/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014 STATOIL ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILPOLYMERMODEL_HEADER_INCLUDED #define OPM_BLACKOILPOLYMERMODEL_HEADER_INCLUDED #include #include #include #include #include #include #include #include namespace Opm { /// A model implementation for three-phase black oil with polymer. /// /// The simulator is capable of handling three-phase problems /// where gas can be dissolved in oil and vice versa, with polymer /// in the water phase. It uses an industry-standard TPFA /// discretization with per-phase upwind weighting of mobilities. /// /// It uses automatic differentiation via the class AutoDiffBlock /// to simplify assembly of the jacobian matrix. template class BlackoilPolymerModel : public BlackoilModelBase > { public: // --------- Types and enums --------- typedef BlackoilModelBase > Base; typedef typename Base::ReservoirState ReservoirState; typedef typename Base::WellState WellState; // The next line requires C++11 support available in g++ 4.7. // friend Base; friend class BlackoilModelBase >; /// Construct the model. It will retain references to the /// arguments of this functions, and they are expected to /// remain in scope for the lifetime of the solver. /// \param[in] param parameters /// \param[in] grid grid data structure /// \param[in] fluid fluid properties /// \param[in] geo rock properties /// \param[in] rock_comp_props if non-null, rock compressibility properties /// \param[in] wells well structure /// \param[in] linsolver linear solver /// \param[in] has_disgas turn on dissolved gas /// \param[in] has_vapoil turn on vaporized oil feature /// \param[in] has_polymer turn on polymer feature /// \param[in] has_plyshlog true when PLYSHLOG keyword available /// \param[in] has_shrate true when PLYSHLOG keyword available /// \param[in] wells_rep_radius representative radius of well perforations during shear effects calculation /// \param[in] wells_perf_length perforation length for well perforations /// \param[in] wells_bore_diameter wellbore diameters for well performations /// \param[in] terminal_output request output to cout/cerr BlackoilPolymerModel(const typename Base::ModelParameters& param, const Grid& grid, const BlackoilPropsAdFromDeck& fluid, const DerivedGeology& geo, const RockCompressibility* rock_comp_props, const PolymerPropsAd& polymer_props_ad, const StandardWells& well_model, const NewtonIterationBlackoilInterface& linsolver, std::shared_ptr< const EclipseState > eclipseState, const bool has_disgas, const bool has_vapoil, const bool has_polymer, const bool has_plyshlog, const bool has_shrate, const std::vector& wells_rep_radius, const std::vector& wells_perf_length, const std::vector& wells_bore_diameter, const bool terminal_output); /// Called once before each time step. /// \param[in] timer simulation timer /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void prepareStep(const SimulatorTimerInterface& timer, const ReservoirState& reservoir_state, const WellState& well_state); /// Called once after each time step. /// \param[in] timer simulation timer /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void afterStep(const SimulatorTimerInterface& timer, ReservoirState& reservoir_state, WellState& well_state); /// Apply an update to the primary variables, chopped if appropriate. /// \param[in] dx updates to apply to primary variables /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void updateState(const V& dx, ReservoirState& reservoir_state, WellState& well_state); /// Assemble the residual and Jacobian of the nonlinear system. /// \param[in] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables /// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep SimulatorReport assemble(const ReservoirState& reservoir_state, WellState& well_state, const bool initial_assembly); using Base::wellModel; protected: // --------- Types and enums --------- typedef typename Base::SolutionState SolutionState; typedef typename Base::DataBlock DataBlock; enum { Concentration = CanonicalVariablePositions::Next }; // --------- Data members --------- const PolymerPropsAd& polymer_props_ad_; const bool