_densities_[0].value(); if (well.isInjector() ) { const auto& controls = well.injectionControls(summaryState); const double vfp_ref_depth = vfp_properties_->getInj()->getTable(controls.vfp_table_number)->getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); return vfp_properties_->getInj()->bhp(controls.vfp_table_number, aqua, liquid, vapour, controls.thp_limit) - dp; } else if (well.isProducer()) { const auto& controls = well.productionControls(summaryState); const double vfp_ref_depth = vfp_properties_->getProd()->getTable(controls.vfp_table_number)->getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); return vfp_properties_->getProd()->bhp(controls.vfp_table_number, aqua, liquid, vapour, controls.thp_limit, controls.alq_value) - dp; } else { OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger); } } template void MultisegmentWell:: assemblePressureEq(const int seg, WellState& well_state) const { assert(seg != 0); // not top segment // for top segment, the well control equation will be used. EvalWell pressure_equation = getSegmentPressure(seg); // we need to handle the pressure difference between the two segments // we only consider the hydrostatic pressure loss first // TODO: we might be able to add member variables to store these values, then we update well state // after converged const auto hydro_pressure_drop = getHydroPressureLoss(seg); well_state.segPressDropHydroStatic()[seg] = hydro_pressure_drop.value(); pressure_equation -= hydro_pressure_drop; if (frictionalPressureLossConsidered()) { const auto friction_pressure_drop = getFrictionPressureLoss(seg); pressure_equation -= friction_pressure_drop; well_state.segPressDropFriction()[seg] = friction_pressure_drop.value(); } resWell_[seg][SPres] = pressure_equation.value(); const int seg_upwind = upwinding_segments_[seg]; duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + numEq); duneD_[seg][seg][SPres][GTotal] += pressure_equation.derivative(GTotal + numEq); if (has_water) { duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + numEq); } if (has_gas) { duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + numEq); } // contribution from the outlet segment const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index); resWell_[seg][SPres] -= outlet_pressure.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq); } if (accelerationalPressureLossConsidered()) { handleAccelerationPressureLoss(seg, well_state); } } template typename MultisegmentWell::EvalWell MultisegmentWell:: getHydroPressureLoss(const int seg) const { return segment_densities_[seg] * gravity_ * segment_depth_diffs_[seg]; } template typename MultisegmentWell::EvalWell MultisegmentWell:: getFrictionPressureLoss(const int seg) const { const EvalWell mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell density = segment_densities_[seg_upwind]; EvalWell visc = segment_viscosities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { density.clearDerivatives(); visc.clearDerivatives(); } const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment()); const double length = segmentSet()[seg].totalLength() - segmentSet()[outlet_segment_index].totalLength(); assert(length > 0.); const double roughness = segmentSet()[seg].roughness(); const double area = segmentSet()[seg].crossArea(); const double diameter = segmentSet()[seg].internalDiameter(); const double sign = mass_rate < 0. ? 1.0 : - 1.0; return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc); } template void MultisegmentWell:: handleAccelerationPressureLoss(const int seg, WellState& well_state) const { const double area = segmentSet()[seg].crossArea(); const EvalWell mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { density.clearDerivatives(); } EvalWell accelerationPressureLoss = mswellhelpers::velocityHead(area, mass_rate, density); // handling the velocity head of intlet segments for (const int inlet : segment_inlets_[seg]) { const int seg_upwind_inlet = upwinding_segments_[inlet]; const double inlet_area = segmentSet()[inlet].crossArea(); EvalWell inlet_density = segment_densities_[seg_upwind_inlet]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (inlet != seg_upwind_inlet) { inlet_density.clearDerivatives(); } const EvalWell inlet_mass_rate = segment_mass_rates_[inlet]; accelerationPressureLoss -= mswellhelpers::velocityHead(std::max(inlet_area, area), inlet_mass_rate, inlet_density); } // We change the sign of the accelerationPressureLoss for injectors. // Is this correct? Testing indicates that this is what the reference simulator does const double sign = mass_rate < 0. ? 1.0 : - 1.0; accelerationPressureLoss *= sign; well_state.segPressDropAcceleration()[seg] = accelerationPressureLoss.value(); resWell_[seg][SPres] -= accelerationPressureLoss.value(); duneD_[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + numEq); duneD_[seg][seg][SPres][GTotal] -= accelerationPressureLoss.derivative(GTotal + numEq); if (has_water) { duneD_[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + numEq); } if (has_gas) { duneD_[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + numEq); } } template void MultisegmentWell:: processFractions(const int seg) const { const PhaseUsage& pu = phaseUsage(); std::vector fractions(number_of_phases_, 0.0); assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ); const int oil_pos = pu.phase_pos[Oil]; fractions[oil_pos] = 1.0; if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { const int water_pos = pu.phase_pos[Water]; fractions[water_pos] = primary_variables_[seg][WFrac]; fractions[oil_pos] -= fractions[water_pos]; } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { const int gas_pos = pu.phase_pos[Gas]; fractions[gas_pos] = primary_variables_[seg][GFrac]; fractions[oil_pos] -= fractions[gas_pos]; } if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = pu.phase_pos[Water]; if (fractions[water_pos] < 0.0) { if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[water_pos]); } fractions[oil_pos] /= (1.0 - fractions[water_pos]); fractions[water_pos] = 0.0; } } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = pu.phase_pos[Gas]; if (fractions[gas_pos] < 0.0) { if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { fractions[pu.phase_pos[Water]] /= (1.0 - fractions[gas_pos]); } fractions[oil_pos] /= (1.0 - fractions[gas_pos]); fractions[gas_pos] = 0.0; } } if (fractions[oil_pos] < 0.0) { if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { fractions[pu.phase_pos[Water]] /= (1.0 - fractions[oil_pos]); } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[oil_pos]); } fractions[oil_pos] = 0.0; } if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { primary_variables_[seg][WFrac] = fractions[pu.phase_pos[Water]]; } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { primary_variables_[seg][GFrac] = fractions[pu.phase_pos[Gas]]; } } template void MultisegmentWell:: checkWellOperability(const Simulator& /* ebos_simulator */, const WellState& /* well_state */, Opm::DeferredLogger& deferred_logger) { const bool checkOperability = EWOMS_GET_PARAM(TypeTag, bool, EnableWellOperabilityCheck); if (!checkOperability) { return; } // focusing on PRODUCER for now if (this->isInjector()) { return; } if (!this->underPredictionMode() ) { return; } const std::string msg = "Support of well operability checking for multisegment wells is not implemented " "yet, checkWellOperability() for " + name() + " will do nothing"; deferred_logger.warning("NO_OPERATABILITY_CHECKING_MS_WELLS", msg); } template void MultisegmentWell:: updateWellStateFromPrimaryVariables(WellState& well_state, Opm::DeferredLogger& deferred_logger) const { const PhaseUsage& pu = phaseUsage(); assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ); const int oil_pos = pu.phase_pos[Oil]; for (int seg = 0; seg < numberOfSegments(); ++seg) { std::vector fractions(number_of_phases_, 0.0); fractions[oil_pos] = 1.0; if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) { const int water_pos = pu.phase_pos[Water]; fractions[water_pos] = primary_variables_[seg][WFrac]; fractions[oil_pos] -= fractions[water_pos]; } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) { const int gas_pos = pu.phase_pos[Gas]; fractions[gas_pos] = primary_variables_[seg][GFrac]; fractions[oil_pos] -= fractions[gas_pos]; } // convert the fractions to be Q_p / G_total to calculate the phase rates for (int p = 0; p < number_of_phases_; ++p) { const double scale = scalingFactor(p); // for injection wells, there should only one non-zero scaling factor if (scale > 0.) { fractions[p] /= scale; } else { // this should only happens to injection wells fractions[p] = 0.; } } // calculate the phase rates based on the primary variables const double g_total = primary_variables_[seg][GTotal]; const int top_segment_index = well_state.topSegmentIndex(index_of_well_); for (int p = 0; p < number_of_phases_; ++p) { const double phase_rate = g_total * fractions[p]; well_state.segRates()[(seg + top_segment_index) * number_of_phases_ + p] = phase_rate; if (seg == 0) { // top segment well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = phase_rate; } } // update the segment pressure well_state.segPress()[seg + top_segment_index] = primary_variables_[seg][SPres]; if (seg == 0) { // top segment well_state.bhp()[index_of_well_] = well_state.segPress()[seg + top_segment_index]; } } updateThp(well_state, deferred_logger); } template bool MultisegmentWell:: frictionalPressureLossConsidered() const { // HF- and HFA needs to consider frictional pressure loss return (segmentSet().compPressureDrop() != WellSegments::CompPressureDrop::H__); } template bool MultisegmentWell:: accelerationalPressureLossConsidered() const { return (segmentSet().compPressureDrop() == WellSegments::CompPressureDrop::HFA); } template bool MultisegmentWell:: iterateWellEqWithControl(const Simulator& ebosSimulator, const std::vector& B_avg, const double dt, const Well::InjectionControls& inj_controls, const Well::ProductionControls& prod_controls, WellState& well_state, Opm::DeferredLogger& deferred_logger) { const int max_iter_number = param_.max_inner_iter_ms_wells_; const WellState well_state0 = well_state; const std::vector residuals0 = getWellResiduals(B_avg); std::vector > residual_history; std::vector measure_history; int it = 0; // relaxation factor double relaxation_factor = 1.; const double min_relaxation_factor = 0.6; bool converged = false; int stagnate_count = 0; bool relax_convergence = false; for (; it < max_iter_number; ++it, ++debug_cost_counter_) { assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, deferred_logger); const BVectorWell dx_well = mswellhelpers::applyUMFPack(duneD_, duneDSolver_, resWell_); if (it > param_.strict_inner_iter_ms_wells_) relax_convergence = true; const auto report = getWellConvergence(well_state, B_avg, deferred_logger, relax_convergence); if (report.converged()) { converged = true; break; } residual_history.push_back(getWellResiduals(B_avg)); measure_history.push_back(getResidualMeasureValue(well_state, residual_history[it], deferred_logger) ); bool is_oscillate = false; bool is_stagnate = false; detectOscillations(measure_history, it, is_oscillate, is_stagnate); // TODO: maybe we should have more sophiscated strategy to recover the relaxation factor, // for example, to recover it to be bigger if (is_oscillate || is_stagnate) { // HACK! std::ostringstream sstr; if (relaxation_factor == min_relaxation_factor) { // Still stagnating, terminate iterations if 5 iterations pass. ++stagnate_count; if (stagnate_count == 6) { sstr << " well " << name() << " observes severe stagnation and/or oscillation. We relax the tolerance and check for convergence. \n"; const auto reportStag = getWellConvergence(well_state, B_avg, deferred_logger, true); if (reportStag.converged()) { converged = true; sstr << " well " << name() << " manages to get converged with relaxed tolerances in " << it << " inner iterations"; deferred_logger.debug(sstr.str()); return converged; } } } // a factor value to reduce the relaxation_factor const double reduction_mutliplier = 0.9; relaxation_factor = std::max(relaxation_factor * reduction_mutliplier, min_relaxation_factor); // debug output if (is_stagnate) { sstr << " well " << name() << " observes stagnation in inner iteration " << it << "\n"; } if (is_oscillate) { sstr << " well " << name() << " observes oscillation in inner iteration " << it << "\n"; } sstr << " relaxation_factor is " << relaxation_factor << " now\n"; deferred_logger.debug(sstr.str()); } updateWellState(dx_well, well_state, deferred_logger, relaxation_factor); initPrimaryVariablesEvaluation(); } // TODO: we should decide whether to keep the updated well_state, or recover to use the old well_state