/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2014, 2015 Statoil ASA. Copyright 2015 NTNU Copyright 2015, 2016, 2017 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILMODELEBOS_NLDD_HEADER_INCLUDED #define OPM_BLACKOILMODELEBOS_NLDD_HEADER_INCLUDED #include #include #include #include #include #include #if COMPILE_BDA_BRIDGE #include #else #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template class BlackoilModelEbos; /// A NLDD implementation for three-phase black oil. template class BlackoilModelEbosNldd { public: using ElementContext = GetPropType; using FluidSystem = GetPropType; using Grid = GetPropType; using Indices = GetPropType; using ModelParameters = BlackoilModelParametersEbos; using Scalar = GetPropType; using SolutionVector = GetPropType; using BVector = typename BlackoilModelEbos::BVector; using Domain = SubDomain; using ISTLSolverType = ISTLSolverEbos; using Mat = typename BlackoilModelEbos::Mat; static constexpr int numEq = Indices::numEq; //! \brief The constructor sets up the subdomains. //! \param model BlackOil model to solve for //! \param param param Model parameters //! \param compNames Names of the solution components BlackoilModelEbosNldd(BlackoilModelEbos& model) : model_(model) { const auto& grid = model_.ebosSimulator().vanguard().grid(); const auto& schedule = model_.ebosSimulator().vanguard().schedule(); // Create partitions. const auto& [partition_vector, num_domains] = partitionCells(grid, schedule.getWellsatEnd(), model_.param().local_domain_partition_method_, model_.param().num_local_domains_, model_.param().local_domain_partition_imbalance_); // Scan through partitioning to get correct size for each. std::vector sizes(num_domains, 0); for (const auto& p : partition_vector) { ++sizes[p]; } // Set up correctly sized vectors of entity seeds and of indices for each partition. using EntitySeed = typename Grid::template Codim<0>::EntitySeed; std::vector> seeds(num_domains); std::vector> partitions(num_domains); for (int domain = 0; domain < num_domains; ++domain) { seeds[domain].resize(sizes[domain]); partitions[domain].resize(sizes[domain]); } // Iterate through grid once, setting the seeds of all partitions. std::vector count(num_domains, 0); const auto beg = grid.template leafbegin<0>(); const auto end = grid.template leafend<0>(); int cell = 0; for (auto it = beg; it != end; ++it, ++cell) { const int p = partition_vector[cell]; seeds[p][count[p]] = it->seed(); partitions[p][count[p]] = cell; ++count[p]; } assert(count == sizes); // Create the domains. for (int index = 0; index < num_domains; ++index) { std::vector interior(partition_vector.size(), false); for (int ix : partitions[index]) { interior[ix] = true; } Dune::SubGridPart view{grid, std::move(seeds[index])}; this->domains_.emplace_back(index, std::move(partitions[index]), std::move(interior), std::move(view)); } // Set up container for the local system matrices. domain_matrices_.resize(num_domains); // Set up container for the local linear solvers. for (int index = 0; index < num_domains; ++index) { // TODO: The ISTLSolverEbos constructor will make // parallel structures appropriate for the full grid // only. This must be addressed before going parallel. const auto& eclState = model_.ebosSimulator().vanguard().eclState(); FlowLinearSolverParameters loc_param; loc_param.template init(eclState.getSimulationConfig().useCPR()); // Override solver type with umfpack if small domain. // Otherwise hardcode to ILU0 if (domains_[index].cells.size() < 200) { loc_param.linsolver_ = "umfpack"; } else { loc_param.linsolver_ = "ilu0"; loc_param.linear_solver_reduction_ = 1e-2; } loc_param.linear_solver_print_json_definition_ = false; domain_linsolvers_.emplace_back(model_.ebosSimulator(), loc_param); } assert(int(domains_.size()) == num_domains); } //! \brief Called before starting a time step. void prepareStep() { // Setup domain->well mapping. model_.wellModel().setupDomains(domains_); } //! \brief Do one non-linear NLDD iteration. template SimulatorReportSingle nonlinearIterationNldd(const int iteration, const