/*
Copyright 2019, 2020 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2020 Equinor.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED
#define OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_CUDA
#include
#endif
namespace Dune
{
/// Create a sequential solver.
template
FlexibleSolver::
FlexibleSolver(Operator& op,
const Opm::PropertyTree& prm,
const std::function& weightsCalculator,
std::size_t pressureIndex)
{
init(op, Dune::Amg::SequentialInformation(), prm, weightsCalculator,
pressureIndex);
}
/// Create a parallel solver (if Comm is e.g. OwnerOverlapCommunication).
template
template
FlexibleSolver::
FlexibleSolver(Operator& op,
const Comm& comm,
const Opm::PropertyTree& prm,
const std::function& weightsCalculator,
std::size_t pressureIndex)
{
init(op, comm, prm, weightsCalculator, pressureIndex);
}
template
void
FlexibleSolver::
apply(VectorType& x, VectorType& rhs, Dune::InverseOperatorResult& res)
{
if (direct_solver_) {
recreateDirectSolver();
}
linsolver_->apply(x, rhs, res);
}
template
void
FlexibleSolver::
apply(VectorType& x, VectorType& rhs, double reduction, Dune::InverseOperatorResult& res)
{
if (direct_solver_) {
recreateDirectSolver();
}
linsolver_->apply(x, rhs, reduction, res);
}
/// Access the contained preconditioner.
template
auto
FlexibleSolver::
preconditioner() -> AbstractPrecondType&
{
return *preconditioner_;
}
template
Dune::SolverCategory::Category
FlexibleSolver::
category() const
{
return linearoperator_for_solver_->category();
}
// Machinery for making sequential or parallel operators/preconditioners/scalar products.
template
template
void
FlexibleSolver::
initOpPrecSp(Operator& op,
const Opm::PropertyTree& prm,
const std::function weightsCalculator,
const Comm& comm,
std::size_t pressureIndex)
{
// Parallel case.
linearoperator_for_solver_ = &op;
auto child = prm.get_child_optional("preconditioner");
preconditioner_ = Opm::PreconditionerFactory::create(op,
child ? *child : Opm::PropertyTree(),
weightsCalculator,
comm,
pressureIndex);
scalarproduct_ = Dune::createScalarProduct(comm, op.category());
}
template
void
FlexibleSolver::
initOpPrecSp(Operator& op,
const Opm::PropertyTree& prm,
const std::function weightsCalculator,
const Dune::Amg::SequentialInformation&,
std::size_t pressureIndex)
{
// Sequential case.
linearoperator_for_solver_ = &op;
auto child = prm.get_child_optional("preconditioner");
preconditioner_ = Opm::PreconditionerFactory::create(op,
child ? *child : Opm::PropertyTree(),
weightsCalculator,
pressureIndex);
scalarproduct_ = std::make_shared>();
}
template
void
FlexibleSolver::
initSolver(const Opm::PropertyTree& prm, const bool is_iorank)
{
const double tol = prm.get("tol", 1e-2);
const int maxiter = prm.get("maxiter", 200);
const int verbosity = is_iorank ? prm.get("verbosity", 0) : 0;
const std::string solver_type = prm.get("solver", "bicgstab");
if (solver_type == "bicgstab") {
linsolver_ = std::make_shared>(*linearoperator_for_solver_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity);
} else if (solver_type == "loopsolver") {
linsolver_ = std::make_shared>(*linearoperator_for_solver_,
*scalarproduct_,
*preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity);
} else if (solver_type == "gmres") {
int restart = prm.get("restart", 15);
linsolver_ = std::make_shared>(*linearoperator_for_solver_,
*scalarproduct_,
*preconditioner_,
tol,// desired residual reduction factor
restart,
maxiter, // maximum number of iterations
verbosity);
} else if (solver_type == "flexgmres") {
int restart = prm.get("restart", 15);
linsolver_ = std::make_shared>(*linearoperator_for_solver_,
*scalarproduct_,
*preconditioner_,
tol,// desired residual reduction factor
restart,
maxiter, // maximum number of iterations
verbosity);
#if HAVE_SUITESPARSE_UMFPACK
} else if (solver_type == "umfpack") {
using MatrixType = std::remove_const_tgetmat())>>;
linsolver_ = std::make_shared>(linearoperator_for_solver_->getmat(), verbosity, false);
direct_solver_ = true;
#endif
#if HAVE_CUDA
} else if (solver_type == "cubicgstab") {
linsolver_.reset(new Opm::cuistl::SolverAdapter(
*linearoperator_for_solver_,
*scalarproduct_,
preconditioner_,
tol, // desired residual reduction factor
maxiter, // maximum number of iterations
verbosity));
#endif
} else {
OPM_THROW(std::invalid_argument,
"Properties: Solver " + solver_type + " not known.");
}
}
// For now, the only direct solver we support is UMFPACK from SuiteSparse.