if (converged) { std::ostringstream sstr; sstr << " Well " << name() << " converged in " << it << " inner iterations."; if (relax_convergence) sstr << " (A relaxed tolerance was used after "<< param_.strict_inner_iter_ms_wells_ << " iterations)"; deferred_logger.debug(sstr.str()); } else { std::ostringstream sstr; sstr << " Well " << name() << " did not converge in " << it << " inner iterations."; #define EXTRA_DEBUG_MSW 0 #if EXTRA_DEBUG_MSW sstr << "***** Outputting the residual history for well " << name() << " during inner iterations:"; for (int i = 0; i < it; ++i) { const auto& residual = residual_history[i]; sstr << " residual at " << i << "th iteration "; for (const auto& res : residual) { sstr << " " << res; } sstr << " " << measure_history[i] << " \n"; } #endif deferred_logger.debug(sstr.str()); } return converged; } template void MultisegmentWell:: assembleWellEqWithoutIteration(const Simulator& ebosSimulator, const double dt, const Well::InjectionControls& inj_controls, const Well::ProductionControls& prod_controls, WellState& well_state, Opm::DeferredLogger& deferred_logger) { // update the upwinding segments updateUpwindingSegments(); // calculate the fluid properties needed. computeSegmentFluidProperties(ebosSimulator); // clear all entries duneB_ = 0.0; duneC_ = 0.0; duneD_ = 0.0; resWell_ = 0.0; duneDSolver_.reset(); well_state.wellVaporizedOilRates()[index_of_well_] = 0.; well_state.wellDissolvedGasRates()[index_of_well_] = 0.; // for the black oil cases, there will be four equations, // the first three of them are the mass balance equations, the last one is the pressure equations. // // but for the top segment, the pressure equation will be the well control equation, and the other three will be the same. const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebosSimulator); const int nseg = numberOfSegments(); for (int seg = 0; seg < nseg; ++seg) { // calculating the accumulation term // TODO: without considering the efficiencty factor for now { const EvalWell segment_surface_volume = getSegmentSurfaceVolume(ebosSimulator, seg); // Add a regularization_factor to increase the accumulation term // This will make the system less stiff and help convergence for // difficult cases const Scalar regularization_factor = param_.regularization_factor_ms_wells_; // for each component for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { const EvalWell accumulation_term = regularization_factor * (segment_surface_volume * surfaceVolumeFraction(seg, comp_idx) - segment_fluid_initial_[seg][comp_idx]) / dt; resWell_[seg][comp_idx] += accumulation_term.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + numEq); } } } // considering the contributions due to flowing out from the segment { for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { const EvalWell segment_rate = getSegmentRateUpwinding(seg, comp_idx) * well_efficiency_factor_; const int seg_upwind = upwinding_segments_[seg]; // segment_rate contains the derivatives with respect to GTotal in seg, // and WFrac and GFrac in seg_upwind resWell_[seg][comp_idx] -= segment_rate.value(); duneD_[seg][seg][comp_idx][GTotal] -= segment_rate.derivative(GTotal + numEq); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { duneD_[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + numEq); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { duneD_[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + numEq); } // pressure derivative should be zero } } // considering the contributions from the inlet segments { for (const int inlet : segment_inlets_[seg]) { for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { const EvalWell inlet_rate = getSegmentRateUpwinding(inlet, comp_idx) * well_efficiency_factor_; const int inlet_upwind = upwinding_segments_[inlet]; // inlet_rate contains the derivatives with respect to GTotal in inlet, // and WFrac and GFrac in inlet_upwind resWell_[seg][comp_idx] += inlet_rate.value(); duneD_[seg][inlet][comp_idx][GTotal] += inlet_rate.derivative(GTotal + numEq); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { duneD_[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + numEq); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { duneD_[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + numEq); } // pressure derivative should be zero } } } // calculating the perforation rate for each perforation that belongs to this segment const EvalWell seg_pressure = getSegmentPressure(seg); for (const int perf : segment_perforations_[seg]) { const int cell_idx = well_cells_[perf]; const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); std::vector mob(num_components_, 0.0); getMobility(ebosSimulator, perf, mob); std::vector cq_s(num_components_, 0.0); EvalWell perf_press; double perf_dis_gas_rate = 0.; double perf_vap_oil_rate = 0.; computePerfRatePressure(int_quants, mob, seg, perf, seg_pressure, allow_cf, cq_s, perf_press, perf_dis_gas_rate, perf_vap_oil_rate, deferred_logger); // updating the solution gas rate and solution oil rate if (this->isProducer()) { well_state.wellDissolvedGasRates()[index_of_well_] += perf_dis_gas_rate; well_state.wellVaporizedOilRates()[index_of_well_] += perf_vap_oil_rate; } // store the perf pressure and rates const int rate_start_offset = (first_perf_ + perf) * number_of_phases_; for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { well_state.perfPhaseRates()[rate_start_offset + ebosCompIdxToFlowCompIdx(comp_idx)] = cq_s[comp_idx].value(); } well_state.perfPress()[first_perf_ + perf] = perf_press.value(); for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { // the cq_s entering mass balance equations need to consider the efficiency factors. const EvalWell cq_s_effective = cq_s[comp_idx] * well_efficiency_factor_; connectionRates_[perf][comp_idx] = Base::restrictEval(cq_s_effective); // subtract sum of phase fluxes in the well equations. resWell_[seg][comp_idx] += cq_s_effective.value(); // assemble the jacobians for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { // also need to consider the efficiency factor when manipulating the jacobians. duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + numEq); // intput in transformed matrix // the index name for the D should be eq_idx / pv_idx duneD_[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + numEq); } for (int pv_idx = 0; pv_idx < numEq; ++pv_idx) { // also need to consider the efficiency factor when manipulating the jacobians. duneB_[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx); } } } // the fourth dequation, the pressure drop equation if (seg == 0) { // top segment, pressure equation is the control equation const auto& summaryState = ebosSimulator.vanguard().summaryState(); const Opm::Schedule& schedule = ebosSimulator.vanguard().schedule(); assembleControlEq(well_state, schedule, summaryState, inj_controls, prod_controls, deferred_logger); } else { // TODO: maybe the following should go to the function assemblePressureEq() switch(segmentSet()[seg].segmentType()) { case Segment::SegmentType::SICD : assembleSICDPressureEq(seg, well_state); break; case Segment::SegmentType::VALVE : assembleValvePressureEq(seg, well_state); break; default : assemblePressureEq(seg, well_state); } } well_state.segPressDrop()[seg] = well_state.segPressDropHydroStatic()[seg] + well_state.segPressDropFriction()[seg] + well_state.segPressDropAcceleration()[seg]; } } template bool MultisegmentWell:: openCrossFlowAvoidSingularity(const Simulator& ebos_simulator) const { return !getAllowCrossFlow() && allDrawDownWrongDirection(ebos_simulator); } template bool MultisegmentWell:: allDrawDownWrongDirection(const Simulator& ebos_simulator) const { bool all_drawdown_wrong_direction = true; const int nseg = numberOfSegments(); for (int seg = 0; seg < nseg; ++seg) { const EvalWell segment_pressure = getSegmentPressure(seg); for (const int perf : segment_perforations_[seg]) { const int cell_idx = well_cells_[perf]; const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); const auto& fs = intQuants.fluidState(); // pressure difference between the segment and the perforation const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf]; // pressure difference between the perforation and the grid cell const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf]; const double pressure_cell = (fs.pressure(FluidSystem::oilPhaseIdx)).value(); const double perf_press = pressure_cell - cell_perf_press_diff; // Pressure drawdown (also used to determine direction of flow) // TODO: not 100% sure about the sign of the seg_perf_press_diff const EvalWell drawdown = perf_press - (segment_pressure + perf_seg_press_diff); // for now, if there is one perforation can produce/inject in the correct // direction, we consider this well can still produce/inject. // TODO: it can be more complicated than this to cause wrong-signed rates if ( (drawdown < 0. && this->isInjector()) || (drawdown > 0. && this->isProducer()) ) { all_drawdown_wrong_direction = false; break; } } } return all_drawdown_wrong_direction; } template void MultisegmentWell:: wellTestingPhysical(const Simulator& /* simulator */, const std::vector& /* B_avg */, const double /* simulation_time */, const int /* report_step */, WellState& /* well_state */, WellTestState& /* welltest_state */, Opm::DeferredLogger& deferred_logger) { const std::string msg = "Support of well testing for physical limits for multisegment wells is not " "implemented yet, wellTestingPhysical() for " + name() + " will do nothing"; deferred_logger.warning("NO_WELLTESTPHYSICAL_CHECKING_MS_WELLS", msg); } template void MultisegmentWell:: updateWaterThroughput(const double dt OPM_UNUSED, WellState& well_state OPM_UNUSED) const { } template typename MultisegmentWell::EvalWell MultisegmentWell:: getSegmentSurfaceVolume(const Simulator& ebos_simulator, const int seg_idx) const { EvalWell temperature; EvalWell saltConcentration; int pvt_region_index; { // using the pvt region of first perforated cell // TODO: it should be a member of the WellInterface, initialized properly const int cell_idx = well_cells_[0]; const auto& intQuants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value()); saltConcentration = extendEval(fs.saltConcentration()); pvt_region_index = fs.pvtRegionIndex(); } const EvalWell seg_pressure = getSegmentPressure(seg_idx); std::vector mix_s(num_components_, 0.0); for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { mix_s[comp_idx] = surfaceVolumeFraction(seg_idx, comp_idx); } std::vector b(num_components_, 0.); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); b[waterCompIdx] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration); } EvalWell rv(0.0); // gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (rvmax < 0.0) { // negative rvmax can happen if the seg_pressure is outside the range of the table rvmax = 0.0; } if (mix_s[oilCompIdx] > 0.0) { if (mix_s[gasCompIdx] > 0.0) { rv = mix_s[oilCompIdx] / mix_s[gasCompIdx]; } if (rv > rvmax) { rv = rvmax; } b[gasCompIdx] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv); } else { // no oil exists b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (rsmax < 0.0) { // negative rsmax can happen if the seg_pressure is outside the range of the table rsmax = 0.0; } if (mix_s[gasCompIdx] > 0.0) { if (mix_s[oilCompIdx] > 0.0) { rs = mix_s[gasCompIdx] / mix_s[oilCompIdx]; } // std::cout << " rs " << rs.value() << " rsmax " << rsmax.value() << std::endl; if (rs > rsmax) { rs = rsmax; } b[oilCompIdx] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); } else { // no oil exists b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } else { // no gas phase // it is the same with zero mix_s[Gas] b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } std::vector mix(mix_s); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell d = 1.0 - rs * rv; if (d <= 0.0 || d > 1.0) { OPM_THROW(Opm::NumericalIssue, "Problematic d value " << d << " obtained for well " << name() << " during convertion to surface volume with rs " << rs << ", rv " << rv << " and pressure " << seg_pressure << " obtaining d " << d); } if (rs > 0.0) { // rs > 0.0? mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d; } if (rv > 0.0) { // rv > 0.0? mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d; } } EvalWell vol_ratio(0.0); for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) { vol_ratio += mix[comp_idx] / b[comp_idx]; } // We increase the segment volume with a factor 10 to stabilize the system. const double volume = segmentSet()[seg_idx].volume(); return volume / vol_ratio; } template std::vector::Scalar> MultisegmentWell:: getWellResiduals(const std::vector& B_avg) const { assert(int(B_avg.size() ) == num_components_); std::vector