/* Copyright 2013 SINTEF ICT, Applied Mathematics. Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services. Copyright 2015 NTNU. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED #define OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_OPM_GRID #include #include #include #endif namespace Opm { class PvtInterface; /// This class implements the AD-adapted fluid interface for /// three-phase black-oil. It requires an input deck from which it /// reads all relevant property data. /// /// Most methods are available in two overloaded versions, one /// taking a constant vector and returning the same, and one /// taking an AD type and returning the same. Derivatives are not /// returned separately by any method, only implicitly with the AD /// version of the methods. class BlackoilPropsAdFromDeck { friend class BlackoilPropsDataHandle; public: typedef FluidSystems::BlackOil FluidSystem; typedef Opm::GasPvtMultiplexer GasPvt; typedef Opm::OilPvtMultiplexer OilPvt; typedef Opm::WaterPvtMultiplexer WaterPvt; typedef typename SaturationPropsFromDeck::MaterialLawManager MaterialLawManager; /// Constructor to create a blackoil properties from an ECL deck. /// /// The materialLawManager parameter represents the object from opm-material /// which handles the creating and updating parameter objects for the capillary /// pressure/relperm relations for each grid cell. This object is created /// internally for the constructors below, but if it is already available /// externally some performance can be gained by creating it only once. /// /// \param deck The unprocessed ECL deck from opm-parser /// \param eclState The processed ECL deck from opm-parser /// \param materialLawManager The container for the material law parameter objects /// \param grid The grid upon which the simulation is run on. /// \param init_rock If true the rock properties (rock compressibility and /// reference pressure) are read from the deck BlackoilPropsAdFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, const UnstructuredGrid& grid, const bool init_rock = true ); #ifdef HAVE_OPM_GRID /// Constructor to create a blackoil properties from an ECL deck. /// /// The materialLawManager parameter represents the object from opm-material /// which handles the creating and updating parameter objects for the capillary /// pressure/relperm relations for each grid cell. This object is created /// internally for the constructors below, but if it is already available /// externally some performance can be gained by creating it only once. /// /// \param deck The unprocessed ECL deck from opm-parser /// \param eclState The processed ECL deck from opm-parser /// \param materialLawManager The container for the material law parameter objects /// \param grid The grid upon which the simulation is run on. /// \param init_rock If true the rock properties (rock compressibility and /// reference pressure) are read from the deck BlackoilPropsAdFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, const Dune::CpGrid& grid, const bool init_rock = true ); #endif /// Constructor to create a blackoil properties from an ECL deck. /// /// \param deck The unprocessed ECL deck from opm-parser /// \param eclState The processed ECL deck from opm-parser /// \param grid The grid upon which the simulation is run on. /// \param init_rock If true the rock properties (rock compressibility and /// reference pressure) are read from the deck BlackoilPropsAdFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, const UnstructuredGrid& grid, const bool init_rock = true ); #ifdef HAVE_OPM_GRID /// Constructor to create a blackoil properties from an ECL deck. /// /// \param deck The unprocessed ECL deck from opm-parser /// \param eclState The processed ECL deck from opm-parser /// \param grid The grid upon which the simulation is run on. /// \param init_rock If true the rock properties (rock compressibility and /// reference pressure) are read from the deck BlackoilPropsAdFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState, const Dune::CpGrid& grid, const bool init_rock = true ); #endif /// \brief Constructor to create properties for a subgrid /// /// This copies all properties that are not dependant on the /// grid size from an existing properties object /// and the number of cells. All properties that do not depend /// on the grid dimension will be copied. For the rest will have /// the correct size but the values will be undefined. /// /// \param props The property object to copy from. /// \param materialLawManager The container for the material law parameter objects. /// Initialized only for the subgrid /// \param number_of_cells The number of cells of the subgrid. BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck& props, std::shared_ptr materialLawManager, const int number_of_cells); //////////////////////////// // Rock interface // //////////////////////////// /// \return D, the number of spatial dimensions. int numDimensions() const; /// \return N, the number of cells. int numCells() const; /// Return an array containing the PVT table index for each /// grid cell virtual const int* cellPvtRegionIndex() const { return &cellPvtRegionIdx_[0]; } /// \return Array of N porosity values. const double* porosity() const; /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). const double* permeability() const; //////////////////////////// // Fluid interface // //////////////////////////// typedef AutoDiffBlock ADB; typedef ADB::V V; typedef std::vector Cells; /// \return Number of active phases (also the number of components). int numPhases() const; /// \return Object describing the active phases. PhaseUsage phaseUsage() const; // ------ Density ------ /// Densities of stock components at surface conditions. /// \param[in] phaseIdx /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n density values for phase given by phaseIdx. V surfaceDensity(const int phaseIdx , const Cells& cells) const; // ------ Viscosity ------ /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB muWat(const ADB& pw, const ADB& T, const Cells& cells) const; /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB muOil(const ADB& po, const ADB& T, const ADB& rs, const std::vector& cond, const Cells& cells) const; /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratios. /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB muGas(const ADB& pg, const ADB& T, const ADB& rv, const std::vector& cond, const Cells& cells) const; // ------ Formation volume factor (b) ------ /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] T Array of n temperature values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB bWat(const ADB& pw, const ADB& T, const Cells& cells) const; /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB bOil(const ADB& po, const ADB& T, const ADB& rs, const std::vector& cond, const Cells& cells) const; /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] T Array of n temperature values. /// \param[in] rv Array of n vapor oil/gas ratio /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB bGas(const ADB& pg, const ADB& T, const ADB& rv, const std::vector& cond, const Cells& cells) const; // ------ Rs bubble point curve ------ /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. V rsSat(const V& po, const Cells& cells) const; /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. V rsSat(const V& po, const V& so, const Cells& cells) const; /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB rsSat(const ADB& po, const Cells& cells) const; /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB rsSat(const ADB& po, const ADB& so, const Cells& cells) const; // ------ Rv condensation curve ------ /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n condensation point values for Rv. ADB rvSat(const ADB& po, const Cells& cells) const; /// Condensation curve for Rv as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] so Array of n oil saturation values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n condensation point values for Rv. ADB rvSat(const ADB& po, const ADB& so, const Cells& cells) const; // ------ Relative permeability ------ /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. std::vector relperm(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const; /// Capillary pressure for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n capillary pressure values, /// containing the offsets for each p_g, p_o, p_w. The capillary pressure between /// two arbitrary phases alpha and beta is then given as p_alpha - p_beta. std::vector capPress(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const; /// Saturation update for hysteresis behavior. /// \param[in] cells Array of n cell indices to be associated with the saturation values. void updateSatHyst(const std::vector& saturation, const std::vector& cells); /// Set gas-oil hysteresis parameters /// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...)) /// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...)) void setGasOilHystParams(const std::vector& pcswmdc, const std::vector& krnswdc, const std::vector& cells); /// Get gas-oil hysteresis parameters /// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...)) /// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...)) void getGasOilHystParams(std::vector& pcswmdc, std::vector& krnswdc, const std::vector& cells) const; /// Set oil-water hysteresis parameters /// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...)) /// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...)) void setOilWaterHystParams(const std::vector& pcswmdc, const std::vector& krnswdc, const std::vector& cells); /// Set oil-water hysteresis parameters /// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...)) /// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...)) void getOilWaterHystParams(std::vector& pcswmdc, std::vector& krnswdc, const std::vector& cells) const; /// Update for max oil saturation. /// \param[in] saturation Saturations for all phases void updateSatOilMax(const std::vector& saturation); /// Returns the max oil saturation vector const std::vector& satOilMax() const; /// Force set max oil saturation (used for restarting) /// \param[in] max_sat Max oil saturations. /// Note that this is a vector of *only* oil saturations (no other phases) /// @see The similar function updateSatOilMax(const std::vector& saturation) /// @see satOilMax() void setSatOilMax(const std::vector& max_sat); /// Returns the bubble point pressures std::vector bubblePointPressure(const Cells& cells, const V& T, const V& rs) const; /// Returns the dew point pressures std::vector dewPointPressure(const Cells& cells, const V& T, const V& rv) const; /// Set capillary pressure scaling according to pressure diff. and initial water saturation. /// \param[in] saturation Array of n*numPhases saturation values. /// \param[in] pc Array of n*numPhases capillary pressure values. void setSwatInitScaling(const std::vector& saturation, const std::vector& pc); /// Obtain the scaled critical oil in gas saturation values. /// \param[in] cells Array of cell indices. /// \return Array of critical oil in gas saturaion values. V scaledCriticalOilinGasSaturations(const Cells& cells) const; /// Obtain the scaled critical gas saturation values. /// \param[in] cells Array of cell indices. /// \return Array of scaled critical gas saturaion values. V scaledCriticalGasSaturations(const Cells& cells) const; /// Direct access to lower-level water pvt props. const WaterPvt& waterProps() const { return FluidSystem::waterPvt(); } /// Direct access to lower-level oil pvt props. const OilPvt& oilProps() const { return FluidSystem::oilPvt(); } /// Direct access to lower-level gas pvt props. const GasPvt& gasProps() const { return FluidSystem::gasPvt(); } /// Direct access to lower-level saturation functions. const MaterialLawManager& materialLaws() const { return *materialLawManager_; } // Direct access to pvt region indices. const std::vector& pvtRegions() const { return cellPvtRegionIdx_; } private: /// Initializes the properties. void init(const Opm::Deck& deck, const Opm::EclipseState& eclState, std::shared_ptr materialLawManager, int number_of_cells, const int* global_cell, const int* cart_dims, const bool init_rock); /// Correction to rs/rv according to kw VAPPARS void applyVap(V& r, const V& so, const std::vector& cells, const double vap) const; void applyVap(ADB& r, const ADB& so, const std::vector& cells, const double vap) const; RockFromDeck rock_; // This has to be a shared pointer as we must // be able to make a copy of *this in the parallel case. std::shared_ptr materialLawManager_; std::shared_ptr satprops_; PhaseUsage phase_usage_; // bool has_vapoil_; // bool has_disgas_; // The PVT region which is to be used for each cell std::vector cellPvtRegionIdx_; // VAPPARS double vap1_; double vap2_; std::vector satOilMax_; double vap_satmax_guard_; //Threshold value to promote stability }; } // namespace Opm #endif // OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED