/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_CUDA || HAVE_OPENCL
#include
#endif
namespace Opm
{
template
StandardWellEval::
StandardWellEval(const WellInterfaceIndices& baseif)
: StandardWellGeneric(Bhp, baseif)
, baseif_(baseif)
, F0_(numWellConservationEq)
{
}
template
void StandardWellEval::
initPrimaryVariablesEvaluation() const
{
for (int eqIdx = 0; eqIdx < numWellEq_; ++eqIdx) {
primary_variables_evaluation_[eqIdx] =
EvalWell::createVariable(numWellEq_ + Indices::numEq, primary_variables_[eqIdx], Indices::numEq + eqIdx);
}
}
template
typename StandardWellEval::EvalWell
StandardWellEval::
extendEval(const Eval& in) const
{
EvalWell out(numWellEq_ + Indices::numEq, in.value());
for(int eqIdx = 0; eqIdx < Indices::numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(eqIdx));
}
return out;
}
template
double
StandardWellEval::
relaxationFactorFractionsProducer(const std::vector& primary_variables,
const BVectorWell& dwells)
{
// TODO: not considering solvent yet
// 0.95 is a experimental value, which remains to be optimized
double relaxation_factor = 1.0;
if (FluidSystem::numActivePhases() > 1) {
if (has_wfrac_variable) {
const double relaxation_factor_w = StandardWellGeneric::
relaxationFactorFraction(primary_variables[WFrac], dwells[0][WFrac]);
relaxation_factor = std::min(relaxation_factor, relaxation_factor_w);
}
if (has_gfrac_variable) {
const double relaxation_factor_g = StandardWellGeneric::
relaxationFactorFraction(primary_variables[GFrac], dwells[0][GFrac]);
relaxation_factor = std::min(relaxation_factor, relaxation_factor_g);
}
if (has_wfrac_variable && has_gfrac_variable) {
// We need to make sure the even with the relaxation_factor, the sum of F_w and F_g is below one, so there will
// not be negative oil fraction later
const double original_sum = primary_variables[WFrac] + primary_variables[GFrac];
const double relaxed_update = (dwells[0][WFrac] + dwells[0][GFrac]) * relaxation_factor;
const double possible_updated_sum = original_sum - relaxed_update;
if (possible_updated_sum > 1.0) {
assert(relaxed_update != 0.);
const double further_relaxation_factor = std::abs((1. - original_sum) / relaxed_update) * 0.95;
relaxation_factor *= further_relaxation_factor;
}
}
assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0);
}
return relaxation_factor;
}
template
typename StandardWellEval::EvalWell
StandardWellEval::
wellVolumeFraction(const unsigned compIdx) const
{
if (FluidSystem::numActivePhases() == 1) {
return EvalWell(numWellEq_ + Indices::numEq, 1.0);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
if (has_wfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
return primary_variables_evaluation_[WFrac];
}
if (has_gfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[GFrac];
}
if (Indices::enableSolvent && compIdx == (unsigned)Indices::contiSolventEqIdx) {
return primary_variables_evaluation_[SFrac];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (has_gfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[GFrac];
}
}
// Oil or WATER fraction
EvalWell well_fraction(numWellEq_ + Indices::numEq, 1.0);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
well_fraction -= primary_variables_evaluation_[WFrac];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
well_fraction -= primary_variables_evaluation_[GFrac];
}
if (Indices::enableSolvent) {
well_fraction -= primary_variables_evaluation_[SFrac];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))) {
well_fraction -= primary_variables_evaluation_[GFrac];
}
return well_fraction;
}
template
typename StandardWellEval::EvalWell
StandardWellEval::
getQs(const int comp_idx) const
{
// Note: currently, the WQTotal definition is still depends on Injector/Producer.
assert(comp_idx < baseif_.numComponents());
if (baseif_.isInjector()) { // only single phase injection
double inj_frac = 0.0;
switch (baseif_.wellEcl().injectorType()) {
case InjectorType::WATER:
if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))) {
inj_frac = 1.0;
}
break;
case InjectorType::GAS:
if (Indices::enableSolvent && comp_idx == Indices::contiSolventEqIdx) { // solvent
inj_frac = baseif_.wsolvent();
} else if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx))) {
inj_frac = Indices::enableSolvent ? 1.0 - baseif_.wsolvent() : 1.0;
}
break;
case InjectorType::OIL:
if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx))) {
inj_frac = 1.0;
}
break;
case InjectorType::MULTI:
// Not supported.
