/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
/// @brief Computes pore volume of all cells in a grid.
/// @param[in] grid a grid
/// @param[in] props rock and fluid properties
/// @param[out] porevol the pore volume by cell.
void computePorevolume(const UnstructuredGrid& grid,
const Opm::IncompPropertiesInterface& props,
std::vector& porevol)
{
int num_cells = grid.number_of_cells;
ASSERT(num_cells == props.numCells());
porevol.resize(num_cells);
const double* poro = props.porosity();
std::transform(poro, poro + num_cells,
grid.cell_volumes,
porevol.begin(),
std::multiplies());
}
/// @brief Computes pore volume of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] props rock and fluid properties
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porevol the pore volume by cell.
void computePorevolume(const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility& rock_comp,
const std::vector& pressure,
std::vector& porevol)
{
int num_cells = grid.number_of_cells;
ASSERT(num_cells == props.numCells());
porevol.resize(num_cells);
const double* poro = props.porosity();
for (int i = 0; i < num_cells; ++i) {
porevol[i] = poro[i]*grid.cell_volumes[i]*rock_comp.poroMult(pressure[i]);
}
}
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[out] sat_vol must point to a valid array with P elements,
/// where P = s.size()/pv.size().
/// For each phase p, we compute
/// sat_vol_p = sum_i s_p_i pv_i
void computeSaturatedVol(const std::vector& pv,
const std::vector& s,
double* sat_vol)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
std::fill(sat_vol, sat_vol + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
for (int p = 0; p < np; ++p) {
sat_vol[p] += pv[c]*s[np*c + p];
}
}
}
/// @brief Computes average saturations over all grid cells.
/// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[out] aver_sat must point to a valid array with P elements,
/// where P = s.size()/pv.size().
/// For each phase p, we compute
/// aver_sat_p = (sum_i s_p_i pv_i) / (sum_i pv_i).
void computeAverageSat(const std::vector& pv,
const std::vector& s,
double* aver_sat)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
double tot_pv = 0.0;
// Note that we abuse the output array to accumulate the
// saturated pore volumes.
std::fill(aver_sat, aver_sat + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
tot_pv += pv[c];
for (int p = 0; p < np; ++p) {
aver_sat[p] += pv[c]*s[np*c + p];
}
}
// Must divide by pore volumes to get saturations.
for (int p = 0; p < np; ++p) {
aver_sat[p] /= tot_pv;
}
}
/// @brief Computes injected and produced volumes of all phases.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// @param[in] props fluid and rock properties.
/// @param[in] s saturation values (for all P phases)
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] dt timestep used
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
void computeInjectedProduced(const IncompPropertiesInterface& props,
const std::vector& s,
const std::vector& src,
const double dt,
double* injected,
double* produced)
{
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
const double* visc = props.viscosity();
std::vector mob(np);
for (int c = 0; c < num_cells; ++c) {
if (src[c] > 0.0) {
injected[0] += src[c]*dt;
} else if (src[c] < 0.0) {
const double flux = -src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
}
}
}
/// @brief Computes total mobility for a set of saturation values.
/// @param[in] props rock and fluid properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::IncompPropertiesInterface& props,
const std::vector& cells,
const std::vector& s,
std::vector& totmob)
{
std::vector pmobc;
computePhaseMobilities(props, cells, s, pmobc);
const std::size_t np = props.numPhases();
const std::vector::size_type nc = cells.size();
std::vector(cells.size(), 0.0).swap(totmob);
for (std::vector::size_type c = 0; c < nc; ++c) {
for (std::size_t p = 0; p < np; ++p) {
totmob[ c ] += pmobc[c*np + p];
}
}
}
/// @brief Computes total mobility and omega for a set of saturation values.
