/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#include
namespace Opm
{
template
class MultisegmentWell: public WellInterface
{
public:
typedef WellInterface Base;
using typename Base::WellState;
using typename Base::Simulator;
using typename Base::IntensiveQuantities;
using typename Base::FluidSystem;
using typename Base::ModelParameters;
using typename Base::MaterialLaw;
using typename Base::Indices;
using typename Base::RateConverterType;
/// the number of reservior equations
using Base::numEq;
using Base::has_solvent;
using Base::has_polymer;
using Base::Water;
using Base::Oil;
using Base::Gas;
// TODO: for now, not considering the polymer, solvent and so on to simplify the development process.
// TODO: we need to have order for the primary variables and also the order for the well equations.
// sometimes, they are similar, while sometimes, they can have very different forms.
// TODO: the following system looks not rather flexible. Looking into all kinds of possibilities
// TODO: gas is always there? how about oil water case?
// Is it gas oil two phase case?
static const bool gasoil = numEq == 2 && (Indices::compositionSwitchIdx >= 0);
static const int GTotal = 0;
static const int WFrac = gasoil? -1000: 1;
static const int GFrac = gasoil? 1 : 2;
static const int SPres = gasoil? 2 : 3;
/// the number of well equations // TODO: it should have a more general strategy for it
static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq : numEq + 1;
using typename Base::Scalar;
using typename Base::ConvergenceReport;
/// the matrix and vector types for the reservoir
using typename Base::Mat;
using typename Base::BVector;
using typename Base::Eval;
// sparsity pattern for the matrices
// [A C^T [x = [ res
// B D ] x_well] res_well]
// the vector type for the res_well and x_well
typedef Dune::FieldVector VectorBlockWellType;
typedef Dune::BlockVector BVectorWell;
// the matrix type for the diagonal matrix D
typedef Dune::FieldMatrix DiagMatrixBlockWellType;
typedef Dune::BCRSMatrix DiagMatWell;
// the matrix type for the non-diagonal matrix B and C^T
typedef Dune::FieldMatrix OffDiagMatrixBlockWellType;
typedef Dune::BCRSMatrix OffDiagMatWell;
// TODO: for more efficient implementation, we should have EvalReservoir, EvalWell, and EvalRerservoirAndWell
// EvalR (Eval), EvalW, EvalRW
// TODO: for now, we only use one type to save some implementation efforts, while improve later.
typedef DenseAd::Evaluation EvalWell;
MultisegmentWell(const Well* well, const int time_step, const Wells* wells,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components);
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector& depth_arg,
const double gravity_arg,
const int num_cells);
virtual void initPrimaryVariablesEvaluation() const;
virtual void assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells);
/// updating the well state based the control mode specified with current
// TODO: later will check wheter we need current
virtual void updateWellStateWithTarget(WellState& well_state) const;
/// check whether the well equations get converged for this well
virtual ConvergenceReport getWellConvergence(const std::vector& B_avg) const;
/// Ax = Ax - C D^-1 B x
virtual void apply(const BVector& x, BVector& Ax) const;
/// r = r - C D^-1 Rw
virtual void apply(BVector& r) const;
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state) const;
/// computing the well potentials for group control
virtual void computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector& well_potentials);
virtual void updatePrimaryVariables(const WellState& well_state) const;
virtual void solveEqAndUpdateWellState(WellState& well_state); // const?
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state); // should be const?
/// number of segments for this well
/// int number_of_segments_;
int numberOfSegments() const;
int numberOfPerforations() const;
protected:
int number_segments_;
// components of the pressure drop to be included
WellSegment::CompPressureDropEnum compPressureDrop() const;
// multi-phase flow model
WellSegment::MultiPhaseModelEnum multiphaseModel() const;
// get the SegmentSet from the well_ecl_
const SegmentSet& segmentSet() const;
// protected member variables from the Base class
using Base::well_ecl_;
using Base::number_of_perforations_; // TODO: can use well_ecl_?
using Base::current_step_;
using Base::index_of_well_;
using Base::number_of_phases_;
// TODO: the current implementation really relies on the order of the
// perforation does not change from the parser to Wells structure.
using Base::well_cells_;
using Base::param_;
using Base::well_index_;
using Base::well_type_;
using Base::first_perf_;
using Base::saturation_table_number_;
using Base::well_efficiency_factor_;
using Base::gravity_;
using Base::well_controls_;
using Base::perf_depth_;
using Base::num_components_;
// protected functions from the Base class
using Base::phaseUsage;
using Base::name;
using Base::flowPhaseToEbosCompIdx;
using Base::ebosCompIdxToFlowCompIdx;
using Base::getAllowCrossFlow;
using Base::scalingFactor;
// TODO: trying to use the information from the Well opm-parser as much
// as possible, it will possibly be re-implemented later for efficiency reason.
