/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template MultisegmentWellSegments:: MultisegmentWellSegments(const int numSegments, WellInterfaceGeneric& well) : perforations_(numSegments) , perforation_depth_diffs_(well.numPerfs(), 0.0) , inlets_(well.wellEcl().getSegments().size()) , depth_diffs_(numSegments, 0.0) , densities_(numSegments, 0.0) , mass_rates_(numSegments, 0.0) , viscosities_(numSegments, 0.0) , upwinding_segments_(numSegments, 0) , phase_densities_(numSegments, std::vector(well.numComponents(), 0.0)) // number of phase here? , phase_fractions_(numSegments, std::vector(well.numComponents(), 0.0)) // number of phase here? , phase_viscosities_(numSegments, std::vector(well.numComponents(), 0.0)) // number of phase here? , well_(well) { // since we decide to use the WellSegments from the well parser. we can reuse a lot from it. // for other facilities needed but not available from parser, we need to process them here // initialize the segment_perforations_ and update perforation_segment_depth_diffs_ const WellConnections& completion_set = well_.wellEcl().getConnections(); // index of the perforation within wells struct // there might be some perforations not active, which causes the number of the perforations in // well_ecl_ and wells struct different // the current implementation is a temporary solution for now, it should be corrected from the parser // side int i_perf_wells = 0; well.perfDepth().resize(well_.numPerfs(), 0.); const auto& segment_set = well_.wellEcl().getSegments(); for (std::size_t perf = 0; perf < completion_set.size(); ++perf) { const Connection& connection = completion_set.get(perf); if (connection.state() == Connection::State::OPEN) { const int segment_index = segment_set.segmentNumberToIndex(connection.segment()); if (segment_index == -1) { OPM_THROW(std::logic_error, fmt::format("COMPSEGS: Well {} has connection in cell {}, {}, {} " "without associated segment.", well_.wellEcl().name(), connection.getI() + 1, connection.getJ() + 1, connection.getK() + 1)); } perforations_[segment_index].push_back(i_perf_wells); well.perfDepth()[i_perf_wells] = connection.depth(); const double segment_depth = segment_set[segment_index].depth(); perforation_depth_diffs_[i_perf_wells] = well_.perfDepth()[i_perf_wells] - segment_depth; i_perf_wells++; } } // initialize the segment_inlets_ for (const Segment& segment : segment_set) { const int segment_number = segment.segmentNumber(); const int outlet_segment_number = segment.outletSegment(); if (outlet_segment_number > 0) { const int segment_index = segment_set.segmentNumberToIndex(segment_number); const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number); inlets_[outlet_segment_index].push_back(segment_index); } } // calculating the depth difference between the segment and its oulet_segments // for the top segment, we will make its zero unless we find other purpose to use this value for (int seg = 1; seg < numSegments; ++seg) { const double segment_depth = segment_set[seg].depth(); const int outlet_segment_number = segment_set[seg].outletSegment(); const Segment& outlet_segment = segment_set[segment_set.segmentNumberToIndex(outlet_segment_number)]; const double outlet_depth = outlet_segment.depth(); depth_diffs_[seg] = segment_depth - outlet_depth; } } template void MultisegmentWellSegments:: computeFluidProperties(const EvalWell& temperature, const EvalWell& saltConcentration, const PrimaryVariables& primary_variables, int pvt_region_index, DeferredLogger& deferred_logger) { std::vector surf_dens(well_.numComponents()); // Surface density. for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx)); surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index); } for (std::size_t seg = 0; seg < perforations_.size(); ++seg) { // the compostion of the components inside wellbore under surface condition std::vector mix_s(well_.numComponents(), 0.0); for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) { mix_s[comp_idx] = primary_variables.surfaceVolumeFraction(seg, comp_idx); } std::vector b(well_.numComponents(), 0.0); std::vector visc(well_.numComponents(), 0.0); std::vector& phase_densities = phase_densities_[seg]; const EvalWell seg_pressure = primary_variables.getSegmentPressure(seg); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { EvalWell rsw(0.0); const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); b[waterCompIdx] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rsw, saltConcentration); visc[waterCompIdx] = FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure, rsw, saltConcentration); // TODO: double check here // TODO: should not we use phaseIndex here? phase_densities[waterCompIdx] = b[waterCompIdx] * surf_dens[waterCompIdx]; } EvalWell rv(0.0); EvalWell rvw(0.0); // gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[oilCompIdx] > 0.0) { if (mix_s[gasCompIdx] > 0.0) { rv = mix_s[oilCompIdx] / mix_s[gasCompIdx]; } if (rv > rvmax) { rv = rvmax; } b[gasCompIdx] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv, rvw); visc[gasCompIdx] = FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv, rvw); phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx] + rv * b[gasCompIdx] * surf_dens[oilCompIdx]; } else { // no oil exists b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gasCompIdx] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx]; } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gasCompIdx] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[gasCompIdx] > 0.0) { if (mix_s[oilCompIdx] > 0.0) { rs = mix_s[gasCompIdx] / mix_s[oilCompIdx]; } if (rs > rsmax) { rs = rsmax; } b[oilCompIdx] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); visc[oilCompIdx] = FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs); phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx] + rs * b[oilCompIdx] * surf_dens[gasCompIdx]; } else { // no oil exists b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilCompIdx] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx]; } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilCompIdx] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } phase_viscosities_[seg] = visc; std::vector mix(mix_s); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell d = 1.0 - rs * rv; if (d <= 0.0) { const std::string str = fmt::format("Problematic d value {} obtained for well {} " "during segment density calculations with rs {}, " "rv {} and pressure {}. " "Continue as if no dissolution (rs = 0) and " "vaporization (rv = 0) for this connection.", d, well_.name(), rs, rv, seg_pressure); deferred_logger.debug(str); } else { if (rs > 0.0) { mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d; } if (rv > 0.0) { mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d; } } } EvalWell volrat(0.0); for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) { volrat += mix[comp_idx] / b[comp_idx]; } viscosities_[seg] = 0.; // calculate the average viscosity for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) { const EvalWell fraction = mix[comp_idx] / b[comp_idx] / volrat; // TODO: a little more work needs to be done to handle the negative fractions here phase_fractions_[seg][comp_idx] = fraction; // >= 0.0 ? fraction : 0.0; viscosities_[seg] += visc[comp_idx] * phase_fractions_[seg][comp_idx]; } EvalWell density(0.0); for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) { density += surf_dens[comp_idx] * mix_s[comp_idx]; } densities_[seg] = density / volrat; // calculate the mass rates mass_rates_[seg] = 0.; for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) { const int upwind_seg = upwinding_segments_[seg]; const EvalWell rate = primary_variables.getSegmentRateUpwinding(seg, upwind_seg, comp_idx); mass_rates_[seg] += rate * surf_dens[comp_idx]; } } } template void MultisegmentWellSegments:: updateUpwindingSegments(const PrimaryVariables& primary_variables) { for (std::size_t seg = 0; seg < perforations_.size(); ++seg) { // special treatment is needed for segment 0 if (seg == 0) { // we are not supposed to have injecting producers and producing injectors assert(!(well_.isProducer() && primary_variables.eval(seg)[primary_variables.WQTotal] > 0.)); assert(!