/* Copyright 2016 - 2019 SINTEF Digital, Mathematics & Cybernetics. Copyright 2016 - 2018 Equinor ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 Norce AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include namespace Opm { template BlackoilWellModel:: BlackoilWellModel(Simulator& ebosSimulator, const PhaseUsage& phase_usage) : BlackoilWellModelGeneric(ebosSimulator.vanguard().schedule(), ebosSimulator.vanguard().summaryState(), ebosSimulator.vanguard().eclState(), phase_usage, ebosSimulator.gridView().comm()) , ebosSimulator_(ebosSimulator) { terminal_output_ = ((ebosSimulator.gridView().comm().rank() == 0) && EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput)); local_num_cells_ = ebosSimulator_.gridView().size(0); // Number of cells the global grid view global_num_cells_ = ebosSimulator_.vanguard().globalNumCells(); { auto& parallel_wells = ebosSimulator.vanguard().parallelWells(); this->parallel_well_info_.reserve(parallel_wells.size()); for( const auto& name_bool : parallel_wells) { this->parallel_well_info_.emplace_back(name_bool, grid().comm()); } } this->alternative_well_rate_init_ = EWOMS_GET_PARAM(TypeTag, bool, AlternativeWellRateInit); } template BlackoilWellModel:: BlackoilWellModel(Simulator& ebosSimulator) : BlackoilWellModel(ebosSimulator, phaseUsageFromDeck(ebosSimulator.vanguard().eclState())) {} template void BlackoilWellModel:: init() { extractLegacyCellPvtRegionIndex_(); extractLegacyDepth_(); gravity_ = ebosSimulator_.problem().gravity()[2]; initial_step_ = true; // add the eWoms auxiliary module for the wells to the list ebosSimulator_.model().addAuxiliaryModule(this); is_cell_perforated_.resize(local_num_cells_, false); } template void BlackoilWellModel:: initWellContainer(const int reportStepIdx) { const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::NEW_WELL; const auto& events = schedule()[reportStepIdx].wellgroup_events(); for (auto& wellPtr : this->well_container_) { const bool well_opened_this_step = report_step_starts_ && events.hasEvent(wellPtr->name(), effective_events_mask); wellPtr->init(&this->phase_usage_, this->depth_, this->gravity_, this->local_num_cells_, this->B_avg_, well_opened_this_step); } } template void BlackoilWellModel:: addNeighbors(std::vector& neighbors) const { if (!param_.matrix_add_well_contributions_) { return; } // Create cartesian to compressed mapping const auto& schedule_wells = schedule().getWellsatEnd(); // initialize the additional cell connections introduced by wells. for (const auto& well : schedule_wells) { std::vector wellCells; // All possible connections of the well const auto& connectionSet = well.getConnections(); wellCells.reserve(connectionSet.size()); for ( size_t c=0; c < connectionSet.size(); c++ ) { const auto& connection = connectionSet.get(c); int compressed_idx = compressedIndexForInterior(connection.global_index()); if ( compressed_idx >= 0 ) { // Ignore connections in inactive/remote cells. wellCells.push_back(compressed_idx); } } for (int cellIdx : wellCells) { neighbors[cellIdx].insert(wellCells.begin(), wellCells.end()); } } } template void BlackoilWellModel:: linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res) { if (!param_.matrix_add_well_contributions_) { OPM_BEGIN_PARALLEL_TRY_CATCH(); { // if the well contributions are not supposed to be included explicitly in // the matrix, we only apply the vector part of the Schur complement here. for (const auto& well: well_container_) { // r = r - duneC_^T * invDuneD_ * resWell_ well->apply(res); } } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::linearize failed: ", ebosSimulator_.gridView().comm()); return; } for (const auto& well: well_container_) { well->addWellContributions(jacobian); // applying the well residual to reservoir residuals // r = r - duneC_^T * invDuneD_ * resWell_ well->apply(res); } } template void BlackoilWellModel:: beginReportStep(const int timeStepIdx) { DeferredLogger local_deferredLogger; report_step_starts_ = true; const Grid& grid = ebosSimulator_.vanguard().grid(); const auto& summaryState = ebosSimulator_.vanguard().summaryState(); // Make wells_ecl_ contain only this partition's wells. wells_ecl_ = getLocalWells(timeStepIdx); this->local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_); // at least initializeWellState might be throw // exception in opm-material (UniformTabulated2DFunction.hpp) // playing it safe by extending the scope a bit. OPM_BEGIN_PARALLEL_TRY_CATCH(); { // The well state initialize bhp with the cell pressure in the top cell. // We must therefore provide it with updated cell pressures this->initializeWellPerfData(); this->initializeWellState(timeStepIdx, summaryState); // handling MS well related if (param_.use_multisegment_well_&& anyMSWellOpenLocal()) { // if we use MultisegmentWell model this->wellState().initWellStateMSWell(wells_ecl_, &this->prevWellState()); } const Group& fieldGroup = schedule().getGroup("FIELD", timeStepIdx); WellGroupHelpers::setCmodeGroup(fieldGroup, schedule(), summaryState, timeStepIdx, this->wellState(), this->groupState()); // Compute reservoir volumes for RESV controls. rateConverter_.reset(new RateConverterType (phase_usage_, std::vector(local_num_cells_, 0))); rateConverter_->template defineState(ebosSimulator_); // Compute regional average pressures used by gpmaint if (schedule_[timeStepIdx].has_gpmaint()) { const auto& fp = this->eclState_.fieldProps(); const auto& fipnum = fp.get_int("FIPNUM"); regionalAveragePressureCalculator_.reset(new AverageRegionalPressureType (phase_usage_,fipnum)); } { const auto& sched_state = this->schedule()[timeStepIdx]; // update VFP properties vfp_properties_.reset(new VFPProperties( sched_state.vfpinj(), sched_state.vfpprod(), this->prevWellState())); this->initializeWellProdIndCalculators(); if (sched_state.events().hasEvent(ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX)) { this->runWellPIScaling(timeStepIdx, local_deferredLogger); } } } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "beginReportStep() failed: ", terminal_output_, grid.comm()); // Store the current well state, to be able to recover in the case of failed iterations this->commitWGState(); } // called at the beginning of a time step template void BlackoilWellModel:: beginTimeStep() { updatePerforationIntensiveQuantities(); updateAverageFormationFactor(); DeferredLogger local_deferredLogger; this->resetWGState(); const int reportStepIdx = ebosSimulator_.episodeIndex(); updateAndCommunicateGroupData(reportStepIdx, ebosSimulator_.model().newtonMethod().numIterations()); this->wellState().gliftTimeStepInit(); const double