// the completions that is related to each segment
// the completions's ids are their index in the vector well_index_, well_cell_
// This is also assuming the order of the completions in Well is the same with
// the order of the completions in wells.
// it is for convinience reason. we can just calcuate the inforation for segment once then using it for all the perofrations
// belonging to this segment
std::vector > segment_perforations_;
// the inlet segments for each segment. It is for convinience and efficiency reason
std::vector > segment_inlets_;
// segment number is an ID of the segment, it is specified in the deck
// get the loation of the segment with a segment number in the segmentSet
int segmentNumberToIndex(const int segment_number) const;
// TODO, the following should go to a class for computing purpose
// two off-diagonal matrices
mutable OffDiagMatWell duneB_;
mutable OffDiagMatWell duneC_;
// diagonal matrix for the well
mutable DiagMatWell duneD_;
// residuals of the well equations
mutable BVectorWell resWell_;
// the values for the primary varibles
// based on different solutioin strategies, the wells can have different primary variables
mutable std::vector > primary_variables_;
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
mutable std::vector > primary_variables_evaluation_;
// depth difference between perforations and the perforated grid cells
std::vector cell_perforation_depth_diffs_;
// pressure correction due to the different depth of the perforation and
// center depth of the grid block
std::vector cell_perforation_pressure_diffs_;
// depth difference between the segment and the peforation
// or in another way, the depth difference between the perforation and
// the segment the perforation belongs to
std::vector perforation_segment_depth_diffs_;
// the intial component compistion of segments
std::vector > segment_comp_initial_;
// the densities of segment fluids
// we should not have this member variable
std::vector segment_densities_;
// the viscosity of the segments
std::vector segment_viscosities_;
// the mass rate of the segments
std::vector segment_mass_rates_;
std::vector segment_depth_diffs_;
void initMatrixAndVectors(const int num_cells) const;
// protected functions
// EvalWell getBhp(); this one should be something similar to getSegmentPressure();
// EvalWell getQs(); this one should be something similar to getSegmentRates()
// EValWell wellVolumeFractionScaled, wellVolumeFraction, wellSurfaceVolumeFraction ... these should have different names, and probably will be needed.
// bool crossFlowAllowed(const Simulator& ebosSimulator) const; probably will be needed
// xw = inv(D)*(rw - C*x)
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
// updating the well_state based on well solution dwells
void updateWellState(const BVectorWell& dwells,
const bool inner_iteration,
WellState& well_state) const;
// initialize the segment rates with well rates
// when there is no more accurate way to initialize the segment rates, we initialize
// the segment rates based on well rates with a simple strategy
void initSegmentRatesWithWellRates(WellState& well_state) const;
// computing the accumulation term for later use in well mass equations
void computeInitialComposition();
// compute the pressure difference between the perforation and cell center
void computePerfCellPressDiffs(const Simulator& ebosSimulator);
// fraction value of the primary variables
// should we just use member variables to store them instead of calculating them again and again
EvalWell volumeFraction(const int seg, const unsigned comp_idx) const;
// F_p / g_p, the basic usage of this value is because Q_p = G_t * F_p / G_p
EvalWell volumeFractionScaled(const int seg, const int comp_idx) const;
// basically Q_p / \sigma_p Q_p
EvalWell surfaceVolumeFraction(const int seg, const int comp_idx) const;
void computePerfRate(const IntensiveQuantities& int_quants,
const std::vector& mob_perfcells,
const int seg,
const int perf,
const EvalWell& segment_pressure,
const bool& allow_cf,
std::vector& cq_s) const;
// convert a Eval from reservoir to contain the derivative related to wells
EvalWell extendEval(const Eval& in) const;
// compute the fluid properties, such as densities, viscosities, and so on, in the segments
// They will be treated implicitly, so they need to be of Evaluation type
void computeSegmentFluidProperties(const Simulator& ebosSimulator);
EvalWell getSegmentPressure(const int seg) const;
EvalWell getSegmentRate(const int seg, const int comp_idx) const;
EvalWell getSegmentGTotal(const int seg) const;
// get the mobility for specific perforation
void getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector& mob) const;
void assembleControlEq() const;
void assemblePressureEq(const int seg) const;
// hytrostatic pressure loss
EvalWell getHydroPressureLoss(const int seg) const;
// frictinal pressure loss
EvalWell getFrictionPressureLoss(const int seg) const;
void handleAccelerationPressureLoss(const int seg) const;
// handling the overshooting and undershooting of the fractions
void processFractions(const int seg) const;
void updateWellStateFromPrimaryVariables(WellState& well_state) const;
bool frictionalPressureLossConsidered() const;
bool accelerationalPressureLossConsidered() const;
// TODO: try to make ebosSimulator const, as it should be
void iterateWellEquations(Simulator& ebosSimulator,
const double dt,
WellState& well_state);
void assembleWellEqWithoutIteration(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells);
};
}
#include "MultisegmentWell_impl.hpp"
#endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED