/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template WellInterfaceEval:: WellInterfaceEval(const WellInterfaceFluidSystem& baseif) : baseif_(baseif) {} template template void WellInterfaceEval:: getGroupInjectionControl(const Group& group, const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, const EvalWell& bhp, const EvalWell& injection_rate, EvalWell& control_eq, double efficiencyFactor, DeferredLogger& deferred_logger) const { // Setting some defaults to silence warnings below. // Will be overwritten in the switch statement. Phase injectionPhase = Phase::WATER; switch (injectorType) { case InjectorType::WATER: { injectionPhase = Phase::WATER; break; } case InjectorType::OIL: { injectionPhase = Phase::OIL; break; } case InjectorType::GAS: { injectionPhase = Phase::GAS; break; } default: // Should not be here. assert(false); } auto currentGroupControl = group_state.injection_control(group.name(), injectionPhase); if (currentGroupControl == Group::InjectionCMode::FLD || currentGroupControl == Group::InjectionCMode::NONE) { if (!group.injectionGroupControlAvailable(injectionPhase)) { // We cannot go any further up the hierarchy. This could // be the FIELD group, or any group for which this has // been set in GCONINJE or GCONPROD. If we are here // anyway, it is likely that the deck set inconsistent // requirements, such as GRUP control mode on a well with // no appropriate controls defined on any of its // containing groups. We will therefore use the wells' bhp // limit equation as a fallback. const auto& controls = baseif_.wellEcl().injectionControls(summaryState); control_eq = bhp - controls.bhp_limit; return; } else { // Inject share of parents control const auto& parent = schedule.getGroup( group.parent(), baseif_.currentStep()); efficiencyFactor *= group.getGroupEfficiencyFactor(); getGroupInjectionControl(parent, well_state, group_state, schedule, summaryState, injectorType, bhp, injection_rate, control_eq, efficiencyFactor, deferred_logger); return; } } efficiencyFactor *= group.getGroupEfficiencyFactor(); const auto& well = baseif_.wellEcl(); const auto pu = baseif_.phaseUsage(); if (!group.isInjectionGroup()) { // use bhp as control eq and let the updateControl code find a valid control const auto& controls = well.injectionControls(summaryState); control_eq = bhp - controls.bhp_limit; return; } // If we are here, we are at the topmost group to be visited in the recursion. // This is the group containing the control we will check against. // Make conversion factors for RESV <-> surface rates. std::vector resv_coeff(pu.num_phases, 1.0); baseif_.rateConverter().calcInjCoeff(0, baseif_.pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS. double sales_target = 0; if (schedule[baseif_.currentStep()].gconsale().has(group.name())) { const auto& gconsale = schedule[baseif_.currentStep()].gconsale().get(group.name(), summaryState); sales_target = gconsale.sales_target; } WellGroupHelpers::InjectionTargetCalculator tcalc(currentGroupControl, pu, resv_coeff, group.name(), sales_target, group_state, injectionPhase, deferred_logger); WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, baseif_.currentStep(), baseif_.guideRate(), tcalc.guideTargetMode(), pu, false, injectionPhase); auto localFraction = [&](const std::string& child) { return fcalc.localFraction(child, child); }; auto localReduction = [&](const std::string& group_name) { const std::vector& groupTargetReductions = group_state.injection_reduction_rates(group_name); return tcalc.calcModeRateFromRates(groupTargetReductions); }; const double orig_target = tcalc.groupTarget(group.injectionControls(injectionPhase, summaryState), deferred_logger); const auto chain = WellGroupHelpers::groupChainTopBot(baseif_.name(), group.name(), schedule, baseif_.currentStep()); // Because 'name' is the last of the elements, and not an ancestor, we subtract one below. const size_t num_ancestors = chain.size() - 1; double target = orig_target; for (size_t ii = 0; ii < num_ancestors; ++ii) { if ((ii == 0) || baseif_.guideRate()->has(chain[ii], injectionPhase)) { // Apply local reductions only at the control level // (top) and for levels where we have a specified // group guide rate. target -= localReduction(chain[ii]); } target *= localFraction(chain[ii+1]); } // Avoid negative target rates coming from too large local reductions. const double target_rate = std::max(0.0, target / efficiencyFactor); const auto current_rate = injection_rate; // Switch sign since 'rates' are negative for producers. control_eq = current_rate - target_rate; } template template void WellInterfaceEval:: getGroupProductionControl(const Group& group, const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const EvalWell& bhp, const std::vector& rates, EvalWell& control_eq, double efficiencyFactor) const { const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name()); if (currentGroupControl == Group::ProductionCMode::FLD || currentGroupControl == Group::ProductionCMode::NONE) { if (!group.productionGroupControlAvailable()) { // We cannot go any further up the hierarchy. This could // be the FIELD group, or any group for which this has // been set in GCONINJE or GCONPROD. If we are here // anyway, it is likely that the deck set inconsistent // requirements, such as GRUP control mode on a well with // no appropriate controls defined on any of its // containing groups. We will therefore use the wells' bhp // limit equation as a fallback. const auto& controls = baseif_.wellEcl().productionControls(summaryState); control_eq = bhp - controls.bhp_limit; return; } else { // Produce share of parents control const auto& parent = schedule.getGroup(group.parent(), baseif_.currentStep()); efficiencyFactor *= group.getGroupEfficiencyFactor(); getGroupProductionControl(parent, well_state, group_state, schedule, summaryState, bhp, rates, control_eq, efficiencyFactor); return; } } efficiencyFactor *= group.getGroupEfficiencyFactor(); const auto& well = baseif_.wellEcl(); const auto pu = baseif_.phaseUsage(); if (!group.isProductionGroup()) { // use bhp as control eq and let the updateControl code find a valid control const auto& controls = well.productionControls(summaryState); control_eq = bhp - controls.bhp_limit; return; } // If we are here, we are at the topmost group to be visited in the recursion. // This is the group containing the control we will check against. // Make conversion factors for RESV <-> surface rates. std::vector resv_coeff(baseif_.phaseUsage().num_phases, 1.0); baseif_.rateConverter().calcCoeff(0, baseif_.pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS. // gconsale may adjust the grat target. // the adjusted rates is send to the targetCalculator double gratTargetFromSales = 0.0; if (group_state.has_grat_sales_target(group.name())) gratTargetFromSales = group_state.grat_sales_target(group.name()); WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales); WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, baseif_.currentStep(), baseif_.guideRate(), tcalc.guideTargetMode(), pu, true, Phase::OIL); auto localFraction = [&](const std::string& child) { return fcalc.localFraction(child, child); }; auto localReduction = [&](const std::string& group_name) { const std::vector& groupTargetReductions = group_state.production_reduction_rates(group_name); return tcalc.calcModeRateFromRates(groupTargetReductions); }; const double orig_target = tcalc.groupTarget(group.productionControls(summaryState)); const auto chain = WellGroupHelpers::groupChainTopBot(baseif_.name(), group.name(), schedule, baseif_.currentStep()); // Because 'name' is the last of the elements, and not an ancestor, we subtract one below. const size_t num_ancestors = chain.size() - 1; double target = orig_target; for (size_t ii = 0; ii < num_ancestors; ++ii) { if ((ii == 0) || baseif_.guideRate()->has(chain[ii])) { // Apply local reductions only at the control level // (top) and for levels where we have a specified // group guide rate. target -= localReduction(chain[ii]); } target *= localFraction(chain[ii+1]); } // Avoid negative target rates coming from too large local reductions. const double target_rate = std::max(0.0, target / efficiencyFactor); const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers. control_eq = current_rate - target_rate; } template template void WellInterfaceEval:: assembleControlEqProd_(const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const Well::ProductionControls& controls, const EvalWell& bhp, const std::vector& rates, // Always 3 canonical rates. const std::function& bhp_from_thp, EvalWell& control_eq, DeferredLogger& deferred_logger) const { auto current = well_state.currentProductionControl(baseif_.indexOfWell()); const auto& pu = baseif_.phaseUsage(); const