/// @param[in] props rock and fluid properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobility
/// @param[out] omega fractional-flow weighted fluid densities.
void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props,
const std::vector& cells,
const std::vector& s,
std::vector& totmob,
std::vector& omega)
{
std::vector pmobc;
computePhaseMobilities(props, cells, s, pmobc);
const std::size_t np = props.numPhases();
const std::vector::size_type nc = cells.size();
std::vector(cells.size(), 0.0).swap(totmob);
std::vector(cells.size(), 0.0).swap(omega );
const double* rho = props.density();
for (std::vector::size_type c = 0; c < nc; ++c) {
for (std::size_t p = 0; p < np; ++p) {
totmob[ c ] += pmobc[c*np + p];
omega [ c ] += pmobc[c*np + p] * rho[ p ];
}
omega[ c ] /= totmob[ c ];
}
}
/// @brief Computes phase mobilities for a set of saturation values.
/// @param[in] props rock and fluid properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] s saturation values (for all phases)
/// @param[out] pmobc phase mobilities (for all phases).
void computePhaseMobilities(const Opm::IncompPropertiesInterface& props,
const std::vector& cells,
const std::vector& s ,
std::vector& pmobc)
{
const std::vector::size_type nc = cells.size();
const std::size_t np = props.numPhases();
ASSERT (s.size() == nc * np);
std::vector(nc * np, 0.0).swap(pmobc );
double* dpmobc = 0;
props.relperm(static_cast(nc), &s[0], &cells[0],
&pmobc[0], dpmobc);
const double* mu = props.viscosity();
std::vector::iterator lam = pmobc.begin();
for (std::vector::size_type c = 0; c < nc; ++c) {
for (std::size_t p = 0; p < np; ++p, ++lam) {
*lam /= mu[ p ];
}
}
}
/// Compute two-phase transport source terms from face fluxes,
/// and pressure equation source terms. This puts boundary flows
/// into the source terms for the transport equation.
/// \param[in] grid The grid used.
/// \param[in] src Pressure eq. source terms. The sign convention is:
/// (+) positive total inflow (positive velocity divergence)
/// (-) negative total outflow
/// \param[in] faceflux Signed face fluxes, typically the result from a flow solver.
/// \param[in] inflow_frac Fraction of inflow that consists of first phase.
/// Example: if only water is injected, inflow_frac == 1.0.
/// Note: it is not possible (with this method) to use different fractions
/// for different inflow sources, be they source terms of boundary flows.
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
/// (+) positive inflow of first phase (water)
/// (-) negative total outflow of both phases
void computeTransportSource(const UnstructuredGrid& grid,
const std::vector& src,
const std::vector& faceflux,
const double inflow_frac,
std::vector& transport_src)
{
int nc = grid.number_of_cells;
transport_src.resize(nc);
for (int c = 0; c < nc; ++c) {
transport_src[c] = 0.0;
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
int f = grid.cell_faces[hf];
const int* f2c = &grid.face_cells[2*f];
double bdy_influx = 0.0;
if (f2c[0] == c && f2c[1] == -1) {
bdy_influx = -faceflux[f];
} else if (f2c[0] == -1 && f2c[1] == c) {
bdy_influx = faceflux[f];
}
if (bdy_influx != 0.0) {
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
}
}
}
}
/// @brief Estimates a scalar cell velocity from face fluxes.
/// @param[in] grid a grid
/// @param[in] face_flux signed per-face fluxes
/// @param[out] cell_velocity the estimated velocities.
void estimateCellVelocity(const UnstructuredGrid& grid,
const std::vector& face_flux,
std::vector& cell_velocity)
{
const int dim = grid.dimensions;
cell_velocity.clear();
cell_velocity.resize(grid.number_of_cells*dim, 0.0);
for (int face = 0; face < grid.number_of_faces; ++face) {
int c[2] = { grid.face_cells[2*face], grid.face_cells[2*face + 1] };
const double* fc = &grid.face_centroids[face*dim];
double flux = face_flux[face];
for (int i = 0; i < 2; ++i) {
if (c[i] >= 0) {
const double* cc = &grid.cell_centroids[c[i]*dim];
for (int d = 0; d < dim; ++d) {
double v_contrib = fc[d] - cc[d];
v_contrib *= flux/grid.cell_volumes[c[i]];
cell_velocity[c[i]*dim + d] += (i == 0) ? v_contrib : -v_contrib;
}
}
}
}
}
/// Extract a vector of water saturations from a vector of
/// interleaved water and oil saturations.