simulationTime = ebosSimulator_.time(); OPM_BEGIN_PARALLEL_TRY_CATCH(); { // test wells wellTesting(reportStepIdx, simulationTime, local_deferredLogger); // create the well container createWellContainer(reportStepIdx); // Wells are active if they are active wells on at least one process. const Grid& grid = ebosSimulator_.vanguard().grid(); wells_active_ = !this->well_container_.empty(); wells_active_ = grid.comm().max(wells_active_); // do the initialization for all the wells // TODO: to see whether we can postpone of the intialization of the well containers to // optimize the usage of the following several member variables this->initWellContainer(reportStepIdx); // update the updated cell flag std::fill(is_cell_perforated_.begin(), is_cell_perforated_.end(), false); for (auto& well : well_container_) { well->updatePerforatedCell(is_cell_perforated_); } // calculate the efficiency factors for each well calculateEfficiencyFactors(reportStepIdx); if constexpr (has_polymer_) { if (PolymerModule::hasPlyshlog() || getPropValue() ) { setRepRadiusPerfLength(); } } } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "beginTimeStep() failed: ", terminal_output_, ebosSimulator_.vanguard().grid().comm()); for (auto& well : well_container_) { well->setVFPProperties(vfp_properties_.get()); well->setGuideRate(&guideRate_); } // Close completions due to economical reasons for (auto& well : well_container_) { well->closeCompletions(wellTestState()); } if (alternative_well_rate_init_) { // Update the well rates of well_state_, if only single-phase rates, to // have proper multi-phase rates proportional to rates at bhp zero. // This is done only for producers, as injectors will only have a single // nonzero phase anyway. for (auto& well : well_container_) { if (well->isProducer()) { well->updateWellStateRates(ebosSimulator_, this->wellState(), local_deferredLogger); } } } // calculate the well potentials try { updateWellPotentials(reportStepIdx, /*onlyAfterEvent*/true, ebosSimulator_.vanguard().summaryConfig(), local_deferredLogger); } catch ( std::runtime_error& e ) { const std::string msg = "A zero well potential is returned for output purposes. "; local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg); } //update guide rates const auto& comm = ebosSimulator_.vanguard().grid().comm(); const auto& summaryState = ebosSimulator_.vanguard().summaryState(); std::vector pot(numPhases(), 0.0); const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); WellGroupHelpers::updateGuideRates(fieldGroup, schedule(), summaryState, this->phase_usage_, reportStepIdx, simulationTime, this->wellState(), this->groupState(), comm, &this->guideRate_, pot, local_deferredLogger); std::string exc_msg; auto exc_type = ExceptionType::NONE; // update gpmaint targets if (schedule_[reportStepIdx].has_gpmaint()) { regionalAveragePressureCalculator_->template defineState(ebosSimulator_); const double dt = ebosSimulator_.timeStepSize(); WellGroupHelpers::updateGpMaintTargetForGroups(fieldGroup, schedule_, *regionalAveragePressureCalculator_, reportStepIdx, dt, this->wellState(), this->groupState()); } try { // Compute initial well solution for new wells and injectors that change injection type i.e. WAG. for (auto& well : well_container_) { const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::INJECTION_TYPE_CHANGED + ScheduleEvents::WELL_SWITCHED_INJECTOR_PRODUCER + ScheduleEvents::NEW_WELL; const auto& events = schedule()[reportStepIdx].wellgroup_events(); const bool event = report_step_starts_ && events.hasEvent(well->name(), effective_events_mask); const bool dyn_status_change = this->wellState().well(well->name()).status != this->prevWellState().well(well->name()).status; if (event || dyn_status_change) { try { well->updateWellStateWithTarget(ebosSimulator_, this->groupState(), this->wellState(), local_deferredLogger); well->calculateExplicitQuantities(ebosSimulator_, this->wellState(), local_deferredLogger); well->solveWellEquation(ebosSimulator_, this->wellState(), this->groupState(), local_deferredLogger); } catch (const std::exception& e) { const std::string msg = "Compute initial well solution for new well " + well->name() + " failed. Continue with zero initial rates"; local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg); } } } } // Catch clauses for all errors setting exc_type and exc_msg OPM_PARALLEL_CATCH_CLAUSE(exc_type, exc_msg); if (exc_type != ExceptionType::NONE) { const std::string msg = "Compute initial well solution for new wells failed. Continue with zero initial rates"; local_deferredLogger.warning("WELL_INITIAL_SOLVE_FAILED", msg); } logAndCheckForExceptionsAndThrow(local_deferredLogger, exc_type, "beginTimeStep() failed: " + exc_msg, terminal_output_, comm); } template void BlackoilWellModel::wellTesting(const int timeStepIdx, const double simulationTime, DeferredLogger& deferred_logger) { const auto& wtest_config = schedule()[timeStepIdx].wtest_config(); if (!wtest_config.empty()) { // there is a WTEST request const std::vector wellsForTesting = wellTestState() .test_wells(wtest_config, simulationTime); for (const std::string& well_name : wellsForTesting) { const Well& wellEcl = schedule().getWell(well_name, timeStepIdx); if (wellEcl.getStatus() == Well::Status::SHUT) continue; WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx, deferred_logger); // some preparation before the well can be used well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg_, true); double well_efficiency_factor = wellEcl.getEfficiencyFactor(); WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx), schedule(), timeStepIdx, well_efficiency_factor); well->setWellEfficiencyFactor(well_efficiency_factor); well->setVFPProperties(vfp_properties_.get()); well->setGuideRate(&guideRate_); well->wellTesting(ebosSimulator_, simulationTime, this->wellState(), this->groupState(), wellTestState(), deferred_logger); } } } // called at the end of a report step template void BlackoilWellModel:: endReportStep() { // Clear the communication data structures for above values. for (auto&& pinfo : this->local_parallel_well_info_) { pinfo.get().clear(); } } // called at the end of a report step template const SimulatorReportSingle& BlackoilWellModel:: lastReport() const {return last_report_; } // called at the end of a time step template void BlackoilWellModel:: timeStepSucceeded(const double& simulationTime, const double dt) { this->closed_this_step_.clear(); // time step is finished and we are not any more at the beginning of an report step report_step_starts_ = false; const int reportStepIdx = ebosSimulator_.episodeIndex(); DeferredLogger