double efficiencyFactor = baseif_.wellEcl().getEfficiencyFactor(); switch (current) { case Well::ProducerCMode::ORAT: { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); const EvalWell rate = -rates[BlackoilPhases::Liquid]; control_eq = rate - controls.oil_rate; break; } case Well::ProducerCMode::WRAT: { assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); const EvalWell rate = -rates[BlackoilPhases::Aqua]; control_eq = rate - controls.water_rate; break; } case Well::ProducerCMode::GRAT: { assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); const EvalWell rate = -rates[BlackoilPhases::Vapour]; control_eq = rate - controls.gas_rate; break; } case Well::ProducerCMode::LRAT: { assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); EvalWell rate = -rates[BlackoilPhases::Aqua] - rates[BlackoilPhases::Liquid]; control_eq = rate - controls.liquid_rate; break; } case Well::ProducerCMode::CRAT: { OPM_DEFLOG_THROW(std::runtime_error, "CRAT control not supported " << baseif_.name(), deferred_logger); } case Well::ProducerCMode::RESV: { auto total_rate = rates[0]; // To get the correct type only. total_rate = 0.0; std::vector convert_coeff(baseif_.numPhases(), 1.0); baseif_.rateConverter().calcCoeff(/*fipreg*/ 0, baseif_.pvtRegionIdx(), convert_coeff); for (int phase = 0; phase < 3; ++phase) { if (pu.phase_used[phase]) { const int pos = pu.phase_pos[phase]; total_rate -= rates[phase] * convert_coeff[pos]; // Note different indices. } } if (controls.prediction_mode) { control_eq = total_rate - controls.resv_rate; } else { std::vector hrates(baseif_.numPhases(), 0.); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { hrates[pu.phase_pos[Water]] = controls.water_rate; } if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { hrates[pu.phase_pos[Oil]] = controls.oil_rate; } if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { hrates[pu.phase_pos[Gas]] = controls.gas_rate; } std::vector hrates_resv(baseif_.numPhases(), 0.); baseif_.rateConverter().calcReservoirVoidageRates(/*fipreg*/ 0, baseif_.pvtRegionIdx(), hrates, hrates_resv); double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0); control_eq = total_rate - target; } break; } case Well::ProducerCMode::BHP: { control_eq = bhp - controls.bhp_limit; break; } case Well::ProducerCMode::THP: { control_eq = bhp - bhp_from_thp(); break; } case Well::ProducerCMode::GRUP: { assert(baseif_.wellEcl().isAvailableForGroupControl()); const auto& group = schedule.getGroup(baseif_.wellEcl().groupName(), baseif_.currentStep()); // Annoying thing: the rates passed to this function are // always of size 3 and in canonical (for PhaseUsage) // order. This is what is needed for VFP calculations if // they are required (THP controlled well). But for the // group production control things we must pass only the // active phases' rates. std::vector active_rates(pu.num_phases); for (int canonical_phase = 0; canonical_phase < 3; ++canonical_phase) { if (pu.phase_used[canonical_phase]) { active_rates[pu.phase_pos[canonical_phase]] = rates[canonical_phase]; } } getGroupProductionControl(group, well_state, group_state, schedule, summaryState, bhp, active_rates, control_eq, efficiencyFactor); break; } case Well::ProducerCMode::CMODE_UNDEFINED: { OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + baseif_.name(), deferred_logger); } case Well::ProducerCMode::NONE: { OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + baseif_.name(), deferred_logger); } } } template template void WellInterfaceEval:: assembleControlEqInj_(const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const Well::InjectionControls& controls, const EvalWell& bhp, const EvalWell& injection_rate, const std::function& bhp_from_thp, EvalWell& control_eq, DeferredLogger& deferred_logger) const { auto current = well_state.currentInjectionControl(baseif_.indexOfWell()); const InjectorType injectorType = controls.injector_type; const auto& pu = baseif_.phaseUsage(); const double efficiencyFactor = baseif_.wellEcl().getEfficiencyFactor(); switch (current) { case Well::InjectorCMode::RATE: { control_eq = injection_rate - controls.surface_rate; break; } case Well::InjectorCMode::RESV: { std::vector convert_coeff(baseif_.numPhases(), 1.0); baseif_.rateConverter().calcInjCoeff(/*fipreg*/ 0, baseif_.pvtRegionIdx(), convert_coeff); double coeff = 1.0; switch (injectorType) { case InjectorType::WATER: { coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Aqua]]; break; } case InjectorType::OIL: { coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Liquid]]; break; } case InjectorType::GAS: { coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Vapour]]; break; } default: throw("Expected WATER, OIL or GAS as type for injectors " + baseif_.wellEcl().name()); } control_eq = coeff * injection_rate - controls.reservoir_rate; break; } case Well::InjectorCMode::THP: { control_eq = bhp - bhp_from_thp(); break; } case Well::InjectorCMode::BHP: { control_eq = bhp - controls.bhp_limit; break; } case Well::InjectorCMode::GRUP: { assert(baseif_.wellEcl().isAvailableForGroupControl()); const auto& group = schedule.getGroup(baseif_.wellEcl().groupName(), baseif_.currentStep()); this->getGroupInjectionControl(group, well_state, group_state, schedule, summaryState, injectorType, bhp, injection_rate, control_eq, efficiencyFactor, deferred_logger); break; } case Well::InjectorCMode::CMODE_UNDEFINED: { OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + baseif_.name(), deferred_logger); } } } template template EvalWell WellInterfaceEval:: calculateBhpFromThp(const WellState& well_state, const std::vector& rates, const Well& well, const SummaryState& summaryState, const double rho, DeferredLogger& deferred_logger) const { // TODO: when well is under THP control, the BHP is dependent on the rates, // the well rates is also dependent on the BHP, so it might need to do some iteration. // However, when group control is involved, change of the rates might impacts other wells // so iterations on a higher level will be required. Some investigation might be needed when // we face problems under THP control. assert(int(rates.size()) == 3); // the vfp related only supports three phases now. const EvalWell aqua = rates[Water]; const EvalWell liquid = rates[Oil]; const EvalWell vapour = rates[Gas]; // pick the reference density // typically the reference in the top layer if (baseif_.isInjector() ) { const auto& controls = well.injectionControls(summaryState); const double vfp_ref_depth = baseif_.vfpProperties()->getInj()->getTable(controls.vfp_table_number).getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity()); return baseif_.vfpProperties()->getInj()->bhp(controls.vfp_table_number, aqua, liquid, vapour, baseif_.getTHPConstraint(summaryState)) - dp; } else if (baseif_.isProducer()) { const auto& controls = well.productionControls(summaryState); const double vfp_ref_depth = baseif_.vfpProperties()->getProd()->getTable(controls.vfp_table_number).getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity()); return baseif_.vfpProperties()->getProd()->bhp(controls.vfp_table_number, aqua, liquid, vapour, baseif_.getTHPConstraint(summaryState), baseif_.getALQ(well_state)) - dp; } else { OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER for well " + baseif_.name(), deferred_logger); } } #define INSTANCE_METHODS(A,...) \ template void WellInterfaceEval:: \ assembleControlEqProd_<__VA_ARGS__>(const WellState&, \ const GroupState&, \ const Schedule&, \ const SummaryState&, \ const Well::ProductionControls&, \ const __VA_ARGS__&, \ const std::vector<__VA_ARGS__>&, \ const std::function<__VA_ARGS__()>&, \ __VA_ARGS__&, \ DeferredLogger&) const; \ template void WellInterfaceEval:: \ assembleControlEqInj_<__VA_ARGS__>(const WellState&, \ const GroupState&, \ const Schedule&, \ const SummaryState&, \ const Well::InjectionControls&, \ const __VA_ARGS__&, \ const __VA_ARGS__&, \ const std::function<__VA_ARGS__()>&, \ __VA_ARGS__&, \ DeferredLogger&) const; \ template __VA_ARGS__ WellInterfaceEval:: \ calculateBhpFromThp<__VA_ARGS__>(const WellState&, \ const std::vector<__VA_ARGS__>&, \ const Well&, \ const SummaryState&, \ const double, \ DeferredLogger&) const; using FluidSys = BlackOilFluidSystem; using FluidAltSys = BlackOilFluidSystem; template class WellInterfaceEval; template class WellInterfaceEval; INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidAltSys, DenseAd::Evaluation) INSTANCE_METHODS(FluidAltSys, DenseAd::Evaluation) #define INSTANCE_BHP(...) \ template double WellInterfaceEval<__VA_ARGS__>:: \ calculateBhpFromThp(const WellState&, \ const std::vector&, \ const Well&, \ const SummaryState&, \ const double, \ DeferredLogger&) const; INSTANCE_BHP(FluidSys) INSTANCE_BHP(FluidAltSys) } // namespace Opm