void toWaterSat(const std::vector& sboth,
std::vector& sw)
{
int num = sboth.size()/2;
sw.resize(num);
for (int i = 0; i < num; ++i) {
sw[i] = sboth[2*i];
}
}
/// Make a a vector of interleaved water and oil saturations from
/// a vector of water saturations.
void toBothSat(const std::vector& sw,
std::vector& sboth)
{
int num = sw.size();
sboth.resize(2*num);
for (int i = 0; i < num; ++i) {
sboth[2*i] = sw[i];
sboth[2*i + 1] = 1.0 - sw[i];
}
}
/// Create a src vector equivalent to a wells structure.
/// For this to be valid, the wells must be all rate-controlled and
/// single-perforation.
void wellsToSrc(const Wells& wells, const int num_cells, std::vector& src)
{
src.resize(num_cells);
for (int w = 0; w < wells.number_of_wells; ++w) {
if (wells.ctrls[w]->num != 1) {
THROW("In wellsToSrc(): well has more than one control.");
}
if (wells.ctrls[w]->type[0] != RATE) {
THROW("In wellsToSrc(): well is BHP, not RATE.");
}
if (wells.well_connpos[w+1] - wells.well_connpos[w] != 1) {
THROW("In wellsToSrc(): well has multiple perforations.");
}
const double flow = wells.ctrls[w]->target[0];
const double cell = wells.well_cells[wells.well_connpos[w]];
src[cell] = (wells.type[w] == INJECTOR) ? flow : -flow;
}
}
void Watercut::push(double time, double fraction, double produced)
{
data_.push_back(time);
data_.push_back(fraction);
data_.push_back(produced);
}
void Watercut::write(std::ostream& os) const
{
int sz = data_.size()/3;
for (int i = 0; i < sz; ++i) {
os << data_[3*i]/Opm::unit::day << " "
<< data_[3*i+1] << " "
<< data_[3*i+2] << '\n';
}
}
void computeWDP(const Wells& wells, const UnstructuredGrid& grid, const std::vector& saturations,
const std::vector& densities, std::vector& wdp, bool per_grid_cell)
{
const size_t np = densities.size();
const int nw = wells.number_of_wells;
// Simple for now:
for(int i = 0; i < nw; i++) {
double depth_ref = wells.depth_ref[i];
for(int j = wells.well_connpos[i]; j < wells.well_connpos[i+1]; j++) {
int cell = wells.well_cells[j];
// Is this correct wrt. depth_ref?
double cell_depth = grid.cell_centroids[3*cell+2];
double saturation_sum = 0.0;
for(size_t p = 0; p < np; p++) {
if(per_grid_cell) {
saturation_sum += saturations[i*nw*np + j*np + p];
}
else {
saturation_sum += saturations[np*cell + p];
}
}
if(saturation_sum == 0) {
saturation_sum = 1.0;
}
double density = 0.0;
for(size_t p = 0; p < np; p++) {
if(per_grid_cell) {
density += saturations[i*nw*np + j*np + p] * densities[p] / saturation_sum;
}
else {
// Is this a smart way of doing it?
density += saturations[np*cell + p] * densities[p] / saturation_sum;
}
}
// Is the sign correct?
wdp.push_back(density*(cell_depth-depth_ref));
}
}
}
void computeFlowRatePerWell(const Wells& wells, const std::vector& flow_rates_per_cell,
std::vector& flow_rates_per_well)
{
int index_in_flow_rates = 0;
for(int w = 0; w < wells.number_of_wells; w++) {
int number_of_cells = wells.well_connpos[w+1]-wells.well_connpos[w];
double flow_sum = 0.0;
for(int i = 0; i < number_of_cells; i++) {
flow_sum += flow_rates_per_cell[index_in_flow_rates++];
}
flow_rates_per_well.push_back(flow_sum);
}
}
} // namespace Opm