// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilModel
*/
#ifndef EWOMS_BLACK_OIL_MODEL_HH
#define EWOMS_BLACK_OIL_MODEL_HH
#include
#include "blackoilproblem.hh"
#include "blackoilindices.hh"
#include "blackoiltwophaseindices.hh"
#include "blackoilextensivequantities.hh"
#include "blackoilprimaryvariables.hh"
#include "blackoilintensivequantities.hh"
#include "blackoilratevector.hh"
#include "blackoilboundaryratevector.hh"
#include "blackoillocalresidual.hh"
#include "blackoilnewtonmethod.hh"
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilfoammodules.hh"
#include "blackoilbrinemodules.hh"
#include "blackoildarcyfluxmodule.hh"
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
template
class BlackOilModel;
template
class EclVanguard;
}
BEGIN_PROPERTIES
//! The type tag for the black-oil problems
NEW_TYPE_TAG(BlackOilModel, INHERITS_FROM(MultiPhaseBaseModel,
VtkBlackOil,
VtkBlackOilSolvent,
VtkBlackOilPolymer,
VtkBlackOilEnergy,
VtkComposition));
//! Set the local residual function
SET_TYPE_PROP(BlackOilModel, LocalResidual,
Opm::BlackOilLocalResidual);
//! Use the black-oil specific newton method
SET_TYPE_PROP(BlackOilModel, NewtonMethod, Opm::BlackOilNewtonMethod);
//! The Model property
SET_TYPE_PROP(BlackOilModel, Model, Opm::BlackOilModel);
//! The Problem property
SET_TYPE_PROP(BlackOilModel, BaseProblem, Opm::BlackOilProblem);
//! the RateVector property
SET_TYPE_PROP(BlackOilModel, RateVector, Opm::BlackOilRateVector);
//! the BoundaryRateVector property
SET_TYPE_PROP(BlackOilModel, BoundaryRateVector, Opm::BlackOilBoundaryRateVector);
//! the PrimaryVariables property
SET_TYPE_PROP(BlackOilModel, PrimaryVariables, Opm::BlackOilPrimaryVariables);
//! the IntensiveQuantities property
SET_TYPE_PROP(BlackOilModel, IntensiveQuantities, Opm::BlackOilIntensiveQuantities);
//! the ExtensiveQuantities property
SET_TYPE_PROP(BlackOilModel, ExtensiveQuantities, Opm::BlackOilExtensiveQuantities);
//! Use the the velocity module which is aware of the black-oil specific model extensions
//! (i.e., the polymer and solvent extensions)
SET_TYPE_PROP(BlackOilModel, FluxModule, Opm::BlackOilDarcyFluxModule);
//! The indices required by the model
SET_TYPE_PROP(BlackOilModel, Indices,
Opm::BlackOilIndices);
//! Set the fluid system to the black-oil fluid system by default
SET_PROP(BlackOilModel, FluidSystem)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
public:
typedef Opm::BlackOilFluidSystem type;
};
// by default, all ECL extension modules are disabled
SET_BOOL_PROP(BlackOilModel, EnableSolvent, false);
SET_BOOL_PROP(BlackOilModel, EnablePolymer, false);
SET_BOOL_PROP(BlackOilModel, EnablePolymerMW, false);
SET_BOOL_PROP(BlackOilModel, EnableFoam, false);
SET_BOOL_PROP(BlackOilModel, EnableBrine, false);
//! By default, the blackoil model is isothermal and does not conserve energy
SET_BOOL_PROP(BlackOilModel, EnableTemperature, false);
SET_BOOL_PROP(BlackOilModel, EnableEnergy, false);
//! by default, scale the energy equation by the inverse of the energy required to heat
//! up one kg of water by 30 Kelvin. If we conserve surface volumes, this must be divided
//! by the weight of one cubic meter of water. This is required to make the "dumb" linear
//! solvers that do not weight the components of the solutions do the right thing.
//! by default, don't scale the energy equation, i.e. assume that a reasonable linear
//! solver is used. (Not scaling it makes debugging quite a bit easier.)