SimulatorTimerInterface& timer, NonlinearSolverType& nonlinear_solver) { // ----------- Set up reports and timer ----------- SimulatorReportSingle report; Dune::Timer perfTimer; model_.initialLinearization(report, iteration, nonlinear_solver.minIter(), timer); if (report.converged) { return report; } // ----------- If not converged, do an NLDD iteration ----------- auto& solution = model_.ebosSimulator().model().solution(0); auto initial_solution = solution; auto locally_solved = initial_solution; // ----------- Decide on an ordering for the domains ----------- const auto domain_order = this->getSubdomainOrder(); // ----------- Solve each domain separately ----------- std::vector domain_reports(domains_.size()); for (const int domain_index : domain_order) { const auto& domain = domains_[domain_index]; SimulatorReportSingle local_report; switch (model_.param().local_solve_approach_) { case DomainSolveApproach::Jacobi: solveDomainJacobi(solution, locally_solved, local_report, iteration, timer, domain); break; default: case DomainSolveApproach::GaussSeidel: solveDomainGaussSeidel(solution, locally_solved, local_report, iteration, timer, domain); break; } // This should have updated the global matrix to be // dR_i/du_j evaluated at new local solutions for // i == j, at old solution for i != j. if (!local_report.converged) { // TODO: more proper treatment, including in parallel. OpmLog::debug("Convergence failure in domain " + std::to_string(domain.index)); } domain_reports[domain.index] = local_report; } // Log summary of local solve convergence to DBG file. { int num_converged = 0; SimulatorReportSingle rep; for (const auto& dr : domain_reports) { if (dr.converged) { ++num_converged; } rep += dr; } std::ostringstream os; os << fmt::format("Local solves finished. Converged for {}/{} domains.\n", num_converged, domain_reports.size()); rep.reportFullyImplicit(os, nullptr); OpmLog::debug(os.str()); local_reports_accumulated_ += rep; } if (model_.param().local_solve_approach_ == DomainSolveApproach::Jacobi) { solution = locally_solved; model_.ebosSimulator().model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0); } // Finish with a Newton step. // Note that the "iteration + 100" is a simple way to avoid entering // "if (iteration == 0)" and similar blocks, and also makes it a little // easier to spot the iteration residuals in the DBG file. A more sophisticated // approach can be done later. auto rep = model_.nonlinearIterationNewton(iteration + 100, timer, nonlinear_solver); report += rep; if (rep.converged) { report.converged = true; } return report; } /// return the statistics if the nonlinearIteration() method failed const SimulatorReportSingle& localAccumulatedReports() const { return local_reports_accumulated_; } private: //! \brief Solve the equation system for a single domain. std::pair solveDomain(const Domain& domain, const SimulatorTimerInterface& timer, [[maybe_unused]] const int global_iteration, const bool initial_assembly_required = false) { auto& ebosSimulator = model_.ebosSimulator(); SimulatorReportSingle report; Dune::Timer solveTimer; solveTimer.start(); Dune::Timer detailTimer; ebosSimulator.model().newtonMethod().setIterationIndex(0); // When called, if assembly has already been performed // with the initial values, we only need to check // for local convergence. Otherwise, we must do a local // assembly. int iter = 0; if (initial_assembly_required) { detailTimer.start(); ebosSimulator.model().newtonMethod().setIterationIndex(iter); // TODO: we should have a beginIterationLocal function() // only handling the well model for now ebosSimulator.problem().wellModel().assembleDomain(ebosSimulator.model().newtonMethod().numIterations(), ebosSimulator.timeStepSize(), domain); // Assemble reservoir locally. report += this->assembleReservoirDomain(domain); report.assemble_time += detailTimer.stop(); } detailTimer.reset(); detailTimer.start(); std::vector resnorms; auto convreport = this->getDomainConvergence(domain, timer, 0, resnorms); if (convreport.converged()) { // TODO: set more info, timing etc. report.converged = true; return { report, convreport }; } // We have already assembled