// When the matrix is updated (keeping sparsity pattern) it is possible to
// exploit separation of symbolic and numeric factorization, but we do not
// do so at this point. For complete generality, the solver abstract class
// Dune::InverseOperator<> should be extended with an update() function.
template
void
FlexibleSolver::
recreateDirectSolver()
{
#if HAVE_SUITESPARSE_UMFPACK
using MatrixType = std::remove_const_tgetmat())>>;
linsolver_ = std::make_shared>(linearoperator_for_solver_->getmat(), 0, false);
#else
OPM_THROW(std::logic_error, "Direct solver specified, but the FlexibleSolver class was not compiled with SuiteSparse support.");
#endif
}
// Main initialization routine.
// Call with Comm == Dune::Amg::SequentialInformation to get a serial solver.
template
template
void
FlexibleSolver::
init(Operator& op,
const Comm& comm,
const Opm::PropertyTree& prm,
const std::function weightsCalculator,
std::size_t pressureIndex)
{
initOpPrecSp(op, prm, weightsCalculator, comm, pressureIndex);
initSolver(prm, comm.communicator().rank() == 0);
}
} // namespace Dune
// Macros to simplify explicit instantiation of FlexibleSolver for various block sizes.
// Vectors and matrices.
template
using BV = Dune::BlockVector>;
template
using OBM = Dune::BCRSMatrix>;
// Sequential operators.
template
using SeqOpM = Dune::MatrixAdapter, BV, BV>;
template
using SeqOpW = Opm::WellModelMatrixAdapter, BV, BV, false>;
#if HAVE_MPI
// Parallel communicator and operators.
using Comm = Dune::OwnerOverlapCopyCommunication;
template
using ParOpM = Dune::OverlappingSchwarzOperator, BV, BV, Comm>;
template
using ParOpW = Opm::WellModelGhostLastMatrixAdapter, BV, BV, true>;
// Note: we must instantiate the constructor that is a template.
// This is only needed in the parallel case, since otherwise the Comm type is
// not a template argument but always SequentialInformation.
#define INSTANTIATE_FLEXIBLESOLVER_OP(Operator) \
template class Dune::FlexibleSolver; \
template Dune::FlexibleSolver::FlexibleSolver(Operator& op, \
const Comm& comm, \
const Opm::PropertyTree& prm, \
const std::function& weightsCalculator, \
std::size_t pressureIndex);
#define INSTANTIATE_FLEXIBLESOLVER(N) \
INSTANTIATE_FLEXIBLESOLVER_OP(SeqOpM); \
INSTANTIATE_FLEXIBLESOLVER_OP(SeqOpW); \
INSTANTIATE_FLEXIBLESOLVER_OP(ParOpM); \
INSTANTIATE_FLEXIBLESOLVER_OP(ParOpW);
#else // HAVE_MPI
#define INSTANTIATE_FLEXIBLESOLVER_OP(Operator) \
template class Dune::FlexibleSolver;
#define INSTANTIATE_FLEXIBLESOLVER(N) \
INSTANTIATE_FLEXIBLESOLVER_OP(SeqOpM); \
INSTANTIATE_FLEXIBLESOLVER_OP(SeqOpW);
#endif // HAVE_MPI
#endif // OPM_FLEXIBLE_SOLVER_IMPL_HEADER_INCLUDED