local_deferredLogger; for (const auto& well : well_container_) { if (getPropValue() && well->isInjector()) { well->updateWaterThroughput(dt, this->wellState()); } } // report well switching for (const auto& well : well_container_) { well->reportWellSwitching(this->wellState().well(well->indexOfWell()), local_deferredLogger); } // update the rate converter with current averages pressures etc in rateConverter_->template defineState(ebosSimulator_); // calculate the well potentials try { updateWellPotentials(reportStepIdx, /*onlyAfterEvent*/false, ebosSimulator_.vanguard().summaryConfig(), local_deferredLogger); } catch ( std::runtime_error& e ) { const std::string msg = "A zero well potential is returned for output purposes. "; local_deferredLogger.warning("WELL_POTENTIAL_CALCULATION_FAILED", msg); } updateWellTestState(simulationTime, wellTestState()); // check group sales limits at the end of the timestep const Group& fieldGroup = schedule_.getGroup("FIELD", reportStepIdx); checkGconsaleLimits(fieldGroup, this->wellState(), ebosSimulator_.episodeIndex(), local_deferredLogger); this->calculateProductivityIndexValues(local_deferredLogger); this->commitWGState(); const Opm::Parallel::Communication& comm = grid().comm(); DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm); if (terminal_output_) { global_deferredLogger.logMessages(); } //reporting output temperatures this->computeWellTemperature(); } template void BlackoilWellModel:: computeTotalRatesForDof(RateVector& rate, unsigned elemIdx) const { rate = 0; if (!is_cell_perforated_[elemIdx]) return; for (const auto& well : well_container_) well->addCellRates(rate, elemIdx); } template template void BlackoilWellModel:: computeTotalRatesForDof(RateVector& rate, const Context& context, unsigned spaceIdx, unsigned timeIdx) const { rate = 0; int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx); if (!is_cell_perforated_[elemIdx]) return; for (const auto& well : well_container_) well->addCellRates(rate, elemIdx); } template void BlackoilWellModel:: initializeWellState(const int timeStepIdx, const SummaryState& summaryState) { std::vector cellPressures(this->local_num_cells_, 0.0); ElementContext elemCtx(ebosSimulator_); const auto& gridView = ebosSimulator_.vanguard().gridView(); const auto& elemEndIt = gridView.template end(); OPM_BEGIN_PARALLEL_TRY_CATCH(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { if (elemIt->partitionType() != Dune::InteriorEntity) { continue; } elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& fs = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0).fluidState(); // copy of get perfpressure in Standard well except for value double& perf_pressure = cellPressures[elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0)]; if (Indices::oilEnabled) { perf_pressure = fs.pressure(FluidSystem::oilPhaseIdx).value(); } else if (Indices::waterEnabled) { perf_pressure = fs.pressure(FluidSystem::waterPhaseIdx).value(); } else { perf_pressure = fs.pressure(FluidSystem::gasPhaseIdx).value(); } } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::initializeWellState() failed: ", ebosSimulator_.vanguard().grid().comm()); this->wellState().init(cellPressures, schedule(), wells_ecl_, local_parallel_well_info_, timeStepIdx, &this->prevWellState(), well_perf_data_, summaryState); } template void BlackoilWellModel:: createWellContainer(const int time_step) { DeferredLogger local_deferredLogger; const int nw = numLocalWells(); well_container_.clear(); if (nw > 0) { well_container_.reserve(nw); for (int w = 0; w < nw; ++w) { const Well& well_ecl = wells_ecl_[w]; if (well_ecl.getConnections().empty()) { // No connections in this well. Nothing to do. continue; } const std::string& well_name = well_ecl.name(); const auto well_status = this->schedule() .getWell(well_name, time_step).getStatus(); if ((well_ecl.getStatus() == Well::Status::SHUT) || (well_status == Well::Status::SHUT)) { // Due to ACTIONX the well might have been closed behind our back. if (well_ecl.getStatus() != Well::Status::SHUT) { this->closed_this_step_.insert(well_name); this->wellState().shutWell(w); } continue; } // A new WCON keywords can re-open a well that was closed/shut due to Physical limit if (this->wellTestState().well_is_closed(well_name)) { // TODO: more checking here, to make sure this standard more specific and complete // maybe there is some WCON keywords will not open the well auto& events = this->wellState().well(w).events; if (events.hasEvent(WellState::event_mask)) { if (wellTestState().lastTestTime(well_name) == ebosSimulator_.time()) { // The well was shut this timestep, we are most likely retrying // a timestep without the well in question, after it caused // repeated timestep cuts. It should therefore not be opened, // even if it was new or received new targets this report step. events.clearEvent(WellState::event_mask); } else { wellTestState().open_well(well_name); wellTestState().open_completions(well_name); } } } // TODO: should we do this for all kinds of closing reasons? // something like wellTestState().hasWell(well_name)? bool wellIsStopped = false; if (wellTestState().well_is_closed(well_name)) { if (well_ecl.getAutomaticShutIn()) { // shut wells are not added to the well container this->wellState().shutWell(w); continue; } else { if (!well_ecl.getAllowCrossFlow()) { // stopped wells where cross flow is not allowed // are not added to the well container this->wellState().shutWell(w); continue; } // stopped wells are added to the container but marked as stopped this->wellState().stopWell(w); wellIsStopped = true; } } // If a production well disallows crossflow and its // (prediction type) rate control is zero, then it is effectively shut. if (!well_ecl.getAllowCrossFlow() && well_ecl.isProducer() && well_ecl.predictionMode()) { const auto& summaryState = ebosSimulator_.vanguard().summaryState(); const auto prod_controls = well_ecl.productionControls(summaryState); auto is_zero = [](const double x) { return std::isfinite(x) && !std::isnormal(x); }; bool zero_rate_control = false; switch (prod_controls.cmode) { case Well::ProducerCMode::ORAT: zero_rate_control = is_zero(prod_controls.oil_rate); break; case Well::ProducerCMode::WRAT: zero_rate_control = is_zero(prod_controls.water_rate); break; case Well::ProducerCMode::GRAT: zero_rate_control = is_zero(prod_controls.gas_rate); break; case Well::ProducerCMode::LRAT: zero_rate_control = is_zero(prod_controls.liquid_rate); break; case Well::ProducerCMode::RESV: zero_rate_control = is_zero(prod_controls.resv_rate); break; default: // Might still have zero rate controls, but