// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef EWOMS_ECL_GENERIC_THRESHOLD_PRESSURE_IMPL_HH
#define EWOMS_ECL_GENERIC_THRESHOLD_PRESSURE_IMPL_HH
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
template
EclGenericThresholdPressure::
EclGenericThresholdPressure(const CartesianIndexMapper& cartMapper,
const GridView& gridView,
const ElementMapper& elementMapper,
const EclipseState& eclState)
: cartMapper_(cartMapper)
, gridView_(gridView)
, elementMapper_(elementMapper)
, lookUpData_(gridView)
, lookUpCartesianData_(gridView, cartMapper_)
, eclState_(eclState)
{
}
template
Scalar EclGenericThresholdPressure::
thresholdPressure(int elem1Idx, int elem2Idx) const
{
if (!enableThresholdPressure_)
return 0.0;
// threshold pressure accross faults
if (!thpresftValues_.empty()) {
int fault1Idx = lookUpCartesianData_(elem1Idx, cartElemFaultIdx_);
int fault2Idx = lookUpCartesianData_(elem2Idx, cartElemFaultIdx_);
if (fault1Idx != -1 && fault1Idx == fault2Idx)
// inside a fault there's no threshold pressure, even accross EQUIL
// regions.
return 0.0;
if (fault1Idx != fault2Idx) {
// TODO: which value if a cell is part of multiple faults? we take
// the maximum here.
Scalar val1 = (fault1Idx >= 0) ? thpresftValues_[fault1Idx] : 0.0;
Scalar val2 = (fault2Idx >= 0) ? thpresftValues_[fault2Idx] : 0.0;
return std::max(val1, val2);
}
}
// threshold pressure accross EQUIL regions
auto equilRegion1Idx = elemEquilRegion_[elem1Idx];
auto equilRegion2Idx = elemEquilRegion_[elem2Idx];
if (equilRegion1Idx == equilRegion2Idx)
return 0.0;
return thpres_[equilRegion1Idx*numEquilRegions_ + equilRegion2Idx];
}
template
void EclGenericThresholdPressure::
finishInit()
{
unsigned numElements = gridView_.size(/*codim=*/0);
const auto& simConfig = eclState_.getSimulationConfig();
enableThresholdPressure_ = simConfig.useThresholdPressure();
if (!enableThresholdPressure_)
return;
numEquilRegions_ = eclState_.getTableManager().getEqldims().getNumEquilRegions();
const decltype(numEquilRegions_) maxRegions =
std::numeric_limits>::max();
if (numEquilRegions_ > maxRegions) {
// make sure that the index of an equilibration region can be stored
// in the vector
OPM_THROW(std::invalid_argument,
(fmt::format("The maximum number of supported "
"equilibration regions by OPM flow is {}, but "
"{} are used!",
maxRegions, numEquilRegions_)));
}
if (numEquilRegions_ > 2048) {
// warn about performance
OpmLog::warning(fmt::format("Number of equilibration regions is {}, which is "
"rather large. Note, that this might "
"have a negative impact on performance "
"and memory consumption.", numEquilRegions_));
}
// internalize the data specified using the EQLNUM keyword
const auto& fp = eclState_.fieldProps();
const auto& equilRegionData = fp.get_int("EQLNUM");
elemEquilRegion_.resize(numElements, 0);
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
elemEquilRegion_[elemIdx] = equilRegionData[elemIdx] - 1;
}
/*
If this is a restart run the ThresholdPressure object will be active,
but it will *not* be properly initialized with numerical values. The
values must instead come from the THPRES vector in the restart file.
*/
if (simConfig.getThresholdPressure().restart())
return;
// allocate the array which specifies the threshold pressures
thpres_.resize(numEquilRegions_*numEquilRegions_, 0.0);
thpresDefault_.resize(numEquilRegions_*numEquilRegions_, 0.0);
}
template
void EclGenericThresholdPressure::
applyExplicitThresholdPressures_()
{
const SimulationConfig& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
// set the threshold pressures for all EQUIL region boundaries which have a
// intersection in the grid
for (const auto& elem : elements(gridView_, Dune::Partitions::interior)) {
for (const auto& intersection : intersections(gridView_, elem)) {
if (intersection.boundary())
continue; // ignore boundary intersections for now (TODO?)
