/* Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 IRIS AS Copyright 2014 STATOIL ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_FLOWMAIN_HEADER_INCLUDED #define OPM_FLOWMAIN_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Note: the GridHelpers must be included before this (to make overloads available). \TODO: Fix. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _OPENMP #include #endif #include #include #include #include #include #include #include #include namespace Opm { namespace detail { boost::filesystem::path simulationCaseName( const std::string& casename ); } /// This class encapsulates the setup and running of /// a simulator based on an input deck. template class FlowMainBase { public: /// This is the main function of Flow. /// It runs a complete simulation, with the given grid and /// simulator classes, based on user command-line input. The /// content of this function used to be in the main() function of /// flow.cpp. int execute(int argc, char** argv) try { // we always want to use the default locale, and thus spare us the trouble // with incorrect locale settings. resetLocale(); // Setup. asImpl().setupParallelism(argc, argv); asImpl().printStartupMessage(); const bool ok = asImpl().setupParameters(argc, argv); if (!ok) { return EXIT_FAILURE; } asImpl().readDeckInput(); asImpl().setupOutput(); asImpl().setupLogging(); asImpl().setupGridAndProps(); asImpl().runDiagnostics(); asImpl().setupState(); asImpl().writeInit(); asImpl().distributeData(); asImpl().setupOutputWriter(); asImpl().setupLinearSolver(); asImpl().createSimulator(); // Run. auto ret = asImpl().runSimulator(); asImpl().mergeParallelLogFiles(); return ret; } catch (const std::exception &e) { std::ostringstream message; message << "Program threw an exception: " << e.what(); if( output_cout_ ) { // in some cases exceptions are thrown before the logging system is set // up. if (OpmLog::hasBackend("STREAMLOG")) { OpmLog::error(message.str()); } else { std::cout << message.str() << "\n"; } } return EXIT_FAILURE; } protected: // ------------ Types ------------ typedef BlackoilPropsAdFromDeck FluidProps; typedef FluidProps::MaterialLawManager MaterialLawManager; typedef typename Simulator::ReservoirState ReservoirState; typedef typename Simulator::OutputWriter OutputWriter; // ------------ Data members ------------ // The comments indicate in which method the // members first occur. // setupParallelism() int mpi_rank_ = 0; bool output_cout_ = false; bool must_distribute_ = false; // setupParameters() ParameterGroup param_; // setupOutput() bool output_to_files_ = false; std::string output_dir_ = std::string("."); // readDeckInput() std::shared_ptr deck_; std::shared_ptr eclipse_state_; std::shared_ptr schedule_; std::shared_ptr summary_config_; // setupGridAndProps() std::unique_ptr> grid_init_; std::shared_ptr material_law_manager_; std::unique_ptr fluidprops_; std::unique_ptr rock_comp_; std::array gravity_; bool use_local_perm_ = true; std::unique_ptr geoprops_; // setupState() std::unique_ptr state_; std::vector threshold_pressures_; // distributeData() boost::any parallel_information_; // setupOutputWriter() std::unique_ptr eclipse_writer_; std::unique_ptr output_writer_; // setupLinearSolver std::unique_ptr fis_solver_; // createSimulator() std::unique_ptr simulator_; // create log file std::string logFile_; // The names of wells that are artifically defunct in parallel runs. // Those wells are handled on a another process. std::unordered_set defunct_well_names_; // ------------ Methods ------------ // Set up MPI and OpenMP. // Writes to: // output_cout_ // must_distribute_ void setupParallelism(int argc, char** argv) { // MPI setup. // Must ensure an instance of the helper is created to initialise MPI. // For a build without MPI the Dune::FakeMPIHelper is used, so rank will // be 0 and size 1. const Dune::MPIHelper& mpi_helper = Dune::MPIHelper::instance(argc, argv); mpi_rank_ = mpi_helper.rank(); const int mpi_size = mpi_helper.size(); output_cout_ = ( mpi_rank_ == 0 ); must_distribute_ = ( mpi_size > 1 ); #ifdef _OPENMP // OpenMP setup. if (!getenv("OMP_NUM_THREADS")) { // Default to at most 4 threads, regardless of // number of cores (unless ENV(OMP_NUM_THREADS) is defined) int num_cores = omp_get_num_procs(); int num_threads = std::min(4, num_cores); omp_set_num_threads(num_threads); } #pragma omp parallel if (omp_get_thread_num() == 0) { // omp_get_num_threads() only works as expected within a parallel region. const int num_omp_threads = omp_get_num_threads(); if (mpi_size == 1) { std::cout << "OpenMP using " << num_omp_threads << " threads." << std::endl; } else { std::cout << "OpenMP using " << num_omp_threads << " threads on MPI rank " << mpi_rank_ << "." << std::endl; } } #endif } /// checks cartesian adjacency of global indices g1 and g2 bool cartesianAdjacent(const Grid& grid, int g1, int g2) { // we need cartDims from UgGridHelpers using namespace UgGridHelpers; int diff = std::abs(g1 - g2); const int * dimens = cartDims(grid); if (diff == 1) return true; if (diff == dimens[0]) return true; if (diff == dimens[0] * dimens[1]) return true; return false; } // Print startup message if on output rank. void printStartupMessage() { if (output_cout_) { const std::string version = moduleVersionName(); std::cout << "**********************************************************************\n"; std::cout << "* *\n"; std::cout << "* This is flow_legacy (version " << version << ")" << std::string(26 - version.size(), ' ') << "*\n"; std::cout << "* *\n"; std::cout << "* Flow is a simulator for fully implicit three-phase black-oil flow, *\n"; std::cout << "* and is part of OPM. For more information see: *\n"; std::cout << "* https://opm-project.org *\n"; std::cout << "* *\n"; std::cout << "**********************************************************************\n\n"; } } // Read parameters, see if a deck was specified on the command line, and if // it was, insert it into parameters. // Writes to: // param_ // Returns true if ok, false if not. bool setupParameters(int argc, char** argv) { param_ = ParameterGroup(argc, argv, false, output_cout_); // See if a deck was specified on the command line. if (!param_.unhandledArguments().empty()) { if (param_.unhandledArguments().size() != 1) { std::cerr << "You can only specify a single input deck on the command line.\n"; return false; } else { const auto casename = detail::simulationCaseName( param_.unhandledArguments()[ 0 ] ); param_.insertParameter("deck_filename", casename.string() ); } } // We must have an input deck. Grid and props will be read from that. if (!param_.has("deck_filename")) { std::cerr << "This program must be run with an input deck.\n" "Specify the deck filename either\n" " a) as a command line argument by itself\n" " b) as a command line parameter with the syntax deck_filename=, or\n" " c) as a parameter in a parameter file (.param or .xml) passed to the program.\n"; return false; } return true; } // Set output_to_files_ and set/create output dir. Write parameter file. // Writes to: // output_to_files_ // output_dir_ // Throws std::runtime_error if failed to create (if requested) output dir. void setupOutput() { output_to_files_ = output_cout_ && param_.getDefault("output", true); // Setup output directory. auto& ioConfig = eclipse_state_->getIOConfig(); // Default output directory is the directory where the deck is found. const std::string default_output_dir = ioConfig.getOutputDir(); output_dir_ = param_.getDefault("output_dir", default_output_dir); // Override output directory if user specified. ioConfig.setOutputDir(output_dir_); bool opm_rst_file = param_.getDefault("enable-opm-rst-file", false); ioConfig.setEclCompatibleRST(!opm_rst_file); // Write parameters used for later reference. (only if rank is zero) if (output_to_files_) { // Create output directory if needed. ensureDirectoryExists(output_dir_); // Write simulation parameters. param_.writeParam(output_dir_ + "/simulation.param"); } } // Setup OpmLog backend with output_dir. void setupLogging() { std::string deck_filename = param_.get("deck_filename"); // create logFile using boost::filesystem::path; path fpath(deck_filename); std::string baseName; std::ostringstream debugFileStream; std::ostringstream logFileStream; if (boost::to_upper_copy(path(fpath.extension()).string()) == ".DATA") { baseName = path(fpath.stem()).string(); } else { baseName = path(fpath.filename()).string(); } logFileStream << output_dir_ << "/" << baseName; debugFileStream << output_dir_ << "/" << "." << baseName; if ( must_distribute_ && mpi_rank_ != 0 ) { // Added rank to log file for non-zero ranks. // This prevents message loss. debugFileStream << "."<< mpi_rank_; // If the following file appears then there is a bug. logFileStream << "." << mpi_rank_; } logFileStream << ".PRT"; debugFileStream << ".DEBUG"; std::string debugFile = debugFileStream.str(); logFile_ = logFileStream.str(); std::shared_ptr prtLog = std::make_shared(logFile_ , Log::NoDebugMessageTypes, false, output_cout_); const bool all_to_terminal = param_.getDefault("all_messages_to_terminal", false); const auto terminal_msg_types = all_to_terminal ? Log::DefaultMessageTypes : Log::StdoutMessageTypes; std::shared_ptr streamLog = std::make_shared(std::cout, terminal_msg_types); OpmLog::addBackend( "ECLIPSEPRTLOG" , prtLog ); OpmLog::addBackend( "STREAMLOG", streamLog); std::shared_ptr debugLog = std::make_shared(debugFile, Log::DefaultMessageTypes, false, output_cout_); OpmLog::addBackend( "DEBUGLOG" , debugLog); const auto& msgLimits = schedule_->getMessageLimits(); const std::map limits = {{Log::MessageType::Note, msgLimits.getCommentPrintLimit(0)}, {Log::MessageType::Info, msgLimits.getMessagePrintLimit(0)}, {Log::MessageType::Warning, msgLimits.getWarningPrintLimit(0)}, {Log::MessageType::Error, msgLimits.getErrorPrintLimit(0)}, {Log::MessageType::Problem, msgLimits.getProblemPrintLimit(0)}, {Log::MessageType::Bug, msgLimits.getBugPrintLimit(0)}}; prtLog->setMessageLimiter(std::make_shared()); prtLog->setMessageFormatter(std::make_shared(false)); streamLog->setMessageLimiter(std::make_shared(10, limits)); streamLog->setMessageFormatter(std::make_shared(true)); // Read parameters. if ( output_cout_ ) { OpmLog::debug("\n--------------- Reading parameters ---------------\n"); } } void mergeParallelLogFiles() { // force closing of all log files. OpmLog::removeAllBackends(); if( mpi_rank_ != 0 || !must_distribute_ || !output_to_files_ ) { return; } namespace fs = boost::filesystem; fs::path output_path("."); if ( param_.has("output_dir") ) { output_path = fs::path(output_dir_); } fs::path deck_filename(param_.get("deck_filename")); std::for_each(fs::directory_iterator(output_path), fs::directory_iterator(), detail::ParallelFileMerger(output_path, deck_filename.stem().string())); } // Parser the input and creates the Deck and EclipseState objects. // Writes to: // deck_ // eclipse_state_ // May throw if errors are encountered, here configured to be somewhat tolerant. void readDeckInput() { std::string deck_filename = param_.get("deck_filename"); // Create Parser Parser parser; // Create Deck and EclipseState. try { ParseContext parseContext({ { ParseContext::PARSE_RANDOM_SLASH , InputError::IGNORE }, { ParseContext::PARSE_MISSING_DIMS_KEYWORD, InputError::WARN }, { ParseContext::SUMMARY_UNKNOWN_WELL, InputError::WARN }, { ParseContext::SUMMARY_UNKNOWN_GROUP, InputError::WARN }}); deck_ = std::make_shared< Deck >( parser.parseFile(deck_filename, parseContext) ); checkDeck(*deck_, parser); if ( output_cout_) { MissingFeatures::checkKeywords(*deck_); } eclipse_state_.reset(new EclipseState(*deck_, parseContext)); schedule_.reset(new Schedule(*deck_, eclipse_state_->getInputGrid(), eclipse_state_->get3DProperties(), eclipse_state_->runspec().phases(), parseContext)); summary_config_.reset(new SummaryConfig(*deck_, *schedule_, eclipse_state_->getTableManager(), parseContext)); } catch (const std::invalid_argument& e) { std::cerr << "Failed to create valid EclipseState object. See logfile: " << logFile_ << std::endl; std::cerr << "Exception caught: " << e.what() << std::endl; throw; } // Possibly override IOConfig setting (from deck) for how often RESTART files should get written to disk (every N report step) if (param_.has("output_interval")) { const int output_interval = param_.get("output_interval"); eclipse_state_->getRestartConfig().overrideRestartWriteInterval( size_t( output_interval ) ); } // Possible to force initialization only behavior (NOSIM). if (param_.has("nosim")) { const bool nosim = param_.get("nosim"); auto& ioConfig = eclipse_state_->getIOConfig(); ioConfig.overrideNOSIM( nosim ); } } // Create grid and property objects. // Writes to: // grid_init_ // material_law_manager_ // fluidprops_ // rock_comp_ // gravity_ // use_local_perm_ // geoprops_ void setupGridAndProps() { // Create grid. const std::vector& porv = eclipse_state_->get3DProperties().getDoubleGridProperty("PORV").getData(); grid_init_.reset(new GridInit(*eclipse_state_, porv)); const Grid& grid = grid_init_->grid(); // Create material law manager. std::vector compressedToCartesianIdx; Opm::createGlobalCellArray(grid, compressedToCartesianIdx); material_law_manager_.reset(new MaterialLawManager()); material_law_manager_->initFromDeck(*deck_, *eclipse_state_, compressedToCartesianIdx); // Rock and fluid properties. fluidprops_.reset(new BlackoilPropsAdFromDeck(*deck_, *eclipse_state_, material_law_manager_, grid)); // Rock compressibility. rock_comp_.reset(new RockCompressibility(*eclipse_state_, output_cout_)); // Gravity. assert(UgGridHelpers::dimensions(grid) == 3); gravity_.fill(0.0); gravity_[2] = deck_->hasKeyword("NOGRAV") ? param_.getDefault("gravity", 0.0) : param_.getDefault("gravity", unit::gravity); // Geological properties use_local_perm_ = param_.getDefault("use_local_perm", use_local_perm_); geoprops_.reset(new DerivedGeology(grid, *fluidprops_, *eclipse_state_, use_local_perm_, gravity_.data())); } // Initialise the reservoir state. Updated fluid props for SWATINIT. // Writes to: // state_ // threshold_pressures_ // fluidprops_ (if SWATINIT is used) void setupState() { const PhaseUsage pu = Opm::phaseUsageFromDeck(*deck_); const Grid& grid = grid_init_->grid(); // Need old-style fluid object for init purposes (only). BlackoilPropertiesFromDeck props( *deck_, *eclipse_state_, material_law_manager_, Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid), Opm::UgGridHelpers::cartDims(grid), param_); // Init state variables (saturation and pressure). if (param_.has("init_saturation")) { state_.reset( new ReservoirState( Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::numFaces(grid), props.numPhases() )); initStateBasic(Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid), Opm::UgGridHelpers::cartDims(grid), Opm::UgGridHelpers::numFaces(grid), Opm::UgGridHelpers::faceCells(grid), Opm::UgGridHelpers::beginFaceCentroids(grid), Opm::UgGridHelpers::beginCellCentroids(grid), Opm::UgGridHelpers::dimensions(grid), props, param_, gravity_[2], *state_); initBlackoilSurfvol(Opm::UgGridHelpers::numCells(grid), props, *state_); enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour }; if (pu.phase_used[Oil] && pu.phase_used[Gas]) { const int numPhases = props.numPhases(); const int numCells = Opm::UgGridHelpers::numCells(grid); // Uglyness 1: The state is a templated type, here we however make explicit use BlackoilState. auto& gor = state_->getCellData( BlackoilState::GASOILRATIO ); const auto& surface_vol = state_->getCellData( BlackoilState::SURFACEVOL ); for (int c = 0; c < numCells; ++c) { // Uglyness 2: Here we explicitly use the layout of the saturation in the surface_vol field. gor[c] = surface_vol[ c * numPhases + pu.phase_pos[Gas]] / surface_vol[ c * numPhases + pu.phase_pos[Oil]]; } } } else if (deck_->hasKeyword("EQUIL")) { // Which state class are we really using - what a f... mess? state_.reset( new ReservoirState( Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::numFaces(grid), props.numPhases())); typedef Opm::BlackOilFluidSystem FluidSystem; FluidSystem::initFromDeck(*deck_ , *eclipse_state_); typedef EQUIL::DeckDependent::InitialStateComputer ISC; ISC isc(*material_law_manager_, *eclipse_state_, grid, gravity_[2]); const bool oil = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx); const int oilpos = FluidSystem::oilPhaseIdx; const int waterpos = FluidSystem::waterPhaseIdx; const int ref_phase = oil ? oilpos : waterpos; state_->pressure() = isc.press()[ref_phase]; convertSats(state_->saturation(), isc.saturation(), pu); state_->gasoilratio() = isc.rs(); state_->rv() = isc.rv(); } else { state_.reset( new ReservoirState( Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::numFaces(grid), props.numPhases())); initBlackoilStateFromDeck(Opm::UgGridHelpers::numCells(grid), Opm::UgGridHelpers::globalCell(grid), Opm::UgGridHelpers::numFaces(grid), Opm::UgGridHelpers::faceCells(grid), Opm::UgGridHelpers::beginFaceCentroids(grid), Opm::UgGridHelpers::beginCellCentroids(grid), Opm::UgGridHelpers::dimensions(grid), props, *deck_, gravity_[2], *state_); } // Threshold pressures. std::map, double> maxDp; computeMaxDp(maxDp, *deck_, *eclipse_state_, grid_init_->grid(), *state_, props, gravity_[2]); threshold_pressures_ = thresholdPressures(*deck_, *eclipse_state_, grid, maxDp); std::vector threshold_pressures_nnc = thresholdPressuresNNC(*eclipse_state_, geoprops_->nnc(), maxDp); threshold_pressures_.insert(threshold_pressures_.end(), threshold_pressures_nnc.begin(), threshold_pressures_nnc.end()); // The capillary pressure is scaled in fluidprops_ to match the scaled capillary pressure in props. if (deck_->hasKeyword("SWATINIT")) { const int numCells = Opm::UgGridHelpers::numCells(grid); std::vector cells(numCells); for (int c = 0; c < numCells; ++c) { cells[c] = c; } std::vector pc = state_->saturation(); props.capPress(numCells, state_->saturation().data(), cells.data(), pc.data(), nullptr); fluidprops_->setSwatInitScaling(state_->saturation(), pc); } initHydroCarbonState(*state_, pu, Opm::UgGridHelpers::numCells(grid), deck_->hasKeyword("DISGAS"), deck_->hasKeyword("VAPOIL")); } template void convertSats(std::vector& sat_interleaved, const std::vector< std::vector >& sat, const PhaseUsage& pu) { assert(sat.size() == 3); const auto nc = sat[0].size(); const auto np = sat_interleaved.size() / nc; for (size_t c = 0; c < nc; ++c) { if ( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const int opos = pu.phase_pos[BlackoilPhases::Liquid]; const std::vector& sat_p = sat[ FluidSystem::oilPhaseIdx]; sat_interleaved[np*c + opos] = sat_p[c]; } if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int wpos = pu.phase_pos[BlackoilPhases::Aqua]; const std::vector& sat_p = sat[ FluidSystem::waterPhaseIdx]; sat_interleaved[np*c + wpos] = sat_p[c]; } if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gpos = pu.phase_pos[BlackoilPhases::Vapour]; const std::vector& sat_p = sat[ FluidSystem::gasPhaseIdx]; sat_interleaved[np*c + gpos] = sat_p[c]; } } } // Distribute the grid, properties and state. // Writes to: // grid_init_->grid() // state_ // fluidprops_ // geoprops_ // material_law_manager_ // parallel_information_ void distributeData() { // At this point all properties and state variables are correctly initialized // If there are more than one processors involved, we now repartition the grid // and initilialize new properties and states for it. if (must_distribute_) { defunct_well_names_ = distributeGridAndData(grid_init_->grid(), *deck_, *eclipse_state_, *schedule_, *state_, *fluidprops_, *geoprops_, material_law_manager_, threshold_pressures_, parallel_information_, use_local_perm_); } } // Run diagnostics. // Writes to: // OpmLog singleton. void runDiagnostics() { if( ! output_cout_ ) { return; } // Run relperm diagnostics RelpermDiagnostics diagnostic; diagnostic.diagnosis(*eclipse_state_, *deck_, grid_init_->grid()); } void writeInit() { bool output = param_.getDefault("output", true); bool output_ecl = param_.getDefault("output_ecl", true); const Grid& grid = grid_init_->grid(); if( output && output_ecl && output_cout_) { const EclipseGrid& inputGrid = eclipse_state_->getInputGrid(); eclipse_writer_.reset(new EclipseIO(*eclipse_state_, UgGridHelpers::createEclipseGrid( grid , inputGrid ), *schedule_, *summary_config_ )); eclipse_writer_->writeInitial(geoprops_->simProps(grid), {}, geoprops_->nonCartesianConnections()); } } // Setup output writer. // Writes to: // output_writer_ void setupOutputWriter() { // create output writer after grid is distributed, otherwise the parallel output // won't work correctly since we need to create a mapping from the distributed to // the global view output_writer_.reset(new OutputWriter(grid_init_->grid(), param_, *eclipse_state_, *schedule_, *summary_config_, std::move(eclipse_writer_), Opm::phaseUsageFromDeck(*deck_))); } // Setup linear solver. // Writes to: // fis_solver_ void setupLinearSolver() { const std::string cprSolver = "cpr"; const std::string interleavedSolver = "interleaved"; const std::string directSolver = "direct"; std::string flowDefaultSolver = interleavedSolver; if (!param_.has("solver_approach")) { if (eclipse_state_->getSimulationConfig().useCPR()) { flowDefaultSolver = cprSolver; } } const std::string solver_approach = param_.getDefault("solver_approach", flowDefaultSolver); if (solver_approach == cprSolver) { fis_solver_.reset(new NewtonIterationBlackoilCPR(param_, parallel_information_)); } else if (solver_approach == interleavedSolver) { fis_solver_.reset(new NewtonIterationBlackoilInterleaved(param_, parallel_information_)); } else if (solver_approach == directSolver) { fis_solver_.reset(new NewtonIterationBlackoilSimple(param_, parallel_information_)); } else { OPM_THROW( std::runtime_error , "Internal error - solver approach " << solver_approach << " not recognized."); } } // Run the simulator. // Returns EXIT_SUCCESS if it does not throw. int runSimulator() { const auto& timeMap = schedule_->getTimeMap(); auto& ioConfig = eclipse_state_->getIOConfig(); SimulatorTimer simtimer; // initialize variables const auto& initConfig = eclipse_state_->getInitConfig(); simtimer.init(timeMap, (size_t)initConfig.getRestartStep()); if (!ioConfig.initOnly()) { if (output_cout_) { std::string msg; msg = "\n\n================ Starting main simulation loop ===============\n"; OpmLog::info(msg); } SimulatorReport fullReport = simulator_->run(simtimer, *state_); if (output_cout_) { std::ostringstream ss; ss << "\n\n================ End of simulation ===============\n\n"; fullReport.reportFullyImplicit(ss); OpmLog::info(ss.str()); if (param_.anyUnused()) { // This allows a user to catch typos and misunderstandings in the // use of simulator parameters. std::cout << "-------------------- Unused parameters: --------------------\n"; param_.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } } if (output_to_files_) { std::string filename = output_dir_ + "/walltime.txt"; std::fstream tot_os(filename.c_str(), std::fstream::trunc | std::fstream::out); fullReport.reportParam(tot_os); } } else { if (output_cout_) { std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush; } } return EXIT_SUCCESS; } // Access the most-derived class used for // static polymorphism (CRTP). Implementation& asImpl() { return static_cast(*this); } }; // class FlowMainBase // The FlowMain class is the basic black-oil simulator case. template class FlowMain : public FlowMainBase, Grid, Simulator> { protected: using Base = FlowMainBase, Grid, Simulator>; friend Base; // Create simulator instance. // Writes to: // simulator_ void createSimulator() { // Create the simulator instance. Base::simulator_.reset(new Simulator(Base::param_, Base::grid_init_->grid(), *Base::geoprops_, *Base::fluidprops_, Base::rock_comp_->isActive() ? Base::rock_comp_.get() : nullptr, *Base::fis_solver_, Base::gravity_.data(), Base::deck_->hasKeyword("DISGAS"), Base::deck_->hasKeyword("VAPOIL"), Base::eclipse_state_, Base::schedule_, Base::summary_config_, *Base::output_writer_, Base::threshold_pressures_, Base::defunct_well_names_)); } }; namespace detail { boost::filesystem::path simulationCaseName( const std::string& casename ) { namespace fs = boost::filesystem; const auto exists = []( const fs::path& f ) -> bool { if( !fs::exists( f ) ) return false; if( fs::is_regular_file( f ) ) return true; return fs::is_symlink( f ) && fs::is_regular_file( fs::read_symlink( f ) ); }; auto simcase = fs::path( casename ); if( exists( simcase ) ) { return simcase; } for( const auto& ext : { std::string("data"), std::string("DATA") } ) { if( exists( simcase.replace_extension( ext ) ) ) { return simcase; } } throw std::invalid_argument( "Cannot find input case " + casename ); } } // namespace detail } // namespace Opm #endif // OPM_FLOWMAIN_HEADER_INCLUDED