is pressure controlled. zero_rate_control = false; break; } if (zero_rate_control) { // Treat as shut, do not add to container. local_deferredLogger.info(" Well shut due to zero rate control and disallowing crossflow: " + well_ecl.name()); this->wellState().shutWell(w); continue; } } if (well_status == Well::Status::STOP) { this->wellState().stopWell(w); wellIsStopped = true; } well_container_.emplace_back(this->createWellPointer(w, time_step)); if (wellIsStopped) well_container_.back()->stopWell(); } } // Collect log messages and print. const Opm::Parallel::Communication& comm = grid().comm(); DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm); if (terminal_output_) { global_deferredLogger.logMessages(); } well_container_generic_.clear(); for (auto& w : well_container_) well_container_generic_.push_back(w.get()); } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: createWellPointer(const int wellID, const int time_step) const { const auto is_multiseg = this->wells_ecl_[wellID].isMultiSegment(); if (! (this->param_.use_multisegment_well_ && is_multiseg)) { return this->template createTypedWellPointer>(wellID, time_step); } else { return this->template createTypedWellPointer>(wellID, time_step); } } template template std::unique_ptr BlackoilWellModel:: createTypedWellPointer(const int wellID, const int time_step) const { // Use the pvtRegionIdx from the top cell const auto& perf_data = this->well_perf_data_[wellID]; // Cater for case where local part might have no perforations. const auto pvtreg = perf_data.empty() ? 0 : pvt_region_idx_[perf_data.front().cell_index]; const auto& parallel_well_info = this->local_parallel_well_info_[wellID].get(); const auto global_pvtreg = parallel_well_info.broadcastFirstPerforationValue(pvtreg); return std::make_unique(this->wells_ecl_[wellID], parallel_well_info, time_step, this->param_, *this->rateConverter_, global_pvtreg, this->numComponents(), this->numPhases(), wellID, perf_data); } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: createWellForWellTest(const std::string& well_name, const int report_step, DeferredLogger& deferred_logger) const { // Finding the location of the well in wells_ecl const int nw_wells_ecl = wells_ecl_.size(); int index_well_ecl = 0; for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) { if (well_name == wells_ecl_[index_well_ecl].name()) { break; } } // It should be able to find in wells_ecl. if (index_well_ecl == nw_wells_ecl) { OPM_DEFLOG_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ", deferred_logger); } return this->createWellPointer(index_well_ecl, report_step); } template void BlackoilWellModel:: assemble(const int iterationIdx, const double dt) { DeferredLogger local_deferredLogger; if (this->glift_debug) { const std::string msg = fmt::format( "assemble() : iteration {}" , iterationIdx); gliftDebug(msg, local_deferredLogger); } last_report_ = SimulatorReportSingle(); Dune::Timer perfTimer; perfTimer.start(); if ( ! wellsActive() ) { return; } updatePerforationIntensiveQuantities(); if (iterationIdx == 0) { // try-catch is needed here as updateWellControls // contains global communication and has either to // be reached by all processes or all need to abort // before. OPM_BEGIN_PARALLEL_TRY_CATCH(); { calculateExplicitQuantities(local_deferredLogger); prepareTimeStep(local_deferredLogger); } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "assemble() failed (It=0): ", terminal_output_, grid().comm()); } updateWellControls(local_deferredLogger, /* check group controls */ true); bool alq_updated = false; OPM_BEGIN_PARALLEL_TRY_CATCH(); { // Set the well primary variables based on the value of well solutions initPrimaryVariablesEvaluation(); alq_updated = maybeDoGasLiftOptimize(local_deferredLogger); assembleWellEq(dt, local_deferredLogger); } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "assemble() failed: ", terminal_output_, grid().comm()); //update guide rates const int reportStepIdx = ebosSimulator_.episodeIndex(); if (alq_updated || guideRateUpdateIsNeeded(reportStepIdx)) { const double simulationTime = ebosSimulator_.time(); const auto& comm = ebosSimulator_.vanguard().grid().comm(); const auto& summaryState = ebosSimulator_.vanguard().summaryState(); std::vector pot(numPhases(), 0.0); const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); WellGroupHelpers::updateGuideRates(fieldGroup, schedule(), summaryState, this->phase_usage_, reportStepIdx, simulationTime, this->wellState(), this->groupState(), comm, &this->guideRate_, pot, local_deferredLogger); } last_report_.converged = true; last_report_.assemble_time_well += perfTimer.stop(); } template bool BlackoilWellModel:: maybeDoGasLiftOptimize(DeferredLogger& deferred_logger) { bool do_glift_optimization = false; int num_wells_changed = 0; const double simulation_time = ebosSimulator_.time(); const double min_wait = ebosSimulator_.vanguard().schedule().glo(ebosSimulator_.episodeIndex()).min_wait(); // We only optimize if a min_wait time has past. // If all_newton is true we still want to optimize several times pr timestep // i.e. we also optimize if check simulation_time == last_glift_opt_time_ // that is when the last_glift_opt_time is already updated with the current time step if ( simulation_time == last_glift_opt_time_ || simulation_time >= (last_glift_opt_time_ + min_wait)) { do_glift_optimization = true; last_glift_opt_time_ = simulation_time; } if (do_glift_optimization) { GLiftOptWells glift_wells; GLiftProdWells prod_wells; GLiftWellStateMap state_map; // NOTE: To make GasLiftGroupInfo (see below) independent of the TypeTag // associated with *this (i.e. BlackoilWellModel) we observe // that GasLiftGroupInfo's only dependence on *this is that it needs to // access the eclipse Wells in the well container (the eclipse Wells // themselves are independent of the TypeTag). // Hence, we extract them from the well container such that we can pass // them to the GasLiftGroupInfo constructor. GLiftEclWells ecl_well_map; initGliftEclWellMap(ecl_well_map); GasLiftGroupInfo group_info { ecl_well_map, ebosSimulator_.vanguard().schedule(), ebosSimulator_.vanguard().summaryState(), ebosSimulator_.episodeIndex(), ebosSimulator_.model().newtonMethod().numIterations(), phase_usage_, deferred_logger, this->wellState(), ebosSimulator_.vanguard().grid().comm(), this->glift_debug }; group_info.initialize(); gasLiftOptimizationStage1( deferred_logger, prod_wells, glift_wells, group_info, state_map); gasLiftOptimizationStage2( deferred_logger, prod_wells, glift_wells, state_map, ebosSimulator_.episodeIndex()); if (this->glift_debug) gliftDebugShowALQ(deferred_logger); num_wells_changed = glift_wells.size(); } num_wells_changed = this->comm_.sum(num_wells_changed); return num_wells_changed > 0; } template void BlackoilWellModel:: gasLiftOptimizationStage1(DeferredLogger& deferred_logger, GLiftProdWells &prod_wells, GLiftOptWells &glift_wells, GasLiftGroupInfo &group_info, GLiftWellStateMap &state_map) { auto comm = ebosSimulator_.vanguard().grid().comm(); int num_procs = comm.size(); // NOTE: Gas lift optimization stage 1 seems to be difficult // to do in parallel since the wells are optimized on different // processes and each process needs to know the current ALQ allocated // to each group it is a memeber of in order to check group limits and avoid // allocating more ALQ than necessary. (Surplus ALQ is removed in // stage 2). In stage1, as each well is adding ALQ, the current group ALQ needs // to be communicated to the other processes. But there is no common // synchronization point that all process will reach in the // runOptimizeLoop_() in GasLiftSingleWell.cpp. // // TODO: Maybe a better solution could be invented by distributing // wells according to certain parent groups. Then updated group rates // might not have to be communicated to the other processors. // Currently, the best option seems to be to run this part sequentially // (not in parallel). // // TODO: The simplest approach seems to be if a) one process could take // ownership of all the wells (the union of all the wells in the // well_container_ of each process) then this process could do the // optimization, while the other processes could wait for it to // finish (e.g. comm.barrier()), or alternatively, b) if all // processes could take ownership of all the wells. Then there // would be no need for synchronization here.. // for (int i = 0; i< num_procs; i++) { int num_rates_to_sync = 0; // communication variable GLiftSyncGroups groups_to_sync; if (comm.rank() == i) { // Run stage1: Optimize single wells while also checking group limits for (const auto& well : well_container_) { // NOTE: Only the wells in "group_info" needs to be optimized if (group_info.hasWell(well->name())) { gasLiftOptimizationStage1SingleWell( well.get(), deferred_logger, prod_wells, glift_wells, group_info, state_map, groups_to_sync ); } } num_rates_to_sync = groups_to_sync.size(); } // Since "group_info" is not used in stage2, there is no need to // communicate rates if this is the last iteration... if (i == (num_procs - 1)) break; num_rates_to_sync = comm.sum(num_rates_to_sync); if (num_rates_to_sync > 0) { std::vector group_indexes; group_indexes.reserve(num_rates_to_sync); std::vector group_alq_rates; group_alq_rates.reserve(num_rates_to_sync); std::vector group_oil_rates; group_oil_rates.reserve(num_rates_to_sync); std::vector group_gas_rates; group_gas_rates.reserve(num_rates_to_sync); std::vector group_water_rates; group_water_rates.reserve(num_rates_to_sync); if (comm.rank() == i) { for (auto idx : groups_to_sync) { auto [oil_rate, gas_rate, water_rate, alq] = group_info.getRates(idx); group_indexes.push_back(idx); group_oil_rates.push_back(oil_rate); group_gas_rates.push_back(gas_rate); group_water_rates.push_back(water_rate); group_alq_rates.push_back(alq); } } else { group_indexes.resize(num_rates_to_sync); group_oil_rates.resize(num_rates_to_sync); group_gas_rates.resize(num_rates_to_sync); group_water_rates.resize(num_rates_to_sync); group_alq_rates.resize(num_rates_to_sync); } // TODO: We only need to broadcast to processors with index // j > i since we do not use the "group_info" in stage 2. In // this case we should use comm.send() and comm.receive() // instead of comm.broadcast() to communicate with specific // processes, and these processes only need to receive the // data if they are going to check the group rates in stage1 // Another similar idea is to only communicate the rates to // process j = i + 1 Mpi::broadcast(comm, i, group_indexes, group_oil_rates, group_gas_rates, group_water_rates, group_alq_rates); if (comm.rank() != i) { for (int j=0; jglift_debug) { int counter = 0; if (comm.rank() == i) { counter = this->wellState().gliftGetDebugCounter(); } counter = comm.sum(counter); if (comm.rank() != i) { this->wellState().gliftSetDebugCounter(counter); } } } } } // NOTE: this method cannot be const since it passes this->wellState() // (see below) to the GasLiftSingleWell constructor which accepts WellState // as a non-const reference.. template void BlackoilWellModel:: gasLiftOptimizationStage1SingleWell(WellInterface *well, DeferredLogger& deferred_logger, GLiftProdWells &prod_wells, GLiftOptWells &glift_wells, GasLiftGroupInfo &group_info, GLiftWellStateMap &state_map, GLiftSyncGroups& sync_groups) { const auto& summary_state = ebosSimulator_.vanguard().summaryState(); std::unique_ptr glift = std::make_unique( *well, ebosSimulator_, summary_state, deferred_logger, this->wellState(), this->groupState(), group_info, sync_groups, this->comm_, this->glift_debug); auto state = glift->runOptimize( ebosSimulator_.model().newtonMethod().numIterations()); if (state) { state_map.insert({well->name(), std::move(state)}); glift_wells.insert({well->name(), std::move(glift)}); return; } prod_wells.insert({well->name(), well}); } template void BlackoilWellModel:: initGliftEclWellMap(GLiftEclWells &ecl_well_map) { for ( const auto& well: well_container_ ) { ecl_well_map.try_emplace( well->name(), &(well->wellEcl()), well->indexOfWell()); } } template void BlackoilWellModel:: assembleWellEq(const double dt, DeferredLogger& deferred_logger) { for (auto& well : well_container_) { well->assembleWellEq(ebosSimulator_, dt, this->wellState(), this->groupState(), deferred_logger); } } template void BlackoilWellModel:: apply( BVector& r) const { if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(r); } } // Ax = A x - C D^-1 B x template void BlackoilWellModel:: apply(const BVector& x, BVector& Ax) const { // TODO: do we still need localWellsActive()? if ( ! localWellsActive() ) { return; } for (auto& well : well_container_) { well->apply(x, Ax); } } #if HAVE_CUDA || HAVE_OPENCL template void BlackoilWellModel:: getWellContributions(WellContributions& wellContribs) const { // prepare for StandardWells wellContribs.setBlockSize(StandardWell::Indices::numEq, StandardWell::numStaticWellEq); for(unsigned int i = 0; i < well_container_.size(); i++){ auto& well = well_container_[i]; std::shared_ptr > derived = std::dynamic_pointer_cast >(well); if (derived) { unsigned int numBlocks; derived->getNumBlocks(numBlocks); wellContribs.addNumBlocks(numBlocks); } } // allocate memory for data from