/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
template
MultisegmentWellEval::
MultisegmentWellEval(WellInterfaceIndices& baseif)
: MultisegmentWellGeneric(baseif)
, baseif_(baseif)
, linSys_(*this)
, primary_variables_(baseif)
, segments_(this->numberOfSegments(), baseif)
, cell_perforation_depth_diffs_(baseif_.numPerfs(), 0.0)
, cell_perforation_pressure_diffs_(baseif_.numPerfs(), 0.0)
{
}
template
void
MultisegmentWellEval::
initMatrixAndVectors(const int num_cells)
{
linSys_.init(num_cells, baseif_.numPerfs(),
baseif_.cells(), segments_.inlets(),
segments_.perforations());
primary_variables_.resize(this->numberOfSegments());
}
template
ConvergenceReport
MultisegmentWellEval::
getWellConvergence(const WellState& well_state,
const std::vector& B_avg,
DeferredLogger& deferred_logger,
const double max_residual_allowed,
const double tolerance_wells,
const double relaxed_inner_tolerance_flow_ms_well,
const double tolerance_pressure_ms_wells,
const double relaxed_inner_tolerance_pressure_ms_well,
const bool relax_tolerance) const
{
assert(int(B_avg.size()) == baseif_.numComponents());
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
std::vector> abs_residual(this->numberOfSegments(),
std::vector(numWellEq, 0.0));
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
std::vector maximum_residual(numWellEq, 0.0);
ConvergenceReport report;
// TODO: the following is a little complicated, maybe can be simplified in some way?
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
if (eq_idx < baseif_.numComponents()) { // phase or component mass equations
const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
if (flux_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = flux_residual;
}
} else { // pressure or control equation
// for the top segment (seg == 0), it is control equation, will be checked later separately
if (seg > 0) {
// Pressure equation
const double pressure_residual = abs_residual[seg][eq_idx];
if (pressure_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = pressure_residual;
}
}
}
}
}
using CR = ConvergenceReport;
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
if (eq_idx < baseif_.numComponents()) { // phase or component mass equations
const double flux_residual = maximum_residual[eq_idx];
// TODO: the report can not handle the segment number yet.
if (std::isnan(flux_residual)) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, baseif_.name()});
} else if (flux_residual > max_residual_allowed) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, baseif_.name()});
} else if (!relax_tolerance && flux_residual > tolerance_wells) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()});
} else if (flux_residual > relaxed_inner_tolerance_flow_ms_well) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()});
}
} else { // pressure equation
const double pressure_residual = maximum_residual[eq_idx];
const int dummy_component = -1;
if (std::isnan(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (std::isinf(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if (!relax_tolerance && pressure_residual > tolerance_pressure_ms_wells) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()});
} else if (pressure_residual > relaxed_inner_tolerance_pressure_ms_well) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
}
WellConvergence(baseif_).
checkConvergenceControlEq(well_state,
{tolerance_pressure_ms_wells,
tolerance_pressure_ms_wells,
tolerance_wells,
tolerance_wells,
max_residual_allowed},
std::abs(linSys_.residual()[0][SPres]),
report,
deferred_logger);
// for stopped well, we do not enforce the following checking to avoid dealing with sign of near-zero values
// for BHP or THP controlled wells, we need to make sure the flow direction is correct
if (!baseif_.wellIsStopped() && baseif_.isPressureControlled(well_state)) {
// checking the flow direction
const double sign = baseif_.isProducer() ? -1. : 1.;
const auto weight_total_flux = this->primary_variables_.getWQTotal() * sign;
constexpr int dummy_phase = -1;
if (weight_total_flux < 0.) {
report.setWellFailed(
{CR::WellFailure::Type::WrongFlowDirection, CR::Severity::Normal, dummy_phase, baseif_.name()});
}
}
return report;
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eq_idx = 0; eq_idx < Indices::numEq;++eq_idx) {
out.setDerivative(eq_idx, in.derivative(eq_idx));
}
return out;
}
template
void
MultisegmentWellEval::
handleAccelerationPressureLoss(const int seg,
WellState& well_state)
{
const EvalWell accelerationPressureLoss = segments_.accelerationPressureLoss(seg);
auto& segments = well_state.well(baseif_.indexOfWell()).segments;
segments.pressure_drop_accel[seg] = accelerationPressureLoss.value();
MultisegmentWellAssemble(baseif_).
assemblePressureLoss(seg,
segments_.upwinding_segment(seg),
accelerationPressureLoss, linSys_);
}
template
void
MultisegmentWellEval::
assembleDefaultPressureEq(const int seg,
WellState& well_state)
{
assert(seg != 0); // not top segment
// for top segment, the well control equation will be used.
EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg);
// we need to handle the pressure difference between the two segments
// we only consider the hydrostatic pressure loss first
// TODO: we might be able to add member variables to store these values, then we update well state
// after converged
const auto hydro_pressure_drop = segments_.getHydroPressureLoss(seg);
auto& ws = well_state.well(baseif_.indexOfWell());
auto& segments = ws.segments;
segments.pressure_drop_hydrostatic[seg] = hydro_pressure_drop.value();
pressure_equation -= hydro_pressure_drop;
if (this->frictionalPressureLossConsidered()) {
const auto friction_pressure_drop = segments_.getFrictionPressureLoss(seg);
pressure_equation -= friction_pressure_drop;
segments.pressure_drop_friction[seg] = friction_pressure_drop.value();
}
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index);
const int seg_upwind = segments_.upwinding_segment(seg);
MultisegmentWellAssemble(baseif_).
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
pressure_equation, outlet_pressure, linSys_);
if (this->accelerationalPressureLossConsidered()) {
handleAccelerationPressureLoss(seg, well_state);
}
}
template
void
MultisegmentWellEval::
assembleICDPressureEq(const int seg,
const UnitSystem& unit_system,
WellState& well_state,
DeferredLogger& deferred_logger)
{
// TODO: upwinding needs to be taken care of
// top segment can not be a spiral ICD device
assert(seg != 0);
if (const auto& segment = this->segmentSet()[seg];
(segment.segmentType() == Segment::SegmentType::VALVE) &&
(segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve
MultisegmentWellAssemble(baseif_).
assembleTrivialEq(seg, this->primary_variables_.eval(seg)[WQTotal].value(), linSys_);
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = 0.;
return;
}
// the pressure equation is something like
// p_seg - deltaP - p_outlet = 0.
// the major part is how to calculate the deltaP
EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg);
EvalWell icd_pressure_drop;
switch(this->segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
icd_pressure_drop = segments_.pressureDropSpiralICD(seg);
break;
case Segment::SegmentType::AICD :
icd_pressure_drop = segments_.pressureDropAutoICD(seg, unit_system);
break;
case Segment::SegmentType::VALVE :
icd_pressure_drop = segments_.pressureDropValve(seg);
break;
default: {
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("Segment {} for well {} is not of ICD type",
this->segmentSet()[seg].segmentNumber(),
baseif_.name()),
deferred_logger);
}
}
pressure_equation = pressure_equation - icd_pressure_drop;
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value();
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index);
const int seg_upwind = segments_.upwinding_segment(seg);
MultisegmentWellAssemble(baseif_).
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
pressure_equation, outlet_pressure,
linSys_,
FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
}
template
void
MultisegmentWellEval::
assemblePressureEq(const int seg,
const UnitSystem& unit_system,
WellState& well_state,
DeferredLogger& deferred_logger)
{
switch(this->segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
case Segment::SegmentType::AICD :
case Segment::SegmentType::VALVE : {
assembleICDPressureEq(seg, unit_system, well_state,deferred_logger);
break;
}
default :
assembleDefaultPressureEq(seg, well_state);
}
}
template
std::pair >
MultisegmentWellEval::
getFiniteWellResiduals(const std::vector& B_avg,
DeferredLogger& deferred_logger) const
{
assert(int(B_avg.size() ) == baseif_.numComponents());
std::vector residuals(numWellEq + 1, 0.0);
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
double residual = 0.;
if (eq_idx < baseif_.numComponents()) {
residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx];
} else {
if (seg > 0) {
residual = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
if (std::isnan(residual) || std::isinf(residual)) {
deferred_logger.debug(fmt::format("nan or inf value for residual for well {} segment {} eq_idx {}",
baseif_.name(), seg, eq_idx));
return {false, residuals};
}
if (residual > residuals[eq_idx]) {
residuals[eq_idx] = residual;
}
}
}
// handling the control equation residual
{
const double control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]);
if (std::isnan(control_residual) || std::isinf(control_residual)) {
deferred_logger.debug(fmt::format("nan or inf value for control residual for well {}", baseif_.name()));
return {false, residuals};
}
residuals[numWellEq] = control_residual;
}
return {true, residuals};
}
template
double
MultisegmentWellEval::
getControlTolerance(const WellState& well_state,
const double tolerance_wells,
const double tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const
{
double control_tolerance = 0.;
const int well_index = baseif_.indexOfWell();
const auto& ws = well_state.well(well_index);
if (baseif_.isInjector() )
{
auto current = ws.injection_cmode;
switch(current) {
case Well::InjectorCMode::THP:
control_tolerance = tolerance_pressure_ms_wells;
break;
case Well::InjectorCMode::BHP:
control_tolerance = tolerance_wells;
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
control_tolerance = tolerance_wells;
break;
case Well::InjectorCMode::GRUP:
control_tolerance = tolerance_wells;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("Unknown well control control types for well {}", baseif_.name()),
deferred_logger);
}
}
if (baseif_.isProducer() )
{
auto current = ws.production_cmode;
switch(current) {
case Well::ProducerCMode::THP:
control_tolerance = tolerance_pressure_ms_wells; // 0.1 bar
break;
case Well::ProducerCMode::BHP:
control_tolerance = tolerance_wells; // 0.01 bar
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
control_tolerance = tolerance_wells; // smaller tolerance for rate control
break;
case Well::ProducerCMode::GRUP:
control_tolerance = tolerance_wells; // smaller tolerance for rate control
break;
default:
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("Unknown well control control types for well {}", baseif_.name()),
deferred_logger);
}
}
return control_tolerance;
}
template
double
MultisegmentWellEval::
getResidualMeasureValue(const WellState& well_state,
const std::vector& residuals,
const double tolerance_wells,
const double tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const
{
assert(int(residuals.size()) == numWellEq + 1);
const double rate_tolerance = tolerance_wells;
int count = 0;
double sum = 0;
for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) {
if (residuals[eq_idx] > rate_tolerance) {
sum += residuals[eq_idx] / rate_tolerance;
++count;
}
}
const double pressure_tolerance = tolerance_pressure_ms_wells;
if (residuals[SPres] > pressure_tolerance) {
sum += residuals[SPres] / pressure_tolerance;
++count;
}
const double control_tolerance = getControlTolerance(well_state,
tolerance_wells,
tolerance_pressure_ms_wells,
deferred_logger);
if (residuals[SPres + 1] > control_tolerance) {
sum += residuals[SPres + 1] / control_tolerance;
++count;
}
// if (count == 0), it should be converged.
assert(count != 0);
return sum;
}
#define INSTANCE(...) \
template class MultisegmentWellEval,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
} // namespace Opm