(well_.isInjector() && primary_variables.eval(seg)[primary_variables.WQTotal] < 0.)); upwinding_segments_[seg] = seg; continue; } // for other normal segments if (primary_variables.eval(seg)[primary_variables.WQTotal] <= 0.) { upwinding_segments_[seg] = seg; } else { const auto& segment_set = well_.wellEcl().getSegments(); const int outlet_segment_index = segment_set.segmentNumberToIndex(segment_set[seg].outletSegment()); upwinding_segments_[seg] = outlet_segment_index; } } } template typename MultisegmentWellSegments::EvalWell MultisegmentWellSegments:: getHydroPressureLoss(const int seg, const int seg_density) const { return densities_[seg_density] * well_.gravity() * depth_diffs_[seg]; } template typename MultisegmentWellSegments::Scalar MultisegmentWellSegments:: getPressureDiffSegPerf(const int seg, const int perf) const { return well_.gravity() * densities_[seg].value() * perforation_depth_diffs_[perf]; } template typename MultisegmentWellSegments::EvalWell MultisegmentWellSegments:: getSurfaceVolume(const EvalWell& temperature, const EvalWell& saltConcentration, const PrimaryVariables& primary_variables, const int pvt_region_index, const int seg_idx) const { const EvalWell seg_pressure = primary_variables.getSegmentPressure(seg_idx); std::vector mix_s(well_.numComponents(), 0.0); for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) { mix_s[comp_idx] = primary_variables.surfaceVolumeFraction(seg_idx, comp_idx); } std::vector b(well_.numComponents(), 0.); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); EvalWell rsw(0.0); b[waterCompIdx] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rsw, saltConcentration); } EvalWell rv(0.0); EvalWell rvw(0.0); // gas phase if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (rvmax < 0.0) { // negative rvmax can happen if the seg_pressure is outside the range of the table rvmax = 0.0; } if (mix_s[oilCompIdx] > 0.0) { if (mix_s[gasCompIdx] > 0.0) { rv = mix_s[oilCompIdx] / mix_s[gasCompIdx]; } if (rv > rvmax) { rv = rvmax; } b[gasCompIdx] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv, rvw); } else { // no oil exists b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gasCompIdx] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (rsmax < 0.0) { // negative rsmax can happen if the seg_pressure is outside the range of the table rsmax = 0.0; } if (mix_s[gasCompIdx] > 0.0) { if (mix_s[oilCompIdx] > 0.0) { rs = mix_s[gasCompIdx] / mix_s[oilCompIdx]; } // std::cout << " rs " << rs.value() << " rsmax " << rsmax.value() << std::endl; if (rs > rsmax) { rs = rsmax; } b[oilCompIdx] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); } else { // no oil exists b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } else { // no gas phase // it is the same with zero mix_s[Gas] b[oilCompIdx] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); } } std::vector mix(mix_s); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); const EvalWell d = 1.0 - rs * rv; if (d <= 0.0 || d > 1.0) { const std::string str = fmt::format("Problematic d value {} obtained for well {} " "during conversion to surface volume with rs {}, " "rv {} and pressure {}. " "Continue as if no dissolution (rs = 0) and " "vaporization (rv = 0) for this connection.", d, well_.name(), rs, rv, seg_pressure); OpmLog::debug(str); } else { if (rs > 0.0) { mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d; } if (rv > 0.0) { mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d; } } } EvalWell vol_ratio(0.0); for (int comp_idx = 0; comp_idx < well_.numComponents(); ++comp_idx) { vol_ratio += mix[comp_idx] / b[comp_idx]; } // We increase the segment volume with a factor 10 to stabilize the system. const double volume = well_.wellEcl().getSegments()[seg_idx].volume(); return volume / vol_ratio; } template typename MultisegmentWellSegments::EvalWell MultisegmentWellSegments:: getFrictionPressureLoss(const int seg, const bool extra_reverse_flow_derivatives /*false*/) const { EvalWell mass_rate = mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell density = densities_[seg_upwind]; EvalWell visc = viscosities_[seg_upwind]; // In the reverse flow case, we don't have enough slots for all derivatives, e.g., // upwind pressure and flow. We amend this by a second function call optioin, where // only these remaining derivatives are considered. // For reference: the pressure equation assumes pressure/flow derivatives are given // at segment node while fraction derivatives are given at upwind node. if (seg != seg_upwind) { if (!extra_reverse_flow_derivatives){ constexpr int WQTotal = Indices::numEq + PrimaryVariables::WQTotal; constexpr int SPres = Indices::numEq + PrimaryVariables::SPres; density.setDerivative(WQTotal, 0.0); density.setDerivative(SPres, 0.0); visc.setDerivative(WQTotal, 0.0); visc.setDerivative(SPres, 0.0); } else { if (PrimaryVariables::has_water){ constexpr int WFrac = Indices::numEq + PrimaryVariables::WFrac; density.setDerivative(WFrac, 0.0); visc.setDerivative(WFrac, 0.0); } if (PrimaryVariables::has_gas){ constexpr int GFrac = Indices::numEq + PrimaryVariables::GFrac; density.setDerivative(GFrac, 0.0); visc.setDerivative(GFrac, 0.0); } mass_rate.clearDerivatives(); } } const auto& segment_set = well_.wellEcl().getSegments(); const int outlet_segment_index = segment_set.segmentNumberToIndex(segment_set[seg].outletSegment()); const double length = segment_set[seg].totalLength() - segment_set[outlet_segment_index].totalLength(); assert(length > 0.); const double roughness = segment_set[seg].roughness(); const double area = segment_set[seg].crossArea(); const double diameter = segment_set[seg].internalDiameter(); const double sign = mass_rate < 0. ? 1.0 : - 1.0; return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc); } template typename MultisegmentWellSegments::EvalWell MultisegmentWellSegments:: pressureDropSpiralICD(const int seg, const bool extra_reverse_flow_derivatives /*false*/) const { const auto& segment_set = well_.wellEcl().getSegments(); const SICD& sicd = segment_set[seg].spiralICD(); const int seg_upwind = upwinding_segments_[seg]; const std::vector& phase_fractions = phase_fractions_[seg_upwind]; const std::vector& phase_viscosities = phase_viscosities_[seg_upwind]; EvalWell water_fraction = 0.; EvalWell water_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); water_fraction = phase_fractions[water_pos]; water_viscosity = phase_viscosities[water_pos]; } EvalWell oil_fraction = 0.; EvalWell oil_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); oil_fraction = phase_fractions[oil_pos]; oil_viscosity = phase_viscosities[oil_pos]; } EvalWell gas_fraction = 0.; EvalWell gas_viscosity = 0.; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); gas_fraction = phase_fractions[gas_pos]; gas_viscosity = phase_viscosities[gas_pos]; } EvalWell density = densities_[seg_upwind]; EvalWell mass_rate = mass_rates_[seg]; // In the reverse flow case, we don't have enough slots for all derivatives, e.g., // upwind pressure and flow. We amend this by a second function call option, where // only these remaining derivatives are considered. // For reference: the pressure equation assumes pressure/flow derivatives are given // at segment node while fraction derivatives are given at upwind node. if (seg != seg_upwind) { constexpr int nvar = FluidSystem::numPhases + 1; std::vector zero_mask(nvar, false); if (!extra_reverse_flow_derivatives){ zero_mask[PrimaryVariables::WQTotal] = true; zero_mask[PrimaryVariables::SPres] = true; } else { if constexpr (PrimaryVariables::has_water){ zero_mask[PrimaryVariables::WFrac] = true; } if constexpr (PrimaryVariables::has_gas){ zero_mask[PrimaryVariables::GFrac] = true; } // mass_rate has no extra derivatives (they are organized as in equations) mass_rate.clearDerivatives(); } for (int ii = 0; ii < nvar; ++ii) { if (zero_mask[ii]) { water_fraction.setDerivative(Indices::numEq + ii, 0.0); water_viscosity.setDerivative(Indices::numEq + ii, 0.0); oil_fraction.setDerivative(Indices::numEq + ii, 0.0); oil_viscosity.setDerivative(Indices::numEq + ii, 0.0); gas_fraction.setDerivative(Indices::numEq + ii, 0.0); gas_viscosity.setDerivative(Indices::numEq + ii, 0.0); density.setDerivative(Indices::numEq + ii, 0.0); } } } const EvalWell liquid_fraction = water_fraction + oil_fraction; // viscosity contribution from the liquid const EvalWell liquid_viscosity_fraction = liquid_fraction < 1.e-30 ? oil_fraction * oil_viscosity + water_fraction * water_viscosity : liquid_fraction * mswellhelpers::emulsionViscosity(water_fraction, water_viscosity, oil_fraction, oil_viscosity, sicd); const EvalWell mixture_viscosity = liquid_viscosity_fraction + gas_fraction * gas_viscosity; const EvalWell reservoir_rate = mass_rate / density; const EvalWell reservoir_rate_icd = reservoir_rate * sicd.scalingFactor(); const double viscosity_cali = sicd.viscosityCalibration(); using MathTool = MathToolbox; const double density_cali = sicd.densityCalibration(); // make sure we don't pass negative base to powers const EvalWell temp_value1 = density > 0.0 ? MathTool::pow(density / density_cali, 0.75) : 0.0; const EvalWell temp_value2 = mixture_viscosity > 0.0 ? MathTool::pow(mixture_viscosity / viscosity_cali, 0.25) : 0.0; // formulation before 2016, base_strength is used // const double base_strength = sicd.strength() / density_cali; // formulation since 2016, strength is used instead const double strength = sicd.strength(); const double sign = reservoir_rate_icd <= 0. ? 1.0 : -1.0; return sign * temp_value1 * temp_value2 * strength * reservoir_rate_icd * reservoir_rate_icd; } template typename MultisegmentWellSegments::EvalWell MultisegmentWellSegments:: pressureDropAutoICD(const int seg, const UnitSystem& unit_system, const bool extra_reverse_flow_derivatives /*false*/) const { const auto& segment_set = well_.wellEcl().getSegments(); const AutoICD& aicd = segment_set[seg].autoICD(); const int seg_upwind = upwinding_segments_[seg]; const std::vector& phase_fractions = phase_fractions_[seg_upwind]; const std::vector& phase_viscosities = phase_viscosities_[seg_upwind]; const std::vector& phase_densities = phase_densities_[seg_upwind]; EvalWell water_fraction = 0.; EvalWell water_viscosity = 0.; EvalWell water_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); water_fraction = phase_fractions[water_pos]; water_viscosity = phase_viscosities[water_pos]; water_density = phase_densities[water_pos]; } EvalWell oil_fraction = 0.; EvalWell oil_viscosity = 0.; EvalWell oil_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) { const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); oil_fraction = phase_fractions[oil_pos]; oil_viscosity = phase_viscosities[oil_pos]; oil_density = phase_densities[oil_pos]; } EvalWell gas_fraction = 0.; EvalWell gas_viscosity = 0.; EvalWell gas_density = 0.; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) { const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); gas_fraction = phase_fractions[gas_pos]; gas_viscosity = phase_viscosities[gas_pos]; gas_density = phase_densities[gas_pos]; } EvalWell density = densities_[seg_upwind]; EvalWell mass_rate = mass_rates_[seg]; // In the reverse flow case, we don't have enough slots for all derivatives, e.g., // upwind pressure and flow. We amend this by a second function call option, where // only these remaining derivatives are considered. // For reference: the pressure equation assumes pressure/flow derivatives are given // at segment node while fraction derivatives are given at upwind node. if (seg != seg_upwind) { constexpr int nvar = FluidSystem::numPhases + 1; std::vector zero_mask(nvar, false); if (!extra_reverse_flow_derivatives){ zero_mask[PrimaryVariables::WQTotal] = true; zero_mask[PrimaryVariables::SPres] = true; } else { if (PrimaryVariables::has_water){ zero_mask[PrimaryVariables::WFrac] = true; } if (PrimaryVariables::has_gas){ zero_mask[PrimaryVariables::GFrac] = true; } // mass_rate has no extra derivatives (they are organized as in equations) mass_rate.clearDerivatives(); } for (int ii = 0; ii < nvar; ++ii) { if (zero_mask[ii]) { water_fraction.setDerivative(Indices::numEq + ii, 0.0); water_viscosity.setDerivative(Indices::numEq + ii, 0.0); water_density.setDerivative(Indices::numEq + ii, 0.0); oil_fraction.setDerivative(Indices::numEq + ii, 0.0); oil_viscosity.setDerivative(Indices::numEq + ii, 0.0); oil_density.setDerivative(Indices::numEq + ii, 0.0); gas_fraction.setDerivative(Indices::numEq + ii, 0.0); gas_viscosity.setDerivative(Indices::numEq + ii, 0.0); gas_density.setDerivative(Indices::numEq + ii, 0.0); density.setDerivative(Indices::numEq + ii, 0.0); } } } using MathTool = MathToolbox; // make sure we don't pass negative base to powers auto safe_pow = [](const auto& a, const double b) { return a > 0.0 ? MathTool::pow(a,b) : 0.0; }; const EvalWell mixture_viscosity = safe_pow(water_fraction, aicd.waterViscExponent()) * water_viscosity + safe_pow(oil_fraction, aicd.oilViscExponent()) * oil_viscosity + safe_pow(gas_fraction, aicd.gasViscExponent()) * gas_viscosity; const EvalWell mixture_density = safe_pow(water_fraction, aicd.waterDensityExponent()) * water_density + safe_pow(oil_fraction, aicd.oilDensityExponent()) * oil_density + safe_pow(gas_fraction, aicd.gasDensityExponent()) * gas_density; const double rho_reference = aicd.densityCalibration(); const double visc_reference = aicd.viscosityCalibration(); const auto volume_rate_icd = mass_rate * aicd.scalingFactor() / mixture_density; const double sign = volume_rate_icd <= 0. ? 