StandardWells wellContribs.alloc(); for(unsigned int i = 0; i < well_container_.size(); i++){ auto& well = well_container_[i]; // maybe WellInterface could implement addWellContribution() auto derived_std = std::dynamic_pointer_cast >(well); if (derived_std) { derived_std->addWellContribution(wellContribs); } else { auto derived_ms = std::dynamic_pointer_cast >(well); if (derived_ms) { derived_ms->addWellContribution(wellContribs); } else { OpmLog::warning("Warning unknown type of well"); } } } } #endif // Ax = Ax - alpha * C D^-1 B x template void BlackoilWellModel:: applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const { if ( ! localWellsActive() ) { return; } if( scaleAddRes_.size() != Ax.size() ) { scaleAddRes_.resize( Ax.size() ); } scaleAddRes_ = 0.0; // scaleAddRes_ = - C D^-1 B x apply( x, scaleAddRes_ ); // Ax = Ax + alpha * scaleAddRes_ Ax.axpy( alpha, scaleAddRes_ ); } template void BlackoilWellModel:: addWellContributions(SparseMatrixAdapter& jacobian) const { for ( const auto& well: well_container_ ) { well->addWellContributions(jacobian); } } template void BlackoilWellModel:: addWellPressureEquations(PressureMatrix& jacobian, const BVector& weights,const bool use_well_weights) const { int nw = this->numLocalWellsEnd(); int rdofs = local_num_cells_; for ( int i = 0; i < nw; i++ ){ int wdof = rdofs + i; jacobian[wdof][wdof] = 1.0;// better scaling ? } for ( const auto& well : well_container_ ) { well->addWellPressureEquations(jacobian, weights, pressureVarIndex, use_well_weights, this->wellState()); } } template int BlackoilWellModel:: numLocalWellsEnd() const { auto w = schedule().getWellsatEnd(); w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end()); return w.size(); } template std::vector> BlackoilWellModel:: getMaxWellConnections() const { std::vector> wells; auto schedule_wells = schedule().getWellsatEnd(); schedule_wells.erase(std::remove_if(schedule_wells.begin(), schedule_wells.end(), not_on_process_), schedule_wells.end()); wells.reserve(schedule_wells.size()); // initialize the additional cell connections introduced by wells. for ( const auto& well : schedule_wells ) { std::vector compressed_well_perforations; // All possible completions of the well const auto& completionSet = well.getConnections(); compressed_well_perforations.reserve(completionSet.size()); for (const auto& connection: well.getConnections()) { const int compressed_idx = compressedIndexForInterior(connection.global_index()); if ( compressed_idx >= 0 ) // Ignore completions in inactive/remote cells. { compressed_well_perforations.push_back(compressed_idx); } } // also include wells with no perforations in case std::sort(compressed_well_perforations.begin(), compressed_well_perforations.end()); wells.push_back(compressed_well_perforations); } return wells; } template void BlackoilWellModel:: addWellPressureEquationsStruct(PressureMatrix& jacobian) const { int nw = this->numLocalWellsEnd(); int rdofs = local_num_cells_; for(int i=0; i < nw; i++){ int wdof = rdofs + i; jacobian.entry(wdof,wdof) = 1.0;// better scaling ? } std::vector> wellconnections = getMaxWellConnections(); for(int i=0; i < nw; i++){ const auto& perfcells = wellconnections[i]; for(int perfcell : perfcells){ int wdof = rdofs + i; jacobian.entry(wdof,perfcell) = 0.0; jacobian.entry(perfcell, wdof) = 0.0; } } } template int BlackoilWellModel:: numLocalNonshutWells() const { return well_container_.size(); } template void BlackoilWellModel:: recoverWellSolutionAndUpdateWellState(const BVector& x) { DeferredLogger local_deferredLogger; OPM_BEGIN_PARALLEL_TRY_CATCH(); { if (localWellsActive()) { for (auto& well : well_container_) { well->recoverWellSolutionAndUpdateWellState(x, this->wellState(), local_deferredLogger); } } } OPM_END_PARALLEL_TRY_CATCH_LOG(local_deferredLogger, "recoverWellSolutionAndUpdateWellState() failed: ", terminal_output_, ebosSimulator_.vanguard().grid().comm()); } template void BlackoilWellModel:: initPrimaryVariablesEvaluation() const { for (auto& well : well_container_) { well->initPrimaryVariablesEvaluation(); } } template ConvergenceReport BlackoilWellModel:: getWellConvergence(const std::vector& B_avg, bool checkGroupConvergence) const { DeferredLogger local_deferredLogger; // Get global (from all processes) convergence report. ConvergenceReport local_report; const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations(); for (const auto& well : well_container_) { if (well->isOperableAndSolvable() || well->wellIsStopped()) { local_report += well->getWellConvergence(this->wellState(), B_avg, local_deferredLogger, iterationIdx > param_.strict_outer_iter_wells_ ); } else { ConvergenceReport report; using CR = ConvergenceReport; report.setWellFailed({CR::WellFailure::Type::Unsolvable, CR::Severity::Normal, -1, well->name()}); local_report += report; } } const Opm::Parallel::Communication comm = grid().comm(); DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm); if (terminal_output_) { global_deferredLogger.logMessages(); } ConvergenceReport report = gatherConvergenceReport(local_report, comm); // Log debug messages for NaN or too large residuals. if (terminal_output_) { for (const auto& f : report.wellFailures()) { if (f.severity() == ConvergenceReport::Severity::NotANumber) { OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } else if (f.severity() == ConvergenceReport::Severity::TooLarge) { OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName()); } } } if (checkGroupConvergence) { const int reportStepIdx = ebosSimulator_.episodeIndex(); const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); bool violated = checkGroupConstraints(fieldGroup, ebosSimulator_.episodeIndex(), global_deferredLogger); report.setGroupConverged(!violated); } return report; } template void BlackoilWellModel:: calculateExplicitQuantities(DeferredLogger& deferred_logger) const { // TODO: checking isOperableAndSolvable() ? for (auto& well : well_container_) { well->calculateExplicitQuantities(ebosSimulator_, this->wellState(), deferred_logger); } } template void BlackoilWellModel:: updateWellControls(DeferredLogger& deferred_logger, const bool checkGroupControls) { // Even if there are no wells active locally, we cannot // return as the DeferredLogger uses global communication. // For no well active globally we simply return. if( !wellsActive() ) return ; const int episodeIdx = ebosSimulator_.episodeIndex(); const int iterationIdx = ebosSimulator_.model().newtonMethod().numIterations(); const auto& comm = ebosSimulator_.vanguard().grid().comm(); updateAndCommunicateGroupData(episodeIdx, iterationIdx); updateNetworkPressures(episodeIdx); std::set switched_wells; std::set switched_groups; if (checkGroupControls) { // Check group individual constraints. bool changed_individual = updateGroupIndividualControls(deferred_logger, switched_groups, episodeIdx, iterationIdx); if (changed_individual) updateAndCommunicate(episodeIdx, iterationIdx, deferred_logger); // Check group's constraints from higher levels. bool changed_higher = updateGroupHigherControls(deferred_logger, episodeIdx, switched_groups); if (changed_higher) updateAndCommunicate(episodeIdx, iterationIdx, deferred_logger); // Check wells' group constraints and communicate. bool changed_well_group = false; for (const auto& well : well_container_) { const auto mode = WellInterface::IndividualOrGroup::Group; const bool changed_well = well->updateWellControl(ebosSimulator_, mode, this->wellState(), this->groupState(), deferred_logger); if (changed_well) { switched_wells.insert(well->name()); changed_well_group = changed_well || changed_well_group; } } changed_well_group = comm.sum(changed_well_group); if (changed_well_group) updateAndCommunicate(episodeIdx, iterationIdx, deferred_logger); } // Check individual well constraints and communicate. bool changed_well_individual = false; for (const auto& well : well_container_) { if (switched_wells.count(well->name())) { continue; } const auto mode = WellInterface::IndividualOrGroup::Individual; const bool changed_well = well->updateWellControl(ebosSimulator_, mode, this->wellState(), this->groupState(), deferred_logger); if (changed_well) { changed_well_individual = changed_well || changed_well_individual; } } changed_well_individual = comm.sum(changed_well_individual); if (changed_well_individual) updateAndCommunicate(episodeIdx, iterationIdx, deferred_logger); // update wsolvent fraction for REIN wells const Group& fieldGroup = schedule().getGroup("FIELD", episodeIdx); updateWsolvent(fieldGroup, episodeIdx, this->nupcolWellState()); } template void BlackoilWellModel:: updateAndCommunicate(const int reportStepIdx, const int iterationIdx, DeferredLogger& deferred_logger) { updateAndCommunicateGroupData(reportStepIdx, iterationIdx); // if a well or group change control it affects all wells that are under the same group for (const auto& well : well_container_) { well->updateWellStateWithTarget(ebosSimulator_, this->groupState(), this->wellState(), deferred_logger); } updateAndCommunicateGroupData(reportStepIdx, iterationIdx); } template void BlackoilWellModel:: updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const { DeferredLogger local_deferredLogger; for (const auto& well : well_container_) { const auto& wname = well->name(); const auto wasClosed = wellTestState.well_is_closed(wname); well->checkWellOperability(ebosSimulator_, this->wellState(), local_deferredLogger); well->updateWellTestState(this->wellState().well(wname), simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState, local_deferredLogger); if (!wasClosed && wellTestState.well_is_closed(wname)) { this->closed_this_step_.insert(wname); } } const Opm::Parallel::Communication comm = grid().comm(); DeferredLogger global_deferredLogger = gatherDeferredLogger(local_deferredLogger, comm); if (terminal_output_) { global_deferredLogger.logMessages(); } } template void BlackoilWellModel::computePotentials(const std::size_t widx, const WellState& well_state_copy, std::string& exc_msg, ExceptionType::ExcEnum& exc_type, DeferredLogger& deferred_logger) { const int np = numPhases(); std::vector potentials; const auto& well= well_container_[widx]; try { well->computeWellPotentials(ebosSimulator_, well_state_copy, potentials, deferred_logger); } // catch all possible exception and store type and message. OPM_PARALLEL_CATCH_CLAUSE(exc_type, exc_msg); // Store it in the well state // potentials is resized and set to zero in the beginning of well->ComputeWellPotentials // and updated only if sucessfull. i.e. the potentials are zero for exceptions auto& ws = this->wellState().well(well->indexOfWell()); for (int p = 0; p < np; ++p) { // make sure the potentials are positive ws.well_potentials[p] = std::max(0.0, potentials[p]); } } template void BlackoilWellModel:: calculateProductivityIndexValues(DeferredLogger& deferred_logger) { for (const auto& wellPtr : this->well_container_) { this->calculateProductivityIndexValues(wellPtr.get(), deferred_logger); } } template void BlackoilWellModel:: calculateProductivityIndexValuesShutWells(const int reportStepIdx, DeferredLogger& deferred_logger) { // For the purpose of computing PI/II values, it is sufficient to // construct StandardWell instances only. We don't need to form // well objects that honour the 'isMultisegment()' flag of the // corresponding "this->wells_ecl_[shutWell]". for (const auto& shutWell : this->local_shut_wells_) { if (this->wells_ecl_[shutWell].getConnections().empty()) { // No connections in this well. Nothing to do. continue; } auto wellPtr = this->template createTypedWellPointer >(shutWell, reportStepIdx); wellPtr->init(&this->phase_usage_, this->depth_, this->gravity_, this->local_num_cells_, this->B_avg_, true); this->calculateProductivityIndexValues(wellPtr.get(), deferred_logger); } } template void BlackoilWellModel:: calculateProductivityIndexValues(const WellInterface* wellPtr, DeferredLogger& deferred_logger) { wellPtr->updateProductivityIndex(this->ebosSimulator_, this->prod_index_calc_[wellPtr->indexOfWell()], this->wellState(), deferred_logger); } template void BlackoilWellModel:: prepareTimeStep(DeferredLogger& deferred_logger) { for (const auto& well : well_container_) { auto& events = this->wellState().well(well->indexOfWell()).events; if (events.hasEvent(WellState::event_mask)) { well->updateWellStateWithTarget(ebosSimulator_, this->groupState(), this->wellState(), deferred_logger); well->updatePrimaryVariables(this->wellState(), deferred_logger); well->initPrimaryVariablesEvaluation(); // There is no new well control change input within a report step, // so next time step, the well does not consider to have effective events anymore. events.clearEvent(WellState::event_mask); } // solve the well equation initially to improve the initial solution of the well model if (param_.solve_welleq_initially_ && well->isOperableAndSolvable()) { try { well->solveWellEquation(ebosSimulator_, this->wellState(), this->groupState(), deferred_logger); } catch (const std::exception& e) { const std::string msg = "Compute initial well solution for " + well->name() + " initially failed. Continue with the privious rates"; deferred_logger.warning("WELL_INITIAL_SOLVE_FAILED", msg); } } } updatePrimaryVariables(deferred_logger); } template