has_polymer_; const bool has_plyshlog_; const bool has_shrate_; const int poly_pos_; V cmax_; // representative radius and perforation length of well perforations // to be used in shear-thinning computation. std::vector wells_rep_radius_; std::vector wells_perf_length_; // wellbore diameters std::vector wells_bore_diameter_; // shear-thinning factor for cell faces std::vector shear_mult_faces_; // shear-thinning factor for well perforations std::vector shear_mult_wells_; // Need to declare Base members we want to use here. using Base::grid_; using Base::fluid_; using Base::geo_; using Base::rock_comp_props_; using Base::linsolver_; using Base::active_; using Base::canph_; using Base::cells_; using Base::ops_; using Base::has_disgas_; using Base::has_vapoil_; using Base::param_; using Base::use_threshold_pressure_; using Base::threshold_pressures_by_connection_; using Base::sd_; using Base::phaseCondition_; using Base::residual_; using Base::terminal_output_; using Base::pvdt_; using Base::vfp_properties_; // --------- Protected methods --------- // Need to declare Base members we want to use here. using Base::wells; using Base::wellsActive; using Base::variableState; using Base::computePressures; using Base::computeGasPressure; using Base::applyThresholdPressures; using Base::fluidViscosity; using Base::fluidReciprocFVF; using Base::fluidDensity; using Base::fluidRsSat; using Base::fluidRvSat; using Base::poroMult; using Base::transMult; using Base::updatePrimalVariableFromState; using Base::updatePhaseCondFromPrimalVariable; using Base::dpMaxRel; using Base::dsMax; using Base::drMaxRel; using Base::maxResidualAllowed; // using Base::updateWellControls; // using Base::computeWellConnectionPressures; // using Base::addWellControlEq; using Base::computeRelPerm; void makeConstantState(SolutionState& state) const; std::vector variableStateInitials(const ReservoirState& x, const WellState& xw) const; std::vector variableStateIndices() const; SolutionState variableStateExtractVars(const ReservoirState& x, const std::vector& indices, std::vector& vars) const; void computeAccum(const SolutionState& state, const int aix ); void computeInjectionMobility(const SolutionState& state, std::vector& mob_perfcells); void assembleMassBalanceEq(const SolutionState& state); void addWellContributionToMassBalanceEq(const std::vector& cq_s, const SolutionState& state, WellState& xw); void updateEquationsScaling(); void computeMassFlux(const int actph , const V& transi, const ADB& kr , const ADB& mu , const ADB& rho , const ADB& p , const SolutionState& state ); void computeCmax(ReservoirState& state); ADB computeMc(const SolutionState& state) const; const std::vector phaseCondition() const {return this->phaseCondition_;} /// Computing the water velocity without shear-thinning for the cell faces. /// The water velocity will be used for shear-thinning calculation. void computeWaterShearVelocityFaces(const V& transi, const std::vector& phasePressure, const SolutionState& state, std::vector& water_vel, std::vector& visc_mult); /// Computing the water velocity without shear-thinning for the well perforations based on the water flux rate. /// The water velocity will be used for shear-thinning calculation. void computeWaterShearVelocityWells(const SolutionState& state, WellState& xw, const ADB& cq_sw, std::vector& water_vel_wells, std::vector& visc_mult_wells); }; /// Need to include concentration in our state variables, otherwise all is as /// the default blackoil model. struct BlackoilPolymerSolutionState : public DefaultBlackoilSolutionState { explicit BlackoilPolymerSolutionState(const int np) : DefaultBlackoilSolutionState(np), concentration( ADB::null()) { } ADB concentration; }; /// Providing types by template specialisation of ModelTraits for BlackoilPolymerModel. template struct ModelTraits< BlackoilPolymerModel > { typedef PolymerBlackoilState ReservoirState; typedef WellStateFullyImplicitBlackoilPolymer WellState; typedef BlackoilModelParameters ModelParameters; typedef BlackoilPolymerSolutionState SolutionState; }; } // namespace Opm #include "BlackoilPolymerModel_impl.hpp" #endif // OPM_BLACKOILPOLYMERMODEL_HEADER_INCLUDED