for the first iteration, // but not done the Schur complement for the wells yet. detailTimer.reset(); detailTimer.start(); model_.wellModel().linearizeDomain(domain, ebosSimulator.model().linearizer().jacobian(), ebosSimulator.model().linearizer().residual()); const double tt1 = detailTimer.stop(); report.assemble_time += tt1; report.assemble_time_well += tt1; // Local Newton loop. const int max_iter = model_.param().max_local_solve_iterations_; const auto& grid = ebosSimulator.vanguard().grid(); do { // Solve local linear system. // Note that x has full size, we expect it to be nonzero only for in-domain cells. const int nc = grid.size(0); BVector x(nc); detailTimer.reset(); detailTimer.start(); this->solveJacobianSystemDomain(domain, x); model_.wellModel().postSolveDomain(x, domain); report.linear_solve_time += detailTimer.stop(); report.linear_solve_setup_time += model_.linearSolveSetupTime(); report.total_linear_iterations = model_.linearIterationsLastSolve(); // Update local solution. // TODO: x is still full size, should we optimize it? detailTimer.reset(); detailTimer.start(); this->updateDomainSolution(domain, x); report.update_time += detailTimer.stop(); // Assemble well and reservoir. detailTimer.reset(); detailTimer.start(); ++iter; ebosSimulator.model().newtonMethod().setIterationIndex(iter); // TODO: we should have a beginIterationLocal function() // only handling the well model for now // Assemble reservoir locally. ebosSimulator.problem().wellModel().assembleDomain(ebosSimulator.model().newtonMethod().numIterations(), ebosSimulator.timeStepSize(), domain); report += this->assembleReservoirDomain(domain); report.assemble_time += detailTimer.stop(); // Check for local convergence. detailTimer.reset(); detailTimer.start(); convreport = this->getDomainConvergence(domain, timer, iter, resnorms); // apply the Schur complement of the well model to the // reservoir linearized equations detailTimer.reset(); detailTimer.start(); model_.wellModel().linearizeDomain(domain, ebosSimulator.model().linearizer().jacobian(), ebosSimulator.model().linearizer().residual()); const double tt2 = detailTimer.stop(); report.assemble_time += tt2; report.assemble_time_well += tt2; } while (!convreport.converged() && iter <= max_iter); ebosSimulator.problem().endIteration(); report.converged = convreport.converged(); report.total_newton_iterations = iter; report.total_linearizations = iter; report.total_time = solveTimer.stop(); // TODO: set more info, timing etc. return { report, convreport }; } /// Assemble the residual and Jacobian of the nonlinear system. SimulatorReportSingle assembleReservoirDomain(const Domain& domain) { // -------- Mass balance equations -------- model_.ebosSimulator().model().linearizer().linearizeDomain(domain); return model_.wellModel().lastReport(); } //! \brief Solve the linearized system for a domain. void solveJacobianSystemDomain(const Domain& domain, BVector& global_x) { const auto& ebosSimulator = model_.ebosSimulator(); Dune::Timer perfTimer; perfTimer.start(); const Mat& main_matrix = ebosSimulator.model().linearizer().jacobian().istlMatrix(); if (domain_matrices_[domain.index]) { Details::copySubMatrix(main_matrix, domain.cells, *domain_matrices_[domain.index]); } else { domain_matrices_[domain.index] = std::make_unique(Details::extractMatrix(main_matrix, domain.cells)); } auto& jac = *domain_matrices_[domain.index]; auto res = Details::extractVector(ebosSimulator.model().linearizer().residual(), domain.cells); auto x = res; // set initial guess global_x = 0.0; x = 0.0; auto& linsolver = domain_linsolvers_[domain.index]; linsolver.prepare(jac, res); model_.linearSolveSetupTime() = perfTimer.stop(); linsolver.setResidual(res); linsolver.solve(x); Details::setGlobal(x, domain.cells, global_x); } /// Apply an update to the primary variables. void updateDomainSolution(const Domain& domain, const BVector& dx) { auto& ebosSimulator = model_.ebosSimulator(); auto& ebosNewtonMethod = ebosSimulator.model().newtonMethod(); SolutionVector& solution = ebosSimulator.model().solution(/*timeIdx=*/0); ebosNewtonMethod.update_(/*nextSolution=*/solution, /*curSolution=*/solution, /*update=*/dx, /*resid=*/dx, domain.cells); // the update routines of the black // oil model do not care about the // residual // if the solution is updated, the intensive quantities need to be recalculated ebosSimulator.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0, domain.view); } //! \brief Get reservoir quantities on this process needed for convergence calculations. std::pair localDomainConvergenceData(const Domain& domain, std::vector& R_sum, std::vector& maxCoeff, std::vector& B_avg, std::vector& maxCoeffCell) { const auto& ebosSimulator = model_.ebosSimulator(); const auto& grid = model_.ebosSimulator().vanguard().grid(); double pvSumLocal = 0.0; double numAquiferPvSumLocal = 0.0; const auto& ebosModel = ebosSimulator.model(); const auto& ebosProblem = ebosSimulator.problem(); const auto& ebosResid = ebosSimulator.model().linearizer().residual(); ElementContext elemCtx(ebosSimulator); const auto& gridView = domain.view; const auto& elemEndIt = gridView.template end(); IsNumericalAquiferCell isNumericalAquiferCell(gridView.grid()); OPM_BEGIN_PARALLEL_TRY_CATCH(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { if (elemIt->partitionType() != Dune::InteriorEntity) { continue; } const auto& elem = *elemIt; elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const auto pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) * ebosModel.dofTotalVolume(cell_idx); pvSumLocal += pvValue; if (isNumericalAquiferCell(elem)) { numAquiferPvSumLocal += pvValue; } model_.getMaxCoeff(cell_idx, intQuants, fs, ebosResid, pvValue, B_avg, R_sum, maxCoeff, maxCoeffCell); } OPM_END_PARALLEL_TRY_CATCH("BlackoilModelEbos::localConvergenceData() failed: ", grid.comm()); // compute local average in terms of global number of elements const int bSize = B_avg.size(); for ( int i = 0; i& B_avg, std::vector& residual_norms) { using Vector = std::vector; const int numComp = numEq; Vector R_sum(numComp, 0.0 ); Vector maxCoeff(numComp, std::numeric_limits::lowest() ); std::vector maxCoeffCell(numComp, -1); const auto [ pvSum, numAquiferPvSum] = this->localDomainConvergenceData(domain, R_sum, maxCoeff, B_avg, maxCoeffCell); auto cnvErrorPvFraction = computeCnvErrorPvLocal(domain, B_avg, dt); cnvErrorPvFraction /= (pvSum - numAquiferPvSum); const double tol_mb = model_.param().local_tolerance_scaling_mb_ * model_.param().tolerance_mb_; // Default value of relaxed_max_pv_fraction_ is 0.03 and min_strict_cnv_iter_ is 0. // For each iteration, we need to determine whether to use the relaxed CNV tolerance. // To disable the usage of relaxed CNV tolerance, you can set the relaxed_max_pv_fraction_ to be 0. const bool use_relaxed = cnvErrorPvFraction < model_.param().relaxed_max_pv_fraction_ && iteration >= model_.param().min_strict_cnv_iter_; // Tighter bound for local convergence should increase the // likelyhood of: local convergence => global convergence const double tol_cnv = model_.param().local_tolerance_scaling_cnv_ * (use_relaxed ? model_.param().tolerance_cnv_relaxed_ : model_.param().tolerance_cnv_); // Finish computation std::vector CNV(numComp); std::vector mass_balance_residual(numComp); for (int compIdx = 0; compIdx < numComp; ++compIdx ) { CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx]; mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum; residual_norms.push_back(CNV[compIdx]); } // Create convergence report. ConvergenceReport report{reportTime}; using CR = ConvergenceReport; for (int compIdx = 0; compIdx < numComp; ++compIdx) { double res[2] = { mass_balance_residual[compIdx], CNV[compIdx] }; CR::ReservoirFailure::Type types[2] = { CR::ReservoirFailure::Type::MassBalance, CR::ReservoirFailure::Type::Cnv }; double tol[2] = { tol_mb, tol_cnv }; for (int ii : {0, 1}) { if (std::isnan(res[ii])) { report.setReservoirFailed({types[ii], CR::Severity::NotANumber, compIdx}); if (model_.terminalOutputEnabled()) { OpmLog::debug("NaN residual for " + model_.compNames().name(compIdx) + " equation."); } } else if (res[ii] > model_.param().max_residual_allowed_) { report.setReservoirFailed({types[ii], CR::Severity::TooLarge, compIdx}); if (model_.terminalOutputEnabled()) { OpmLog::debug("Too large residual for " + model_.compNames().name(compIdx) + " equation."); } } else if (res[ii] < 0.0) { report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx}); if (model_.terminalOutputEnabled()) { OpmLog::debug("Negative residual for " + model_.compNames().name(compIdx) + " equation."); } } else if (res[ii] > tol[ii]) { report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx}); } } } // Output of residuals. if (model_.terminalOutputEnabled()) { // Only rank 0 does print to std::cout if (iteration == 0) { std::string msg = fmt::format("Domain {}, size {}, containing cell {}\n| Iter", domain.index, domain.cells.size(), domain.cells[0]); for (int compIdx = 0; compIdx < numComp; ++compIdx) { msg += " MB("; msg += model_.compNames().name(compIdx)[0]; msg += ") "; } for (int compIdx = 0; compIdx < numComp; ++compIdx) { msg += " CNV("; msg += model_.compNames().name(compIdx)[0]; msg += ") "; } OpmLog::debug(msg); } std::ostringstream ss; ss << "| "; const std::streamsize oprec = ss.precision(3); const std::ios::fmtflags oflags = ss.setf(std::ios::scientific); ss << std::setw(4) << iteration; for (int compIdx = 0; compIdx < numComp; ++compIdx) { ss << std::setw(11) << mass_balance_residual[compIdx]; } for (int compIdx = 0; compIdx < numComp; ++compIdx) { ss << std::setw(11) << CNV[compIdx]; } ss.precision(oprec); ss.flags(oflags); OpmLog::debug(ss.str()); } return report; } ConvergenceReport getDomainConvergence(const Domain& domain, const SimulatorTimerInterface& timer, const int iteration, std::vector& residual_norms) { std::vector B_avg(numEq, 0.0); auto report = this->getDomainReservoirConvergence(timer.simulationTimeElapsed(), timer.currentStepLength(), iteration, domain, B_avg, residual_norms); report += model_.wellModel().getDomainWellConvergence(domain, B_avg); return report; } //! \brief Returns subdomain ordered according to method and ordering measure. std::vector getSubdomainOrder() { const auto& ebosSimulator = model_.ebosSimulator(); const auto& solution = ebosSimulator.model().solution(0); std::vector domain_order(domains_.size()); switch (model_.param().local_solve_approach_) { case DomainSolveApproach::GaussSeidel: { switch (model_.param().local_domain_ordering_) { case DomainOrderingMeasure::AveragePressure: { // Use average pressures to order domains. std::vector> avgpress_per_domain(domains_.size()); for (const auto& domain : domains_) { double press_sum = 0.0; for (const int c : domain.cells) { press_sum += solution[c][Indices::pressureSwitchIdx]; } const double avgpress = press_sum / domain.cells.size(); avgpress_per_domain[domain.index] = std::make_pair(avgpress, domain.index); } // Lexicographical sort by pressure, then index. std::sort(avgpress_per_domain.begin(), avgpress_per_domain.end()); // Reverse since we want high-pressure regions solved first. std::reverse(avgpress_per_domain.begin(), avgpress_per_domain.end()); for (std::size_t ii = 0; ii < domains_.size(); ++ii) { domain_order[ii] = avgpress_per_domain[ii].second; } break; } case DomainOrderingMeasure::Residual: { // Use maximum residual to order domains. const auto& residual = ebosSimulator.model().linearizer().residual(); const int num_vars = residual[0].size(); std::vector> maxres_per_domain(domains_.size()); for (const auto& domain : domains_) { double maxres = 0.0; for (const int c : domain.cells) { for (int ii = 0; ii < num_vars; ++ii) { maxres = std::max(maxres, std::fabs(residual[c][ii])); } } maxres_per_domain[domain.index] = std::make_pair(maxres, domain.index); } // Lexicographical sort by pressure, then index. std::sort(maxres_per_domain.begin(), maxres_per_domain.end()); // Reverse since we want high-pressure regions solved first. std::reverse(maxres_per_domain.begin(), maxres_per_domain.end()); for (std::size_t ii = 0; ii < domains_.size(); ++ii) { domain_order[ii] = maxres_per_domain[ii].second; } } break; } break; } case DomainSolveApproach::Jacobi: default: std::iota(domain_order.begin(), domain_order.end(), 0); break; } return domain_order; } template void solveDomainJacobi(GlobalEqVector& solution, GlobalEqVector& locally_solved, SimulatorReportSingle& local_report, const int iteration, const SimulatorTimerInterface& timer, const Domain& domain) { auto initial_local_well_primary_vars = model_.wellModel().getPrimaryVarsDomain(domain); auto initial_local_solution = Details::extractVector(solution, domain.cells); auto res = solveDomain(domain, timer, iteration); local_report = res.first; if (local_report.converged) { auto local_solution = Details::extractVector(solution, domain.cells); Details::setGlobal(local_solution, domain.cells, locally_solved); Details::setGlobal(initial_local_solution, domain.cells, solution); model_.ebosSimulator().model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0, domain.view); } else { model_.wellModel().setPrimaryVarsDomain(domain, initial_local_well_primary_vars); Details::setGlobal(initial_local_solution, domain.cells, solution); model_.ebosSimulator().model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0, domain.view); } } template void solveDomainGaussSeidel(GlobalEqVector& solution, GlobalEqVector& locally_solved, SimulatorReportSingle& local_report, const int iteration, const SimulatorTimerInterface& timer, const Domain& domain) { auto initial_local_well_primary_vars = model_.wellModel().getPrimaryVarsDomain(domain); auto initial_local_solution = Details::extractVector(solution, domain.cells); auto res = solveDomain(domain, timer, iteration); local_report = res.first; if (!local_report.converged) { // We look at the detailed convergence report to evaluate // if we should accept the unconverged solution. const auto& convrep = res.second; // We do not accept a solution if the wells are unconverged. if (!convrep.wellFailed()) { // Calculare the sums of the mb and cnv failures. double mb_sum = 0.0; double cnv_sum = 0.0; for (const auto& rc : convrep.reservoirConvergence()) { if (rc.type() == ConvergenceReport::ReservoirFailure::Type::MassBalance) { mb_sum += rc.value(); } else if (rc.type() == ConvergenceReport::ReservoirFailure::Type::Cnv) { cnv_sum += rc.value(); } } // If not too high, we overrule the convergence failure. const double acceptable_local_mb_sum = 1e-3; const double acceptable_local_cnv_sum = 1.0; if (mb_sum < acceptable_local_mb_sum && cnv_sum < acceptable_local_cnv_sum) { local_report.converged = true; OpmLog::debug("Accepting solution in unconverged domain " + std::to_string(domain.index)); } } } if (local_report.converged) { auto local_solution = Details::extractVector(solution, domain.cells); Details::setGlobal(local_solution, domain.cells, locally_solved); } else { model_.wellModel().setPrimaryVarsDomain(domain, initial_local_well_primary_vars); Details::setGlobal(initial_local_solution, domain.cells, solution); model_.ebosSimulator().model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0, domain.view); } } double computeCnvErrorPvLocal(const Domain& domain, const std::vector& B_avg, double dt) const { double errorPV{}; const auto& ebosSimulator = model_.ebosSimulator(); const auto& ebosModel = ebosSimulator.model(); const auto& ebosProblem = ebosSimulator.problem(); const auto& ebosResid = ebosSimulator.model().linearizer().residual(); for (const int cell_idx : domain.cells) { const double pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) * ebosModel.dofTotalVolume(cell_idx); const auto& cellResidual = ebosResid[cell_idx]; bool cnvViolated = false; for (unsigned eqIdx = 0; eqIdx < cellResidual.size(); ++eqIdx) { using std::fabs; Scalar CNV = cellResidual[eqIdx] * dt * B_avg[eqIdx] / pvValue; cnvViolated = cnvViolated || (fabs(CNV) > model_.param().tolerance_cnv_); } if (cnvViolated) { errorPV += pvValue; } } return errorPV; } BlackoilModelEbos& model_; //!< Reference to model std::vector domains_; //!< Vector of subdomains std::vector> domain_matrices_; //!< Vector of matrix operator for each subdomain std::vector domain_linsolvers_; //!< Vector of linear solvers for each domain SimulatorReportSingle local_reports_accumulated_; //!< Accumulated convergence report for subdomain solvers }; } // namespace Opm #endif // OPM_BLACKOILMODELEBOS_NLDD_HEADER_INCLUDED