void BlackoilWellModel:: updateAverageFormationFactor() { std::vector< Scalar > B_avg(numComponents(), Scalar() ); const auto& grid = ebosSimulator_.vanguard().grid(); const auto& gridView = grid.leafGridView(); ElementContext elemCtx(ebosSimulator_); const auto& elemEndIt = gridView.template end(); OPM_BEGIN_PARALLEL_TRY_CATCH(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); auto& B = B_avg[ compIdx ]; B += 1 / fs.invB(phaseIdx).value(); } if constexpr (has_solvent_) { auto& B = B_avg[solventSaturationIdx]; B += 1 / intQuants.solventInverseFormationVolumeFactor().value(); } } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::updateAverageFormationFactor() failed: ", grid.comm()) // compute global average grid.comm().sum(B_avg.data(), B_avg.size()); for(auto& bval: B_avg) { bval/=global_num_cells_; } B_avg_ = B_avg; } template void BlackoilWellModel:: updatePrimaryVariables(DeferredLogger& deferred_logger) { for (const auto& well : well_container_) { well->updatePrimaryVariables(this->wellState(), deferred_logger); } } template void BlackoilWellModel::extractLegacyCellPvtRegionIndex_() { const auto& grid = ebosSimulator_.vanguard().grid(); const auto& eclProblem = ebosSimulator_.problem(); const unsigned numCells = grid.size(/*codim=*/0); pvt_region_idx_.resize(numCells); for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) { pvt_region_idx_[cellIdx] = eclProblem.pvtRegionIndex(cellIdx); } } // The number of components in the model. template int BlackoilWellModel::numComponents() const { // The numComponents here does not reflect the actual number of the components in the system. // It more or less reflects the number of mass conservation equations for the well equations. // For example, in the current formulation, we do not have the polymer conservation equation // in the well equations. As a result, for an oil-water-polymer system, this function will return 2. // In some way, it makes this function appear to be confusing from its name, and we need // to revisit/revise this function again when extending the variants of system that flow can simulate. if (numPhases() < 3) { return numPhases(); } int numComp = FluidSystem::numComponents; if constexpr (has_solvent_) { numComp ++; } return numComp; } template void BlackoilWellModel::extractLegacyDepth_() { const auto& eclProblem = ebosSimulator_.problem(); depth_.resize(local_num_cells_); for (unsigned cellIdx = 0; cellIdx < local_num_cells_; ++cellIdx) { depth_[cellIdx] = eclProblem.dofCenterDepth(cellIdx); } } template void BlackoilWellModel:: updatePerforationIntensiveQuantities() { ElementContext elemCtx(ebosSimulator_); const auto& gridView = ebosSimulator_.gridView(); const auto& elemEndIt = gridView.template end(); OPM_BEGIN_PARALLEL_TRY_CATCH(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { elemCtx.updatePrimaryStencil(*elemIt); int elemIdx = elemCtx.globalSpaceIndex(0, 0); if (!is_cell_perforated_[elemIdx]) { continue; } elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); } OPM_END_PARALLEL_TRY_CATCH("BlackoilWellModel::updatePerforationIntensiveQuantities() failed: ", ebosSimulator_.vanguard().grid().comm()); } template typename BlackoilWellModel::WellInterfacePtr BlackoilWellModel:: getWell(const std::string& well_name) const { // finding the iterator of the well in wells_ecl auto well = std::find_if(well_container_.begin(), well_container_.end(), [&well_name](const WellInterfacePtr& elem)->bool { return elem->name() == well_name; }); assert(well != well_container_.end()); return *well; } template bool BlackoilWellModel:: hasWell(const std::string& well_name) const { return std::any_of(well_container_.begin(), well_container_.end(), [&well_name](const WellInterfacePtr& elem) -> bool { return elem->name() == well_name; }); } template int BlackoilWellModel:: reportStepIndex() const { return std::max(this->ebosSimulator_.episodeIndex(), 0); } template void BlackoilWellModel:: calcRates(const int fipnum, const int pvtreg, std::vector& resv_coeff) { rateConverter_->calcCoeff(fipnum, pvtreg, resv_coeff); } template void BlackoilWellModel:: calcInjRates(const int fipnum, const int pvtreg, std::vector& resv_coeff) { rateConverter_->calcInjCoeff(fipnum, pvtreg, resv_coeff); } template void BlackoilWellModel:: computeWellTemperature() { if (!has_energy_) return; int np = numPhases(); double cellInternalEnergy; double cellBinv; double cellDensity; double perfPhaseRate; const int nw = numLocalWells(); for (auto wellID = 0*nw; wellID < nw; ++wellID) { const Well& well = wells_ecl_[wellID]; if (well.isInjector()) continue; int connpos = 0; for (int i = 0; i < wellID; ++i) { connpos += well_perf_data_[i].size(); } connpos *= np; std::array weighted{0.0,0.0}; auto& [weighted_temperature, total_weight] = weighted; auto& well_info = local_parallel_well_info_[wellID].get(); const int num_perf_this_well = well_info.communication().sum(well_perf_data_[wellID].size()); auto& ws = this->wellState().well(wellID); auto& perf_data = ws.perf_data; auto& perf_phase_rate = perf_data.phase_rates; for (int perf = 0; perf < num_perf_this_well; ++perf) { const int cell_idx = well_perf_data_[wellID][perf].cell_index; const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); // we on only have one temperature pr cell any phaseIdx will do double cellTemperatures = fs.temperature(/*phaseIdx*/0).value(); double weight_factor = 0.0; for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } cellInternalEnergy = fs.enthalpy(phaseIdx).value() - fs.pressure(phaseIdx).value() / fs.density(phaseIdx).value(); cellBinv = fs.invB(phaseIdx).value(); cellDensity = fs.density(phaseIdx).value(); perfPhaseRate = perf_phase_rate[ perf*np + phaseIdx ]; weight_factor += cellDensity * perfPhaseRate/cellBinv * cellInternalEnergy/cellTemperatures; } total_weight += weight_factor; weighted_temperature += weight_factor * cellTemperatures; } well_info.communication().sum(weighted.data(), 2); this->wellState().well(wellID).temperature = weighted_temperature/total_weight; } } template void BlackoilWellModel:: assignWellTracerRates(data::Wells& wsrpt) const { const auto & wellTracerRates = ebosSimulator_.problem().tracerModel().getWellTracerRates(); if (wellTracerRates.empty()) return; // no tracers for (const auto& wTR : wellTracerRates) { std::string wellName = wTR.first.first; auto xwPos = wsrpt.find(wellName); if (xwPos == wsrpt.end()) { // No well results. continue; } std::string tracerName = wTR.first.second; double rate = wTR.second; xwPos->second.rates.set(data::Rates::opt::tracer, rate, tracerName); } } } // namespace Opm