residuals(numWellEq + 1, 0.0); for (int seg = 0; seg < numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { double residual = 0.; if (eq_idx < num_components_) { residual = std::abs(resWell_[seg][eq_idx]) * B_avg[eq_idx]; } else { if (seg > 0) { residual = std::abs(resWell_[seg][eq_idx]); } } if (std::isnan(residual) || std::isinf(residual)) { OPM_THROW(Opm::NumericalIssue, "nan or inf value for residal get for well " << name() << " segment " << seg << " eq_idx " << eq_idx); } if (residual > residuals[eq_idx]) { residuals[eq_idx] = residual; } } } // handling the control equation residual { const double control_residual = std::abs(resWell_[0][numWellEq - 1]); if (std::isnan(control_residual) || std::isinf(control_residual)) { OPM_THROW(Opm::NumericalIssue, "nan or inf value for control residal get for well " << name()); } residuals[numWellEq] = control_residual; } return residuals; } /// Detect oscillation or stagnation based on the residual measure history template void MultisegmentWell:: detectOscillations(const std::vector& measure_history, const int it, bool& oscillate, bool& stagnate) const { if ( it < 2 ) { oscillate = false; stagnate = false; return; } stagnate = true; const double F0 = measure_history[it]; const double F1 = measure_history[it - 1]; const double F2 = measure_history[it - 2]; const double d1 = std::abs((F0 - F2) / F0); const double d2 = std::abs((F0 - F1) / F0); const double oscillaton_rel_tol = 0.2; oscillate = (d1 < oscillaton_rel_tol) && (oscillaton_rel_tol < d2); const double stagnation_rel_tol = 1.e-2; stagnate = std::abs((F1 - F2) / F2) <= stagnation_rel_tol; } template double MultisegmentWell:: getResidualMeasureValue(const WellState& well_state, const std::vector& residuals, DeferredLogger& deferred_logger) const { assert(int(residuals.size()) == numWellEq + 1); const double rate_tolerance = param_.tolerance_wells_; int count = 0; double sum = 0; for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) { if (residuals[eq_idx] > rate_tolerance) { sum += residuals[eq_idx] / rate_tolerance; ++count; } } const double pressure_tolerance = param_.tolerance_pressure_ms_wells_; if (residuals[SPres] > pressure_tolerance) { sum += residuals[SPres] / pressure_tolerance; ++count; } const double control_tolerance = getControlTolerance(well_state, deferred_logger); if (residuals[SPres + 1] > control_tolerance) { sum += residuals[SPres + 1] / control_tolerance; ++count; } // if (count == 0), it should be converged. assert(count != 0); return sum; } template double MultisegmentWell:: getControlTolerance(const WellState& well_state, DeferredLogger& deferred_logger) const { double control_tolerance = 0.; const int well_index = index_of_well_; if (this->isInjector() ) { const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index]; switch(current) { case Well::InjectorCMode::THP: control_tolerance = param_.tolerance_pressure_ms_wells_; break; case Well::InjectorCMode::BHP: control_tolerance = param_.tolerance_wells_; break; case Well::InjectorCMode::RATE: case Well::InjectorCMode::RESV: control_tolerance = param_.tolerance_wells_; break; case Well::InjectorCMode::GRUP: control_tolerance = param_.tolerance_wells_; break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger); } } if (this->isProducer() ) { const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index]; switch(current) { case Well::ProducerCMode::THP: control_tolerance = param_.tolerance_pressure_ms_wells_; // 0.1 bar break; case Well::ProducerCMode::BHP: control_tolerance = param_.tolerance_wells_; // 0.01 bar break; case Well::ProducerCMode::ORAT: case Well::ProducerCMode::WRAT: case Well::ProducerCMode::GRAT: case Well::ProducerCMode::LRAT: case Well::ProducerCMode::RESV: case Well::ProducerCMode::CRAT: control_tolerance = param_.tolerance_wells_; // smaller tolerance for rate control break; case Well::ProducerCMode::GRUP: control_tolerance = param_.tolerance_wells_; // smaller tolerance for rate control break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger); } } return control_tolerance; } template void MultisegmentWell:: checkConvergenceControlEq(const WellState& well_state, ConvergenceReport& report, DeferredLogger& deferred_logger) const { double control_tolerance = 0.; using CR = ConvergenceReport; CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid; const int well_index = index_of_well_; if (this->isInjector() ) { const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index]; switch(current) { case Well::InjectorCMode::THP: ctrltype = CR::WellFailure::Type::ControlTHP; control_tolerance = param_.tolerance_pressure_ms_wells_; break; case Well::InjectorCMode::BHP: ctrltype = CR::WellFailure::Type::ControlBHP; control_tolerance = param_.tolerance_pressure_ms_wells_; break; case Well::InjectorCMode::RATE: case Well::InjectorCMode::RESV: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = param_.tolerance_wells_; break; case Well::InjectorCMode::GRUP: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = param_.tolerance_wells_; break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger); } } if (this->isProducer() ) { const Well::ProducerCMode& current = well_state.currentProductionControls()[well_index]; switch(current) { case Well::ProducerCMode::THP: ctrltype = CR::WellFailure::Type::ControlTHP; control_tolerance = param_.tolerance_pressure_ms_wells_; break; case Well::ProducerCMode::BHP: ctrltype = CR::WellFailure::Type::ControlBHP; control_tolerance = param_.tolerance_pressure_ms_wells_; break; case Well::ProducerCMode::ORAT: case Well::ProducerCMode::WRAT: case Well::ProducerCMode::GRAT: case Well::ProducerCMode::LRAT: case Well::ProducerCMode::RESV: case Well::ProducerCMode::CRAT: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = param_.tolerance_wells_; break; case Well::ProducerCMode::GRUP: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = param_.tolerance_wells_; break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << name(), deferred_logger); } } const double well_control_residual = std::abs(resWell_[0][SPres]); const int dummy_component = -1; const double max_residual_allowed = param_.max_residual_allowed_; if (std::isnan(well_control_residual)) { report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, name()}); } else if (well_control_residual > max_residual_allowed * 10.) { report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, name()}); } else if ( well_control_residual > control_tolerance) { report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, name()}); } } template void MultisegmentWell:: updateUpwindingSegments() { for (int seg = 0; seg < numberOfSegments(); ++seg) { // special treatment is needed for segment 0 if (seg == 0) { // we are not supposed to have injecting producers and producing injectors assert( ! (this->isProducer() && primary_variables_evaluation_[seg][GTotal] > 0.) ); assert( ! (this->isInjector() && primary_variables_evaluation_[seg][GTotal] < 0.) ); upwinding_segments_[seg] = seg; continue; } // for other normal segments if (primary_variables_evaluation_[seg][GTotal] <= 0.) { upwinding_segments_[seg] = seg; } else { const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment()); upwinding_segments_[seg] = outlet_segment_index; } } } template void MultisegmentWell:: assembleSICDPressureEq(const int seg, WellState& well_state) const { // TODO: upwinding needs to be taken care of // top segment can not be a spiral ICD device assert(seg != 0); // the pressure equation is something like // p_seg - deltaP - p_outlet = 0. // the major part is how to calculate the deltaP EvalWell pressure_equation = getSegmentPressure(seg); const auto sicd_pressure_drop = pressureDropSpiralICD(seg); pressure_equation = pressure_equation - sicd_pressure_drop; well_state.segPressDropFriction()[seg] = sicd_pressure_drop.value(); const int seg_upwind = upwinding_segments_[seg]; resWell_[seg][SPres] = pressure_equation.value(); duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + numEq); duneD_[seg][seg][SPres][GTotal] += pressure_equation.derivative(GTotal + numEq); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + numEq); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + numEq); } // contribution from the outlet segment const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index); resWell_[seg][SPres] -= outlet_pressure.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq); } } template void MultisegmentWell:: assembleValvePressureEq(const int seg, WellState& well_state) const { // top segment can not be a spiral ICD device assert(seg != 0); // const Valve& valve = *segmentSet()[seg].Valve(); // the pressure equation is something like // p_seg - deltaP - p_outlet = 0. // the major part is how to calculate the deltaP EvalWell pressure_equation = getSegmentPressure(seg); const int seg_upwind = upwinding_segments_[seg]; const auto valve_pressure_drop = pressureDropValve(seg); pressure_equation = pressure_equation - valve_pressure_drop; well_state.segPressDropFriction()[seg] = valve_pressure_drop.value(); resWell_[seg][SPres] = pressure_equation.value(); duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + numEq); duneD_[seg][seg][SPres][GTotal] += pressure_equation.derivative(GTotal + numEq); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + numEq); } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + numEq); } // contribution from the outlet segment const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index); resWell_[seg][SPres] -= outlet_pressure.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq); } } template std::optional MultisegmentWell:: computeBhpAtThpLimitProd(const Simulator& ebos_simulator, const std::vector& B_avg, const SummaryState& summary_state, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) should be returned. // Make the fbhp() function. const auto& controls = well_ecl_.productionControls(summary_state); const auto& table = *(vfp_properties_->getProd()->getTable(controls.vfp_table_number)); const double vfp_ref_depth = table.getDatumDepth(); const double rho = segment_densities_[0].value(); // Use the density at the top perforation. const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); auto fbhp = [this, &controls, dp](const std::vector& rates) { assert(rates.size() == 3); return this->vfp_properties_->getProd() ->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit, controls.alq_value) - dp; }; // Make the flo() function. auto flo_type = table.getFloType(); auto flo = [flo_type](const std::vector& rates) { return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type); }; // Make the frates() function. auto frates = [this, &ebos_simulator, &B_avg, &deferred_logger](const double bhp) { // Not solving the well equations here, which means we are // calculating at the current Fg/Fw values of the // well. This does not matter unless the well is // crossflowing, and then it is likely still a good // approximation. std::vector rates(3); computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, rates, deferred_logger); return rates; }; // Find the bhp-point where production becomes nonzero. double bhp_max = 0.0; { auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); }; double low = controls.bhp_limit; double high = maxPerfPress(ebos_simulator) + 1.0 * unit::barsa; double f_low = fflo(low); double f_high = fflo(high); deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " f(low) = " + std::to_string(f_low) + " f(high) = " + std::to_string(f_high)); int adjustments = 0; const int max_adjustments = 10; const double adjust_amount = 5.0 * unit::barsa; while (f_low * f_high > 0.0 && adjustments < max_adjustments) { // Same sign, adjust high to see if we can flip it. high += adjust_amount; f_high = fflo(high); ++adjustments; } if (f_low * f_high > 0.0) { if (f_low > 0.0) { // Even at the BHP limit, we are injecting. // There will be no solution here, return an // empty optional. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE", "Robust bhp(thp) solve failed due to inoperability for well " + name()); return std::optional(); } else { // Still producing, even at high bhp. assert(f_high < 0.0); bhp_max = high; } } else { // Bisect to find a bhp point where we produce, but // not a large amount ('eps' below). const double eps = 0.1 * std::fabs(table.getFloAxis().front()); const int maxit = 50; int it = 0; while (std::fabs(f_low) > eps && it < maxit) { const double curr = 0.5*(low + high); const double f_curr = fflo(curr); if (f_curr * f_low > 0.0) { low = curr; f_low = f_curr; } else { high = curr; f_high = f_curr; } ++it; } bhp_max = low; } deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " f(low) = " + std::to_string(f_low) + " f(high) = " + std::to_string(f_high) + " bhp_max = " + std::to_string(bhp_max)); } // Define the equation we want to solve. auto eq = [&fbhp, &frates](double bhp) { return fbhp(frates(bhp)) - bhp; }; // Find appropriate brackets for the solution. double low = controls.bhp_limit; double high = bhp_max; { double eq_high = eq(high); double eq_low = eq(low); const double eq_bhplimit = eq_low; deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() + " low = " + std::to_string(low) + " high = " + std::to_string(high) + " eq(low) = " + std::to_string(eq_low) + " eq(high) = " + std::to_string(eq_high)); if (eq_low * eq_high > 0.0) { // Failed to bracket the zero. // If this is due to having two solutions, bisect until bracketed. double abs_low = std::fabs(eq_low); double abs_high = std::fabs(eq_high); int bracket_attempts = 0; const int max_bracket_attempts = 20; double interval = high - low; const double min_interval = 1.0 * unit::barsa; while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) { if (abs_high < abs_low) { low = 0.5 * (low + high); eq_low = eq(low); abs_low = std::fabs(eq_low); } else { high = 0.5 * (low + high); eq_high = eq(high); abs_high = std::fabs(eq_high); } ++bracket_attempts; } if (eq_low * eq_high > 0.0) { // Still failed bracketing! const double limit = 3.0 * unit::barsa; if (std::min(abs_low, abs_high) < limit) { // Return the least bad solution if less off than 3 bar. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE", "Robust bhp(thp) not solved precisely for well " + name()); return abs_low < abs_high ? low : high; } else { // Return failure. deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE", "Robust bhp(thp) solve failed due to bracketing failure for well " + name()); return std::optional(); } } } // We have a bracket! // Now, see if (bhplimit, low) is a bracket in addition to (low, high). // If so, that is the bracket we shall use, choosing the solution with the // highest flow. if (eq_low * eq_bhplimit <= 0.0) { high = low; low = controls.bhp_limit; } } // Solve for the proper solution in the given interval. const int max_iteration = 100; const double bhp_tolerance = 0.01 * unit::barsa; int iteration = 0; try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, bhp_tolerance, iteration); return solved_bhp; } catch (...) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + name()); return std::optional(); } } template std::optional MultisegmentWell:: computeBhpAtThpLimitInj(const Simulator& ebos_simulator, const std::vector& B_avg, const SummaryState& summary_state, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) is returned. // // In order to detect these situations, we will find piecewise // linear approximations both to the inverse of the frates // function and to the fbhp function. // // We first take the FLO sample points of the VFP curve, and // find the corresponding bhp values by solving the equation: // flo(frates(bhp)) - flo_sample = 0 // for bhp, for each flo_sample. The resulting (flo_sample, // bhp_sample) values give a piecewise linear approximation to // the true inverse inflow function, at the same flo values as // the VFP data. // // Then we extract a piecewise linear approximation from the // multilinear fbhp() by evaluating it at the flo_sample // points, with fractions given by the frates(bhp_sample) // values. // // When we have both piecewise linear curves defined on the // same flo_sample points, it is easy to distinguish between // the 0, 1 or 2 solution cases, and obtain the right interval // in which to solve for the solution we want (with highest // flow in case of 2 solutions). // Make the fbhp() function. const auto& controls = well_ecl_.injectionControls(summary_state); const auto& table = *(vfp_properties_->getInj()->getTable(controls.vfp_table_number)); const double vfp_ref_depth = table.getDatumDepth(); const double rho = segment_densities_[0].value(); // Use the density at the top perforation. const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_); auto fbhp = [this, &controls, dp](const std::vector& rates) { assert(rates.size() == 3); return this->vfp_properties_->getInj() ->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit) - dp; }; // Make the flo() function. auto flo_type = table.getFloType(); auto flo = [flo_type](const std::vector& rates) { return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type); }; // Make the frates() function. auto frates = [this, &ebos_simulator, &B_avg, &deferred_logger](const double bhp) { // Not solving the well equations here, which means we are // calculating at the current Fg/Fw values of the // well. This does not matter unless the well is // crossflowing, and then it is likely still a good // approximation. std::vector rates(3); computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, rates, deferred_logger); return rates; }; // Get the flo samples, add extra samples at low rates and bhp // limit point if necessary. std::vector flo_samples = table.getFloAxis(); if (flo_samples[0] > 0.0) { const double f0 = flo_samples[0]; flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 }); } const double flo_bhp_limit = flo(frates(controls.bhp_limit)); if (flo_samples.back() < flo_bhp_limit) { flo_samples.push_back(flo_bhp_limit); } // Find bhp values for inflow relation corresponding to flo samples. std::vector bhp_samples; for (double flo_sample : flo_samples) { if (flo_sample > flo_bhp_limit) { // We would have to go over the bhp limit to obtain a // flow of this magnitude. We associate all such flows // with simply the bhp limit. The first one // encountered is considered valid, the rest not. They // are therefore skipped. bhp_samples.push_back(controls.bhp_limit); break; } auto eq = [&flo, &frates, flo_sample](double bhp) { return flo(frates(bhp)) - flo_sample; }; // TODO: replace hardcoded low/high limits. const double low = 10.0 * unit::barsa; const double high = 800.0 * unit::barsa; const int max_iteration = 100; const double flo_tolerance = 0.05 * std::fabs(flo_samples.back()); int iteration = 0; try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, flo_tolerance, iteration); bhp_samples.push_back(solved_bhp); } catch (...) { // Use previous value (or max value if at start) if we failed. bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back()); deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES", "Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + name()); } } // Find bhp values for VFP relation corresponding to flo samples. const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size() std::vector fbhp_samples(num_samples); for (int ii = 0; ii < num_samples; ++ii) { fbhp_samples[ii] = fbhp(frates(bhp_samples[ii])); } // #define EXTRA_THP_DEBUGGING #ifdef EXTRA_THP_DEBUGGING std::string dbgmsg; dbgmsg += "flo: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(flo_samples[ii]); } dbgmsg += "\nbhp: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(bhp_samples[ii]); } dbgmsg += "\nfbhp: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(fbhp_samples[ii]); } OpmLog::debug(dbgmsg); #endif // EXTRA_THP_DEBUGGING // Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve. // We only look at the valid int sign_change_index = -1; for (int ii = 0; ii < num_samples - 1; ++ii) { const double curr = fbhp_samples[ii] - bhp_samples[ii]; const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1]; if (curr * next < 0.0) { // Sign change in the [ii, ii + 1] interval. sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution. } } // Handle the no solution case. if (sign_change_index == -1) { return std::optional(); } // Solve for the proper solution in the given interval. auto eq = [&fbhp, &frates](double bhp) { return fbhp(frates(bhp)) - bhp; }; // TODO: replace hardcoded low/high limits. const double low = bhp_samples[sign_change_index + 1]; const double high = bhp_samples[sign_change_index]; const int max_iteration = 100; const double bhp_tolerance = 0.01 * unit::barsa; int iteration = 0; if (low == high) { // We are in the high flow regime where the bhp_samples // are all equal to the bhp_limit. assert(low == controls.bhp_limit); deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + name()); return std::optional(); } try { const double solved_bhp = RegulaFalsiBisection:: solve(eq, low, high, max_iteration, bhp_tolerance, iteration); #ifdef EXTRA_THP_DEBUGGING OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp) + " flo_bhp_limit = " + std::to_string(flo_bhp_limit)); #endif // EXTRA_THP_DEBUGGING return solved_bhp; } catch (...) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + name()); return std::optional(); } } template double MultisegmentWell:: maxPerfPress(const Simulator& ebos_simulator) const { double max_pressure = 0.0; const int nseg = numberOfSegments(); for (int seg = 0; seg < nseg; ++seg) { for (const int perf : segment_perforations_[seg]) { const int cell_idx = well_cells_[perf]; const auto& int_quants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); const auto& fs = int_quants.fluidState(); double pressure_cell = fs.pressure(FluidSystem::oilPhaseIdx).value(); max_pressure = std::max(max_pressure, pressure_cell); } } return max_pressure; } template typename MultisegmentWell::EvalWell MultisegmentWell:: pressureDropSpiralICD(const int seg) const { const SICD& sicd = segmentSet()[seg].spiralICD(); const int seg_upwind = upwinding_segments_[seg]; const std::vector& phase_fractions = segment_phase_fractions_[seg_upwind]; const std::vector& phase_viscosities = segment_phase_viscosities_[seg_upwind]; EvalWell water_fraction = 0.; EvalWell water_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); water_fraction = phase_fractions[water_pos]; water_viscosity = phase_viscosities[water_pos]; } EvalWell oil_fraction = 0.; EvalWell oil_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); oil_fraction = phase_fractions[oil_pos]; oil_viscosity = phase_viscosities[oil_pos]; } EvalWell gas_fraction = 0.; EvalWell gas_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); gas_fraction = phase_fractions[gas_pos]; gas_viscosity = phase_viscosities[gas_pos]; } EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { water_fraction.clearDerivatives(); water_viscosity.clearDerivatives(); oil_fraction.clearDerivatives(); oil_viscosity.clearDerivatives(); gas_fraction.clearDerivatives(); gas_viscosity.clearDerivatives(); density.clearDerivatives(); } const EvalWell liquid_emulsion_viscosity = mswellhelpers::emulsionViscosity(water_fraction, water_viscosity, oil_fraction, oil_viscosity, sicd); const EvalWell mixture_viscosity = (water_fraction + oil_fraction) * liquid_emulsion_viscosity + gas_fraction * gas_viscosity; const EvalWell reservoir_rate = segment_mass_rates_[seg] / density; const EvalWell reservoir_rate_icd = reservoir_rate * sicd.scalingFactor(); const double viscosity_cali = sicd.viscosityCalibration(); using MathTool = MathToolbox; const double density_cali = sicd.densityCalibration(); const EvalWell temp_value1 = MathTool::pow(density / density_cali, 0.75); const EvalWell temp_value2 = MathTool::pow(mixture_viscosity / viscosity_cali, 0.25); // formulation before 2016, base_strength is used // const double base_strength = sicd.strength() / density_cali; // formulation since 2016, strength is used instead const double strength = sicd.strength(); const double sign = reservoir_rate_icd <= 0. ? 1.0 : -1.0; return sign * temp_value1 * temp_value2 * strength * reservoir_rate_icd * reservoir_rate_icd; } template typename MultisegmentWell::EvalWell MultisegmentWell:: pressureDropValve(const int seg) const { const Valve& valve = segmentSet()[seg].valve(); const EvalWell& mass_rate = segment_mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell visc = segment_viscosities_[seg_upwind]; EvalWell density = segment_densities_[seg_upwind]; // WARNING // We disregard the derivatives from the upwind density to make sure derivatives // wrt. to different segments dont get mixed. if (seg != seg_upwind) { visc.clearDerivatives(); density.clearDerivatives(); } const double additional_length = valve.pipeAdditionalLength(); const double roughness = valve.pipeRoughness(); const double diameter = valve.pipeDiameter(); const double area = valve.pipeCrossArea(); const EvalWell friction_pressure_loss = mswellhelpers::frictionPressureLoss(additional_length, diameter, area, roughness, density, mass_rate, visc); const double area_con = valve.conCrossArea(); const double cv = valve.conFlowCoefficient(); const EvalWell constriction_pressure_loss = mswellhelpers::valveContrictionPressureLoss(mass_rate, density, area_con, cv); const double sign = mass_rate <= 0. ? 1.0 : -1.0; return sign * (friction_pressure_loss + constriction_pressure_loss); } }