SET_PROP(BlackOilModel, BlackOilEnergyScalingFactor)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
static constexpr Scalar alpha = GET_PROP_VALUE(TypeTag, BlackoilConserveSurfaceVolume) ? 1000.0 : 1.0;
public:
typedef Scalar type;
static const Scalar value;
};
PROP_STATIC_CONST_MEMBER_DEFINITION_PREFIX_(BlackOilModel, BlackOilEnergyScalingFactor)
::value = 1.0/(30*4184.0*alpha);
// by default, ebos formulates the conservation equations in terms of mass not surface
// volumes
SET_BOOL_PROP(BlackOilModel, BlackoilConserveSurfaceVolume, false);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup BlackOilModel
* \brief A fully-implicit black-oil flow model.
*
* The black-oil model is a three-phase, three-component model widely
* used for oil reservoir simulation. The phases are denoted by lower
* index \f$\alpha \in \{ w, g, o \}\f$ ("water", "gas" and "oil") and
* the components by upper index \f$\kappa \in \{ W, G, O \}\f$
* ("Water", "Gas" and "Oil"). The model assumes partial miscibility:
*
* - Water and the gas phases are immisicible and are assumed to be
* only composed of the water and gas components respectively-
* - The oil phase is assumed to be a mixture of the gas and the oil
* components.
*
* The densities of the phases are determined by so-called
* formation volume factors:
*
* \f[
* B_\alpha := \frac{\varrho_\alpha(1\,\text{bar})}{\varrho_\alpha(p_\alpha)}
* \f]
*
* Since the gas and water phases are assumed to be immiscible, this
* is sufficint to calculate their density. For the formation volume
* factor of the the oil phase \f$B_o\f$ determines the density of
* *saturated* oil, i.e. the density of the oil phase if some gas
* phase is present.
*
* The composition of the oil phase is given by the gas dissolution factor
* \f$R_s\f$, which defined as the volume of gas at atmospheric pressure that is
* dissolved in a given amount of oil at reservoir pressure:
*
* \f[
* R_s := \frac{\varrho_{o}^G}{\varrho_o^O}\;.
* \f]
*
* This allows to calculate all quantities required for the
* mass-conservation equations for each component, i.e.
*
* \f[
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
* - q^\kappa = 0 \;,
* \f]
* where \f$\mathrm{v}_\alpha\f$ is the filter velocity of the phase
* \f$\alpha\f$.
*
* By default \f$\mathrm{v}_\alpha\f$ is determined by using the
* standard multi-phase Darcy approach, i.e.
* \f[ \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
*\left(\mathbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \;, \f]
* although the actual approach which is used can be specified via the
* \c FluxModule property. For example, the velocity model can by
* changed to the Forchheimer approach by
* \code
* SET_TYPE_PROP(MyProblemTypeTag, FluxModule, Opm::ForchheimerFluxModule);
* \endcode
*
* The primary variables used by this model are:
* - The pressure of the phase with the lowest index
* - The two saturations of the phases with the lowest indices
*/
template
class BlackOilModel
: public MultiPhaseBaseModel
{
typedef typename GET_PROP_TYPE(TypeTag, Model) Implementation;
typedef MultiPhaseBaseModel ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Discretization) Discretization;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = FluidSystem::numComponents };
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
static const bool compositionSwitchEnabled = Indices::gasEnabled;
static const bool waterEnabled = Indices::waterEnabled;
typedef BlackOilSolventModule SolventModule;
typedef BlackOilPolymerModule PolymerModule;
typedef BlackOilEnergyModule EnergyModule;
public:
BlackOilModel(Simulator& simulator)
: ParentType(simulator)
{}
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
SolventModule::registerParameters();
PolymerModule::registerParameters();
EnergyModule::registerParameters();
// register runtime parameters of the VTK output modules
Opm::VtkBlackOilModule::registerParameters();
Opm::VtkCompositionModule::registerParameters();
}
/*!
* \copydoc FvBaseDiscretization::name
*/
static std::string name()
{ return "blackoil"; }
/*!
* \copydoc FvBaseDiscretization::primaryVarName
*/
std::string primaryVarName(int pvIdx) const
{
std::ostringstream oss;
if (pvIdx == Indices::waterSaturationIdx)
oss << "saturation_" << FluidSystem::phaseName(FluidSystem::waterPhaseIdx);
else if (pvIdx == Indices::pressureSwitchIdx)
oss << "pressure_switching";
else if (static_cast(pvIdx) == Indices::compositionSwitchIdx)
oss << "composition_switching";
else if (SolventModule::primaryVarApplies(pvIdx))
return SolventModule::primaryVarName(pvIdx);
else if (PolymerModule::primaryVarApplies(pvIdx))
return PolymerModule::primaryVarName(pvIdx);
else if (EnergyModule::primaryVarApplies(pvIdx))
return EnergyModule::primaryVarName(pvIdx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::eqName
*/
std::string eqName(int eqIdx) const
{
std::ostringstream oss;
if (Indices::conti0EqIdx <= eqIdx && eqIdx < Indices::conti0EqIdx + numComponents)
oss << "conti_" << FluidSystem::phaseName(eqIdx - Indices::conti0EqIdx);
else if (SolventModule::eqApplies(eqIdx))
return SolventModule::eqName(eqIdx);
else if (PolymerModule::eqApplies(eqIdx))
return PolymerModule::eqName(eqIdx);
else if (EnergyModule::eqApplies(eqIdx))
return EnergyModule::eqName(eqIdx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::primaryVarWeight
*/
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
{
// do not care about the auxiliary equations as they are supposed to scale
// themselves
if (globalDofIdx >= this->numGridDof())
return 1.0;
// saturations are always in the range [0, 1]!
if (int(Indices::waterSaturationIdx) == int(pvIdx))
return 1.0;
// oil pressures usually are in the range of 100 to 500 bars for typical oil
// reservoirs (which is the only relevant application for the black-oil model).
else if (int(Indices::pressureSwitchIdx) == int(pvIdx))
return 1.0/300e5;
// deal with primary variables stemming from the solvent module
else if (SolventModule::primaryVarApplies(pvIdx))
return SolventModule::primaryVarWeight(pvIdx);
// deal with primary variables stemming from the polymer module
else if (PolymerModule::primaryVarApplies(pvIdx))
return PolymerModule::primaryVarWeight(pvIdx);
// deal with primary variables stemming from the energy module
else if (EnergyModule::primaryVarApplies(pvIdx))
return EnergyModule::primaryVarWeight(pvIdx);
// if the primary variable is either the gas saturation, Rs or Rv
assert(int(Indices::compositionSwitchIdx) == int(pvIdx));
auto pvMeaning = this->solution(0)[globalDofIdx].primaryVarsMeaning();
if (pvMeaning == PrimaryVariables::Sw_po_Sg)
return 1.0; // gas saturation
else if (pvMeaning == PrimaryVariables::Sw_po_Rs)
return 1.0/250.; // gas dissolution factor
else {
assert(pvMeaning == PrimaryVariables::Sw_pg_Rv);
return 1.0/0.025; // oil vaporization factor
}
}
/*!
* \copydoc FvBaseDiscretization::eqWeight
*/
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
{
// do not care about the auxiliary equations as they are supposed to scale
// themselves
if (globalDofIdx >= this->numGridDof())
return 1.0;
// we do not care much about water, so it gets de-prioritized by a factor of 100
static constexpr Scalar waterPriority = 1e-2;
if (GET_PROP_VALUE(TypeTag, BlackoilConserveSurfaceVolume)) {
// Roughly convert the surface volume of the fluids from m^3 to kg. (in this
// context, it does not really matter if the actual densities are off by a
// factor of two or three.)
switch (eqIdx) {
case Indices::conti0EqIdx + FluidSystem::waterCompIdx:
return 1000.0*waterPriority;
case Indices::conti0EqIdx + FluidSystem::gasCompIdx:
return 1.0;
case Indices::conti0EqIdx + FluidSystem::oilCompIdx:
return 650.0;
}
}
if (SolventModule::eqApplies(eqIdx))
return SolventModule::eqWeight(eqIdx);
else if (PolymerModule::eqApplies(eqIdx))
return PolymerModule::eqWeight(eqIdx);
else if (EnergyModule::eqApplies(eqIdx))
return EnergyModule::eqWeight(eqIdx);
// it is said that all kilograms are born equal (except water)!
if (eqIdx == Indices::conti0EqIdx + FluidSystem::waterCompIdx)
return waterPriority;
return 1.0;
}
/*!
* \brief Write the current solution for a degree of freedom to a
* restart file.
*
* \param outstream The stream into which the vertex data should
* be serialized to
* \param dof The Dune entity which's data should be serialized
*/
template
void serializeEntity(std::ostream& outstream, const DofEntity& dof)
{
unsigned dofIdx = static_cast(asImp_().dofMapper().index(dof));
// write phase state
if (!outstream.good())
throw std::runtime_error("Could not serialize degree of freedom "+std::to_string(dofIdx));
// write the primary variables
const auto& priVars = this->solution(/*timeIdx=*/0)[dofIdx];
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
outstream << priVars[eqIdx] << " ";
// write the pseudo primary variables
outstream << priVars.primaryVarsMeaning() << " ";
outstream << priVars.pvtRegionIndex() << " ";
SolventModule::serializeEntity(*this, outstream, dof);
PolymerModule::serializeEntity(*this, outstream, dof);
EnergyModule::serializeEntity(*this, outstream, dof);
}
/*!
* \brief Reads the current solution variables for a degree of
* freedom from a restart file.
*
* \param instream The stream from which the vertex data should
* be deserialized from
* \param dof The Dune entity which's data should be deserialized
*/
template
void deserializeEntity(std::istream& instream,
const DofEntity& dof)
{
unsigned dofIdx = static_cast(asImp_().dofMapper().index(dof));
// read in the "real" primary variables of the DOF
auto& priVars = this->solution(/*timeIdx=*/0)[dofIdx];
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
if (!instream.good())
throw std::runtime_error("Could not deserialize degree of freedom "+std::to_string(dofIdx));
instream >> priVars[eqIdx];
}
// read the pseudo primary variables
unsigned primaryVarsMeaning;
instream >> primaryVarsMeaning;
unsigned pvtRegionIdx;
instream >> pvtRegionIdx;
if (!instream.good())
throw std::runtime_error("Could not deserialize degree of freedom "+std::to_string(dofIdx));
SolventModule::deserializeEntity(*this, instream, dof);
PolymerModule::deserializeEntity(*this, instream, dof);
EnergyModule::deserializeEntity(*this, instream, dof);
typedef typename PrimaryVariables::PrimaryVarsMeaning PVM;
priVars.setPrimaryVarsMeaning(static_cast(primaryVarsMeaning));
priVars.setPvtRegionIndex(pvtRegionIdx);
}
/*!
* \brief Deserializes the state of the model.
*
* \tparam Restarter The type of the serializer class
*
* \param res The serializer object
*/
template
void deserialize(Restarter& res)
{
ParentType::deserialize(res);
// set the PVT indices of the primary variables. This is also done by writing
// them into the restart file and re-reading them, but it is better to calculate
// them from scratch because the input could have been changed in this regard...
ElementContext elemCtx(this->simulator_);
auto elemIt = this->gridView().template begin*codim=*/0>();
auto elemEndIt = this->gridView().template end*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateStencil(*elemIt);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timIdx=*/0); ++dofIdx) {
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timIdx=*/0);
updatePvtRegionIndex_(this->solution(/*timeIdx=*/0)[globalDofIdx],
elemCtx,
dofIdx,
/*timeIdx=*/0);
}
}
this->solution(/*timeIdx=*/1) = this->solution(/*timeIdx=*/0);
}
/*
// hack: this interferes with the static polymorphism trick
protected:
friend ParentType;
friend Discretization;
*/
template
void supplementInitialSolution_(PrimaryVariables& priVars,
const Context& context,
unsigned dofIdx,
unsigned timeIdx)
{ updatePvtRegionIndex_(priVars, context, dofIdx, timeIdx); }
void registerOutputModules_()
{
ParentType::registerOutputModules_();
// add the VTK output modules which make sense for the blackoil model
SolventModule::registerOutputModules(*this, this->simulator_);
PolymerModule::registerOutputModules(*this, this->simulator_);
EnergyModule::registerOutputModules(*this, this->simulator_);
this->addOutputModule(new Opm::VtkBlackOilModule(this->simulator_));
this->addOutputModule(new Opm::VtkCompositionModule(this->simulator_));
}
private:
Implementation& asImp_()
{ return *static_cast(this); }
const Implementation& asImp_() const
{ return *static_cast(this); }
template
void updatePvtRegionIndex_(PrimaryVariables& priVars,
const Context& context,
unsigned dofIdx,
unsigned timeIdx)
{
unsigned regionIdx = context.problem().pvtRegionIndex(context, dofIdx, timeIdx);
priVars.setPvtRegionIndex(regionIdx);
}
};
} // namespace Opm
#endif