1.0 : -1.0; // convert 1 unit volume rate using M = UnitSystem::measure; const double unit_volume_rate = unit_system.to_si(M::geometric_volume_rate, 1.); // TODO: we did not consider the maximum allowed rate here const auto result = sign / rho_reference * mixture_density * mixture_density * safe_pow(visc_reference/mixture_viscosity, aicd.viscExponent()) * aicd.strength() * safe_pow( -sign * volume_rate_icd, aicd.flowRateExponent()) * std::pow(unit_volume_rate, (2. - aicd.flowRateExponent())) ; return result; } template typename MultisegmentWellSegments::EvalWell MultisegmentWellSegments:: pressureDropValve(const int seg, const SummaryState& summary_state, const bool extra_reverse_flow_derivatives /*false*/) const { const Opm::WellSegments& segment_set = well_.wellEcl().getSegments(); const Valve& valve = segment_set[seg].valve(); EvalWell mass_rate = mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell visc = viscosities_[seg_upwind]; EvalWell density = densities_[seg_upwind]; // In the reverse flow case, we don't have enough slots for all derivatives, e.g., // upwind pressure and flow. We amend this by a second function call optioin, where // only these remaining derivatives are considered. // For reference: the pressure equation assumes pressure/flow derivatives are given // at segment node while fraction derivatives are given at upwind node. if (seg != seg_upwind) { if (!extra_reverse_flow_derivatives){ constexpr int WQTotal = Indices::numEq + PrimaryVariables::WQTotal; constexpr int SPres = Indices::numEq + PrimaryVariables::SPres; density.setDerivative(WQTotal, 0.0); density.setDerivative(SPres, 0.0); visc.setDerivative(WQTotal, 0.0); visc.setDerivative(SPres, 0.0); } else { if (PrimaryVariables::has_water){ constexpr int WFrac = Indices::numEq + PrimaryVariables::WFrac; density.setDerivative(WFrac, 0.0); visc.setDerivative(WFrac, 0.0); } if (PrimaryVariables::has_gas){ constexpr int GFrac = Indices::numEq + PrimaryVariables::GFrac; density.setDerivative(GFrac, 0.0); visc.setDerivative(GFrac, 0.0); } mass_rate.clearDerivatives(); } } const double additional_length = valve.pipeAdditionalLength(); const double roughness = valve.pipeRoughness(); const double diameter = valve.pipeDiameter(); const double area = valve.pipeCrossArea(); const EvalWell friction_pressure_loss = mswellhelpers::frictionPressureLoss(additional_length, diameter, area, roughness, density, mass_rate, visc); const ValveUDAEval uda_eval {summary_state, this->well_.name(), static_cast(segment_set[seg].segmentNumber())}; const double area_con = valve.conCrossArea(uda_eval); const double cv = valve.conFlowCoefficient(); const EvalWell constriction_pressure_loss = mswellhelpers::valveContrictionPressureLoss(mass_rate, density, area_con, cv); const double sign = mass_rate <= 0. ? 1.0 : -1.0; return sign * (friction_pressure_loss + constriction_pressure_loss); } template typename MultisegmentWellSegments::EvalWell MultisegmentWellSegments:: accelerationPressureLossContribution(const int seg, const double area, const bool extra_reverse_flow_derivatives /*false*/) const { // Compute the *signed* velocity head for given segment (sign is positive for flow towards surface, i.e., negative rate) // Optionally return derivatives for reversed flow case EvalWell mass_rate = mass_rates_[seg]; const int seg_upwind = upwinding_segments_[seg]; EvalWell density = densities_[seg_upwind]; if (seg != seg_upwind) { if (!extra_reverse_flow_derivatives){ constexpr int WQTotal = Indices::numEq + PrimaryVariables::WQTotal; constexpr int SPres = Indices::numEq + PrimaryVariables::SPres; density.setDerivative(WQTotal, 0.0); density.setDerivative(SPres, 0.0); } else { if (PrimaryVariables::has_water){ constexpr int WFrac = Indices::numEq + PrimaryVariables::WFrac; density.setDerivative(WFrac, 0.0); } if (PrimaryVariables::has_gas){ constexpr int GFrac = Indices::numEq + PrimaryVariables::GFrac; density.setDerivative(GFrac, 0.0); } mass_rate.clearDerivatives(); } } const double sign = mass_rate > 0 ? -1.0 : 1.0; return sign*mswellhelpers::velocityHead(area, mass_rate, density); } template void MultisegmentWellSegments:: copyPhaseDensities(const PhaseUsage& pu, SegmentState& segSol) const { auto* rho = segSol.phase_density.data(); const auto phaseMap = std::vector { std::pair { BlackoilPhases::Liquid, FluidSystem::oilPhaseIdx }, std::pair { BlackoilPhases::Vapour, FluidSystem::gasPhaseIdx }, std::pair { BlackoilPhases::Aqua , FluidSystem::waterPhaseIdx }, }; // Densities stored in 'rho' as // [{ p0, p1, ..., (np - 1), mixture, mixture_with_exponents }, // { p0, p1, ..., (np - 1), mixture, mixture_with_exponents }, // ... // { p0, p1, ..., (np - 1), mixture, mixture_with_exponents }] // Stride is np + 2. for (const auto& [boPhase, fsPhaseIdx] : phaseMap) { if (pu.phase_used[boPhase]) { this->copyPhaseDensities(fsPhaseIdx, pu.num_phases + 2, rho + pu.phase_pos[boPhase]); } } // Mixture densities. for (auto seg = 0*this->densities_.size(); seg < this->densities_.size(); ++seg) { const auto mixOffset = seg*(pu.num_phases + 2) + pu.num_phases; rho[mixOffset + 0] = this->mixtureDensity(seg); rho[mixOffset + 1] = this->mixtureDensityWithExponents(seg); } } template void MultisegmentWellSegments:: copyPhaseDensities(const unsigned phaseIdx, const std::size_t stride, double* dens) const { const auto compIdx = Indices::canonicalToActiveComponentIndex (FluidSystem::solventComponentIndex(phaseIdx)); for (const auto& phase_density : this->phase_densities_) { *dens = phase_density[compIdx].value(); dens += stride; } } template double MultisegmentWellSegments:: mixtureDensity(const int seg) const { auto mixDens = 0.0; const auto& rho = this->phase_densities_[seg]; const auto& q = this->phase_fractions_[seg]; for (const auto& phIdx : { FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx, FluidSystem::waterPhaseIdx }) { if (! FluidSystem::phaseIsActive(phIdx)) { continue; } const auto compIdx = Indices:: canonicalToActiveComponentIndex(phIdx); mixDens += q[compIdx].value() * rho[compIdx].value(); } return mixDens; } template double MultisegmentWellSegments:: mixtureDensityWithExponents(const int seg) const { if (const auto& segment = this->well_.wellEcl().getSegments()[seg]; segment.isAICD()) { return this->mixtureDensityWithExponents(segment.autoICD(), seg); } // No other segment type includes exponents of flowing fractions when // calculating the mixture/emulsion density. return this->mixtureDensity(seg); } template double MultisegmentWellSegments:: mixtureDensityWithExponents(const AutoICD& aicd, const int seg) const { auto mixDens = 0.0; const auto& rho = this->phase_densities_[seg]; const auto& q = this->phase_fractions_[seg]; constexpr auto densityExponents = std::array { std::pair { FluidSystem::oilPhaseIdx , &AutoICD::oilDensityExponent }, std::pair { FluidSystem::gasPhaseIdx , &AutoICD::gasDensityExponent }, std::pair { FluidSystem::waterPhaseIdx, &AutoICD::waterDensityExponent }, }; for (const auto& [fsPhaseIdx, densityExponent] : densityExponents) { if (FluidSystem::phaseIsActive(fsPhaseIdx)) { const auto compIdx = Indices:: canonicalToActiveComponentIndex(fsPhaseIdx); // exp = (aicd.*densityExponent)() in native syntax. const auto exp = std::invoke(densityExponent, aicd); mixDens += std::pow(q[compIdx].value(), exp) * rho[compIdx].value(); } } return mixDens; } #define INSTANCE(...) \ template class MultisegmentWellSegments,__VA_ARGS__>; // One phase INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>) INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>) INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>) // Two phase INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,true,0u,0u,0u>) INSTANCE(BlackOilTwoPhaseIndices<1u,0u,0u,0u,false,false,0u,0u,0u>) // Blackoil INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>) INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>) INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>) INSTANCE(BlackOilIndices<1u,0u,0u,0u,true,false,0u,0u>) } // namespace Opm