else if (!intersection.neighbor()) //processor boundary but not domain boundary
continue;
const auto& inside = intersection.inside();
const auto& outside = intersection.outside();
auto equilRegionInside = lookUpData_(inside, elemEquilRegion_);
auto equilRegionOutside = lookUpData_(outside, elemEquilRegion_);
if (thpres.hasRegionBarrier(equilRegionInside + 1, equilRegionOutside + 1)) {
Scalar pth = 0.0;
if (thpres.hasThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1)) {
// threshold pressure explicitly specified
pth = thpres.getThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1);
}
else {
// take the threshold pressure from the initial condition
unsigned offset = equilRegionInside*numEquilRegions_ + equilRegionOutside;
pth = thpresDefault_[offset];
}
unsigned offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
unsigned offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
thpres_[offset1] = pth;
thpres_[offset2] = pth;
}
}
}
// apply threshold pressures across faults
if (thpres.ftSize() > 0)
configureThpresft_();
}
template
void EclGenericThresholdPressure::
configureThpresft_()
{
// retrieve the faults collection.
const FaultCollection& faults = eclState_.getFaults();
const SimulationConfig& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
// extract the multipliers
int numFaults = faults.size();
int numCartesianElem = eclState_.getInputGrid().getCartesianSize();
thpresftValues_.resize(numFaults, -1.0);
cartElemFaultIdx_.resize(numCartesianElem, -1);
for (std::size_t faultIdx = 0; faultIdx < faults.size(); faultIdx++) {
auto& fault = faults.getFault(faultIdx);
thpresftValues_[faultIdx] = thpres.getThresholdPressureFault(faultIdx);
for (const FaultFace& face : fault)
// "face" is a misnomer because the object describes a set of cell
// indices, but we go with the conventions of the parser here...
for (std::size_t cartElemIdx : face)
cartElemFaultIdx_[cartElemIdx] = faultIdx;
}
}
template
std::vector
EclGenericThresholdPressure::
getRestartVector() const
{
if (!enableThresholdPressure_)
return {};
std::vector result(numEquilRegions_ * numEquilRegions_, 0.0);
const auto& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
std::size_t idx = 0;
for (unsigned j = 1; j <= numEquilRegions_; ++j) {
for (unsigned i = 1; i <= numEquilRegions_; ++i, ++idx) {
if (thpres.hasRegionBarrier(i, j)) {
if (thpres.hasThresholdPressure(i, j)) {
result[idx] = thpres.getThresholdPressure(i, j);
} else {
result[idx] = this->thpresDefault_[idx];
}
}
}
}
return result;
}
template
void
EclGenericThresholdPressure::
logPressures()
{
if (!enableThresholdPressure_)
return;
auto lineFormat = [this](unsigned i, unsigned j, double val)
{
const auto& units = eclState_.getUnits();
return fmt::format("{:4}{:>6}{:23}{:>6}{:24}{:>11.07}{:7}{}\n",
" ", i,
" ", j,
" ", units.from_si(UnitSystem::measure::pressure, val),
" ", units.name(UnitSystem::measure::pressure));
};
auto lineFormatS = [](auto s1, auto s2, auto s3)
{
return fmt::format("{:4}{:^16}{:13}{:^9}{:21}{:^18}\n",
" ", s1, " ", s2, " ", s3);
};
std::string str = "\nLIST OF ALL NON-ZERO THRESHOLD PRESSURES\n"
"----------------------------------------\n"
"\n";
str += lineFormatS("FLOW FROM REGION", "TO REGION", "THRESHOLD PRESSURE");
str += lineFormatS(std::string(16, '-'), std::string(9, '-'), std::string(18, '-'));
const auto& simConfig = eclState_.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
for (unsigned i = 1; i <= numEquilRegions_; ++i) {
for (unsigned j = (thpres.irreversible() ? 1 : i); j <= numEquilRegions_; ++j) {
if (thpres.hasRegionBarrier(i, j)) {
if (thpres.hasThresholdPressure(i, j)) {
str += lineFormat(i, j, thpres.getThresholdPressure(j, i));
} else {
std::size_t idx = (j - 1) * numEquilRegions_ + (i - 1);
str += lineFormat(i, j, this->thpresDefault_[idx]);
}
}
}
}
str += lineFormatS(std::string(16, '-'), std::string(9, '-'), std::string(18, '-'));
OpmLog::note(str);
}
} // namespace Opm
#endif