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
// "Multi phase injectors are not supported, requested for well " + name());
break;
}
return inj_frac * primary_variables_evaluation_[WQTotal];
} else { // producers
return primary_variables_evaluation_[WQTotal] * wellVolumeFractionScaled(comp_idx);
}
}
template
typename StandardWellEval::EvalWell
StandardWellEval::
wellVolumeFractionScaled(const int compIdx) const
{
const int legacyCompIdx = baseif_.ebosCompIdxToFlowCompIdx(compIdx);
const double scal = baseif_.scalingFactor(legacyCompIdx);
if (scal > 0)
return wellVolumeFraction(compIdx) / scal;
// the scaling factor may be zero for RESV controlled wells.
return wellVolumeFraction(compIdx);
}
template
typename StandardWellEval::EvalWell
StandardWellEval::
wellSurfaceVolumeFraction(const int compIdx) const
{
EvalWell sum_volume_fraction_scaled(numWellEq_ + Indices::numEq, 0.);
for (int idx = 0; idx < baseif_.numComponents(); ++idx) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
}
template
void
StandardWellEval::
updatePrimaryVariables(const WellState& well_state, DeferredLogger& deferred_logger) const
{
static constexpr int Gas = WellInterfaceIndices::Gas;
static constexpr int Oil = WellInterfaceIndices::Oil;
static constexpr int Water = WellInterfaceIndices::Water;
if (!baseif_.isOperable() && !baseif_.wellIsStopped()) return;
const int well_index = baseif_.indexOfWell();
const int np = baseif_.numPhases();
const auto& pu = baseif_.phaseUsage();
// the weighted total well rate
double total_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
total_well_rate += baseif_.scalingFactor(p) * well_state.wellRates(well_index)[p];
}
// Not: for the moment, the first primary variable for the injectors is not G_total. The injection rate
// under surface condition is used here
if (baseif_.isInjector()) {
switch (baseif_.wellEcl().injectorType()) {
case InjectorType::WATER:
primary_variables_[WQTotal] = well_state.wellRates(well_index)[pu.phase_pos[Water]];
break;
case InjectorType::GAS:
primary_variables_[WQTotal] = well_state.wellRates(well_index)[pu.phase_pos[Gas]];
break;
case InjectorType::OIL:
primary_variables_[WQTotal] = well_state.wellRates(well_index)[pu.phase_pos[Oil]];
break;
case InjectorType::MULTI:
// Not supported.
deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
"Multi phase injectors are not supported, requested for well " + baseif_.name());
break;
}
} else {
primary_variables_[WQTotal] = total_well_rate;
}
if (std::abs(total_well_rate) > 0.) {
if (has_wfrac_variable) {
primary_variables_[WFrac] = baseif_.scalingFactor(pu.phase_pos[Water]) * well_state.wellRates(well_index)[pu.phase_pos[Water]] / total_well_rate;
}
if (has_gfrac_variable) {
primary_variables_[GFrac] = baseif_.scalingFactor(pu.phase_pos[Gas]) * (well_state.wellRates(well_index)[pu.phase_pos[Gas]]
- (Indices::enableSolvent ? well_state.solventWellRate(well_index) : 0.0) ) / total_well_rate ;
}
if constexpr (Indices::enableSolvent) {
primary_variables_[SFrac] = baseif_.scalingFactor(pu.phase_pos[Gas]) * well_state.solventWellRate(well_index) / total_well_rate ;
}
} else { // total_well_rate == 0
if (baseif_.isInjector()) {
auto phase = baseif_.wellEcl().getInjectionProperties().injectorType;
// only single phase injection handled
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (phase == InjectorType::WATER) {
primary_variables_[WFrac] = 1.0;
} else {
primary_variables_[WFrac] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (phase == InjectorType::GAS) {
primary_variables_[GFrac] = 1.0;
if constexpr (Indices::enableSolvent) {
primary_variables_[GFrac] = 1.0 - baseif_.wsolvent();
primary_variables_[SFrac] = baseif_.wsolvent();
}
} else {
primary_variables_[GFrac] = 0.0;
}
}
// TODO: it is possible to leave injector as a oil well,
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
// this will happen.
} else if (baseif_.isProducer()) { // producers
// TODO: the following are not addressed for the solvent case yet
if (has_wfrac_variable) {
primary_variables_[WFrac] = 1.0 / np;
}
if (has_gfrac_variable) {
primary_variables_[GFrac] = 1.0 / np;
}
} else {
OPM_DEFLOG_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well", deferred_logger);
}
}
// BHP
primary_variables_[Bhp] = well_state.bhp(baseif_.indexOfWell());
}
template
void
StandardWellEval::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger)
{
static constexpr int Gas = WellInterfaceIndices::Gas;
static constexpr int Oil = WellInterfaceIndices::Oil;
static constexpr int Water = WellInterfaceIndices::Water;
EvalWell control_eq(numWellEq_ + Indices::numEq, 0.0);
const auto& well = baseif_.wellEcl();
auto getRates = [&]() {
std::vector rates(3, EvalWell(numWellEq_ + Indices::numEq, 0.0));
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (baseif_.wellIsStopped()) {
control_eq = getWQTotal();
} else if (baseif_.isInjector()) {
// Find injection rate.
const EvalWell injection_rate = getWQTotal();
// Setup function for evaluation of BHP from THP (used only if needed).
auto bhp_from_thp = [&]() {
const auto rates = getRates();
return baseif_.calculateBhpFromThp(well_state, rates, well, summaryState, this->getRho(), deferred_logger);
};
// Call generic implementation.
const auto& inj_controls = well.injectionControls(summaryState);
baseif_.assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
getBhp(),
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
auto bhp_from_thp = [&]() {
return baseif_.calculateBhpFromThp(well_state, rates, well, summaryState, this->getRho(), deferred_logger);
};
// Call generic implementation.
const auto& prod_controls = well.productionControls(summaryState);
baseif_.assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
getBhp(),
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
// using control_eq to update the matrix and residuals
// TODO: we should use a different index system for the well equations
this->resWell_[0][Bhp] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq_; ++pv_idx) {
this->invDuneD_[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template
void
StandardWellEval::
updatePrimaryVariablesPolyMW(const BVectorWell& dwells) const
{
if (baseif_.isInjector()) {
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const int wat_vel_index = Bhp + 1 + perf;
const int pskin_index = Bhp + 1 + baseif_.numPerfs() + perf;
const double relaxation_factor = 0.9;
const double dx_wat_vel = dwells[0][wat_vel_index];
primary_variables_[wat_vel_index] -= relaxation_factor * dx_wat_vel;
const double dx_pskin = dwells[0][pskin_index];
primary_variables_[pskin_index] -= relaxation_factor * dx_pskin;
}
}
}
template
void
StandardWellEval::
processFractions() const
{
static constexpr int Gas = WellInterfaceIndices::Gas;
static constexpr int Oil = WellInterfaceIndices::Oil;
static constexpr int Water = WellInterfaceIndices::Water;
const auto pu = baseif_.phaseUsage();
std::vector F(baseif_.numPhases(), 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] = primary_variables_[WFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Water]];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = primary_variables_[GFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Gas]];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = primary_variables_[GFrac];
F[pu.phase_pos[Water]] -= F[pu.phase_pos[Gas]];
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = 1.0;
}
[[maybe_unused]] double F_solvent;
if constexpr (Indices::enableSolvent) {
F_solvent = primary_variables_[SFrac];
F[pu.phase_pos[Oil]] -= F_solvent;
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (F[Water] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Water]]);
}
if constexpr (Indices::enableSolvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Water]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Water]]);
}
F[pu.phase_pos[Water]] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (F[pu.phase_pos[Gas]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Gas]]);
}
if constexpr (Indices::enableSolvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Gas]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Gas]]);
}
F[pu.phase_pos[Gas]] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
if (F[pu.phase_pos[Oil]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if constexpr (Indices::enableSolvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Oil]]);
}
F[pu.phase_pos[Oil]] = 0.0;
}
}
if (has_wfrac_variable) {
primary_variables_[WFrac] = F[pu.phase_pos[Water]];
}
if (has_gfrac_variable) {
primary_variables_[GFrac] = F[pu.phase_pos[Gas]];
}
if constexpr (Indices::enableSolvent) {
primary_variables_[SFrac] = F_solvent;
}
}
template
void
StandardWellEval::
updateThp(WellState& well_state,
DeferredLogger& deferred_logger) const
{
static constexpr int Gas = WellInterfaceIndices::Gas;
static constexpr int Oil = WellInterfaceIndices::Oil;
static constexpr int Water = WellInterfaceIndices::Water;
// When there is no vaild VFP table provided, we set the thp to be zero.
if (!baseif_.isVFPActive(deferred_logger) || baseif_.wellIsStopped()) {
well_state.update_thp(baseif_.indexOfWell(), 0);
return;
}
// the well is under other control types, we calculate the thp based on bhp and rates
std::vector rates(3, 0.0);
const PhaseUsage& pu = baseif_.phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[ Water ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[ Oil ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[ Gas ] ];
}
const double bhp = well_state.bhp(baseif_.indexOfWell());
well_state.update_thp(baseif_.indexOfWell(),
this->calculateThpFromBhp(well_state,
rates,
bhp,
deferred_logger));
}
template
void
StandardWellEval::
updateWellStateFromPrimaryVariables(WellState& well_state,
DeferredLogger& deferred_logger) const
{
static constexpr int Gas = WellInterfaceIndices::Gas;
static constexpr int Oil = WellInterfaceIndices::Oil;
static constexpr int Water = WellInterfaceIndices::Water;
const PhaseUsage& pu = baseif_.phaseUsage();
std::vector F(baseif_.numPhases(), 0.0);
[[maybe_unused]] double F_solvent = 0.0;
if ( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) ) {
const int oil_pos = pu.phase_pos[Oil];
F[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
F[water_pos] = primary_variables_[WFrac];
F[oil_pos] -= F[water_pos];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = primary_variables_[GFrac];
F[oil_pos] -= F[gas_pos];
}
if constexpr (Indices::enableSolvent) {
F_solvent = primary_variables_[SFrac];
F[oil_pos] -= F_solvent;
}
}
else if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
F[water_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = primary_variables_[GFrac];
F[water_pos] -= F[gas_pos];
}
}
else if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = 1.0;
}
// convert the fractions to be Q_p / G_total to calculate the phase rates
for (int p = 0; p < baseif_.numPhases(); ++p) {
const double scal = baseif_.scalingFactor(p);
// for injection wells, there should only one non-zero scaling factor
if (scal > 0) {
F[p] /= scal ;
} else {
// this should only happens to injection wells
F[p] = 0.;
}
}
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
// More testing is needed to make sure this is correct for well groups and THP.
if constexpr (Indices::enableSolvent){
F_solvent /= baseif_.scalingFactor(Indices::contiSolventEqIdx);
F[pu.phase_pos[Gas]] += F_solvent;
}
well_state.update_bhp(baseif_.indexOfWell(), primary_variables_[Bhp]);
// calculate the phase rates based on the primary variables
// for producers, this is not a problem, while not sure for injectors here
if (baseif_.isProducer()) {
const double g_total = primary_variables_[WQTotal];
for (int p = 0; p < baseif_.numPhases(); ++p) {
well_state.wellRates(baseif_.indexOfWell())[p] = g_total * F[p];
}
} else { // injectors
for (int p = 0; p < baseif_.numPhases(); ++p) {
well_state.wellRates(baseif_.indexOfWell())[p] = 0.0;
}
switch (baseif_.wellEcl().injectorType()) {
case InjectorType::WATER:
well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[Water]] = primary_variables_[WQTotal];
break;
case InjectorType::GAS:
well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[Gas]] = primary_variables_[WQTotal];
break;
case InjectorType::OIL:
well_state.wellRates(baseif_.indexOfWell())[pu.phase_pos[Oil]] = primary_variables_[WQTotal];
break;
case InjectorType::MULTI:
// Not supported.
deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
"Multi phase injectors are not supported, requested for well " + baseif_.name());
break;
}
}
updateThp(well_state, deferred_logger);
}
template
void
StandardWellEval::
updateWellStateFromPrimaryVariablesPolyMW(WellState& well_state) const
{
if (baseif_.isInjector()) {
auto& perf_data = well_state.perfData(baseif_.indexOfWell());
auto& perf_water_velocity = perf_data.water_velocity;
auto& perf_skin_pressure = perf_data.skin_pressure;
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
perf_water_velocity[perf] = primary_variables_[Bhp + 1 + perf];
perf_skin_pressure[perf] = primary_variables_[Bhp + 1 + baseif_.numPerfs() + perf];
}
}
}
template
void
StandardWellEval::
computeAccumWell()
{
for (int eq_idx = 0; eq_idx < numWellConservationEq; ++eq_idx) {
F0_[eq_idx] = wellSurfaceVolumeFraction(eq_idx).value();
}
}
template
void
StandardWellEval::
updatePrimaryVariablesNewton(const BVectorWell& dwells,
const double dFLimit,
const double dBHPLimit) const
{
const std::vector old_primary_variables = primary_variables_;
// for injectors, very typical one of the fractions will be one, and it is easy to get zero value
// fractions. not sure what is the best way to handle it yet, so we just use 1.0 here
const double relaxation_factor_fractions =
(baseif_.isProducer()) ? relaxationFactorFractionsProducer(old_primary_variables, dwells)
: 1.0;
// update the second and third well variable (The flux fractions)
if (has_wfrac_variable) {
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac] * relaxation_factor_fractions), dFLimit);
// primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited;
primary_variables_[WFrac] = old_primary_variables[WFrac] - dx2_limited;
}
if (has_gfrac_variable) {
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac] * relaxation_factor_fractions), dFLimit);
primary_variables_[GFrac] = old_primary_variables[GFrac] - dx3_limited;
}
if constexpr (Indices::enableSolvent) {
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]) * relaxation_factor_fractions, dFLimit);
primary_variables_[SFrac] = old_primary_variables[SFrac] - dx4_limited;
}
processFractions();
// updating the total rates Q_t
const double relaxation_factor_rate = this->relaxationFactorRate(old_primary_variables, dwells);
primary_variables_[WQTotal] = old_primary_variables[WQTotal] - dwells[0][WQTotal] * relaxation_factor_rate;
// updating the bottom hole pressure
{
const int sign1 = dwells[0][Bhp] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][Bhp]), std::abs(old_primary_variables[Bhp]) * dBHPLimit);
// 1e5 to make sure bhp will not be below 1bar
primary_variables_[Bhp] = std::max(old_primary_variables[Bhp] - dx1_limited, 1e5);
}
}
template
ConvergenceReport
StandardWellEval::
getWellConvergence(const WellState& well_state,
const std::vector& B_avg,
const double tol_wells,
const double maxResidualAllowed,
std::vector& res,
DeferredLogger& deferred_logger) const
{
res.resize(numWellEq_);
for (int eq_idx = 0; eq_idx < numWellEq_; ++eq_idx) {
// magnitude of the residual matters
res[eq_idx] = std::abs(this->resWell_[0][eq_idx]);
}
std::vector well_flux_residual(baseif_.numComponents());
// Finish computation
for (int compIdx = 0; compIdx < baseif_.numComponents(); ++compIdx )
{
well_flux_residual[compIdx] = B_avg[compIdx] * res[compIdx];
}
ConvergenceReport report;
using CR = ConvergenceReport;
CR::WellFailure::Type type = CR::WellFailure::Type::MassBalance;
// checking if any NaN or too large residuals found
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
const int compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
if (std::isnan(well_flux_residual[compIdx])) {
report.setWellFailed({type, CR::Severity::NotANumber, compIdx, baseif_.name()});
} else if (well_flux_residual[compIdx] > maxResidualAllowed) {
report.setWellFailed({type, CR::Severity::TooLarge, compIdx, baseif_.name()});
} else if (well_flux_residual[compIdx] > tol_wells) {
report.setWellFailed({type, CR::Severity::Normal, compIdx, baseif_.name()});
}
}
this->checkConvergenceControlEq(well_state, report, deferred_logger, maxResidualAllowed);
return report;
}
template
void
StandardWellEval::
computeConnectionDensities(const std::vector& perfComponentRates,
const std::vector& b_perf,
const std::vector& rsmax_perf,
const std::vector& rvmax_perf,
const std::vector& surf_dens_perf)
{
// Verify that we have consistent input.
const int nperf = baseif_.numPerfs();
const int num_comp = baseif_.numComponents();
// 1. Compute the flow (in surface volume units for each
// component) exiting up the wellbore from each perforation,
// taking into account flow from lower in the well, and
// in/out-flow at each perforation.
std::vector q_out_perf((nperf)*num_comp, 0.0);
// Step 1 depends on the order of the perforations. Hence we need to
// do the modifications globally.
// Create and get the global perforation information and do this sequentially
// on each process
const auto& factory = baseif_.parallelWellInfo().getGlobalPerfContainerFactory();
auto global_q_out_perf = factory.createGlobal(q_out_perf, num_comp);
auto global_perf_comp_rates = factory.createGlobal(perfComponentRates, num_comp);
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
// Iterate over well perforations from bottom to top.
for (int perf = factory.numGlobalPerfs() - 1; perf >= 0; --perf) {
for (int component = 0; component < num_comp; ++component) {
auto index = perf * num_comp + component;
if (perf == factory.numGlobalPerfs() - 1) {
// This is the bottom perforation. No flow from below.
global_q_out_perf[index] = 0.0;
} else {
// Set equal to flow from below.
global_q_out_perf[index] = global_q_out_perf[index + num_comp];
}
// Subtract outflow through perforation.
global_q_out_perf[index] -= global_perf_comp_rates[index];
}
}
// Copy the data back to local view
factory.copyGlobalToLocal(global_q_out_perf, q_out_perf, num_comp);
// 2. Compute the component mix at each perforation as the
// absolute values of the surface rates divided by their sum.
// Then compute volume ratios (formation factors) for each perforation.
// Finally compute densities for the segments associated with each perforation.
std::vector mix(num_comp,0.0);
std::vector x(num_comp);
std::vector surf_dens(num_comp);
for (int perf = 0; perf < nperf; ++perf) {
// Find component mix.
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
q_out_perf.begin() + num_comp*(perf+1), 0.0);
if (tot_surf_rate != 0.0) {
for (int component = 0; component < num_comp; ++component) {
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
}
} else if (num_comp == 1) {
mix[num_comp-1] = 1.0;
} else {
std::fill(mix.begin(), mix.end(), 0.0);
// No flow => use well specified fractions for mix.
if (baseif_.isInjector()) {
switch (baseif_.wellEcl().injectorType()) {
case InjectorType::WATER:
mix[FluidSystem::waterCompIdx] = 1.0;
break;
case InjectorType::GAS:
mix[FluidSystem::gasCompIdx] = 1.0;
break;
case InjectorType::OIL:
mix[FluidSystem::oilCompIdx] = 1.0;
break;
case InjectorType::MULTI:
// Not supported.
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
// "Multi phase injectors are not supported, requested for well " + name());
break;
}
} else {
assert(baseif_.isProducer());
// For the frist perforation without flow we use the preferred phase to decide the mix initialization.
if (perf == 0) { //
switch (baseif_.wellEcl().getPreferredPhase()) {
case Phase::OIL:
mix[FluidSystem::oilCompIdx] = 1.0;
break;
case Phase::GAS:
mix[FluidSystem::gasCompIdx] = 1.0;
break;
case Phase::WATER:
mix[FluidSystem::waterCompIdx] = 1.0;
break;
default:
// No others supported.
break;
}
// For the rest of the perforation without flow we use mix from the above perforation.
} else {
mix = x;
}
}
}
// Compute volume ratio.
x = mix;
// Subtract dissolved gas from oil phase and vapporized oil from gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilpos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
double rs = 0.0;
double rv = 0.0;
if (!rsmax_perf.empty() && mix[oilpos] > 1e-12) {
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
}
if (!rvmax_perf.empty() && mix[gaspos] > 1e-12) {
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
}
if (rs != 0.0) {
// Subtract gas in oil from gas mixture
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
}
if (rv != 0.0) {
// Subtract oil in gas from oil mixture
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
}
}
double volrat = 0.0;
for (int component = 0; component < num_comp; ++component) {
volrat += x[component] / b_perf[perf*num_comp+ component];
}
for (int component = 0; component < num_comp; ++component) {
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
}
// Compute segment density.
this->perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
}
}
template
void
StandardWellEval::
computePerfRate(const std::vector& mob,
const EvalWell& pressure,
const EvalWell& bhp,
const EvalWell& rs,
const EvalWell& rv,
std::vector& b_perfcells_dense,
const double Tw,
const int perf,
const bool allow_cf,
const bool enable_polymermw,
std::vector& cq_s,
double& perf_dis_gas_rate,
double& perf_vap_oil_rate,
DeferredLogger& deferred_logger) const
{
// Pressure drawdown (also used to determine direction of flow)
const EvalWell well_pressure = bhp + this->perf_pressure_diffs_[perf];
EvalWell drawdown = pressure - well_pressure;
if (enable_polymermw) {
if (baseif_.isInjector()) {
const int pskin_index = Bhp + 1 + baseif_.numPerfs() + perf;
const EvalWell& skin_pressure = primary_variables_evaluation_[pskin_index];
drawdown += skin_pressure;
}
}
// producing perforations
if ( drawdown.value() > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && baseif_.isInjector()) {
return;
}
// compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < baseif_.numComponents(); ++componentIdx) {
const EvalWell cq_p = - Tw * (mob[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell cq_sOil = cq_s[oilCompIdx];
const EvalWell cq_sGas = cq_s[gasCompIdx];
const EvalWell dis_gas = rs * cq_sOil;
const EvalWell vap_oil = rv * cq_sGas;
cq_s[gasCompIdx] += dis_gas;
cq_s[oilCompIdx] += vap_oil;
// recording the perforation solution gas rate and solution oil rates
if (baseif_.isProducer()) {
perf_dis_gas_rate = dis_gas.value();
perf_vap_oil_rate = vap_oil.value();
}
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && baseif_.isProducer()) {
return;
}
// Using total mobilities
EvalWell total_mob_dense = mob[0];
for (int componentIdx = 1; componentIdx < baseif_.numComponents(); ++componentIdx) {
total_mob_dense += mob[componentIdx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// surface volume fraction of fluids within wellbore
std::vector cmix_s(baseif_.numComponents(), EvalWell{numWellEq_ + Indices::numEq});
for (int componentIdx = 0; componentIdx < baseif_.numComponents(); ++componentIdx) {
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
}
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio(numWellEq_ + Indices::numEq, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volumeRatio += cmix_s[waterCompIdx] / b_perfcells_dense[waterCompIdx];
}
if constexpr (Indices::enableSolvent) {
volumeRatio += cmix_s[Indices::contiSolventEqIdx] / b_perfcells_dense[Indices::contiSolventEqIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = EvalWell(numWellEq_ + Indices::numEq, 1.0) - rv * rs;
if (d.value() == 0.0) {
OPM_DEFLOG_THROW(NumericalIssue, "Zero d value obtained for well " << baseif_.name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv, deferred_logger);
}
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
//std::cout << "tmp_oil " <
void
StandardWellEval::
init(std::vector& perf_depth,
const std::vector& depth_arg,
const int num_cells,
const bool has_polymermw)
{
perf_depth.resize(baseif_.numPerfs(), 0.);
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const int cell_idx = baseif_.cells()[perf];
perf_depth[perf] = depth_arg[cell_idx];
}
// counting/updating primary variable numbers
if (has_polymermw) {
if (baseif_.isInjector()) {
// adding a primary variable for water perforation rate per connection
numWellEq_ += baseif_.numPerfs();
// adding a primary variable for skin pressure per connection
numWellEq_ += baseif_.numPerfs();
}
}
// with the updated numWellEq_, we can initialize the primary variables and matrices now
primary_variables_.resize(numWellEq_, 0.0);
primary_variables_evaluation_.resize(numWellEq_, EvalWell{numWellEq_ + Indices::numEq, 0.0});
// setup sparsity pattern for the matrices
//[A C^T [x = [ res
// B D] x_well] res_well]
// set the size of the matrices
this->invDuneD_.setSize(1, 1, 1);
this->duneB_.setSize(1, num_cells, baseif_.numPerfs());
this->duneC_.setSize(1, num_cells, baseif_.numPerfs());
for (auto row=this->invDuneD_.createbegin(), end = this->invDuneD_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
// the block size is run-time determined now
this->invDuneD_[0][0].resize(numWellEq_, numWellEq_);
for (auto row = this->duneB_.createbegin(), end = this->duneB_.createend(); row!=end; ++row) {
for (int perf = 0 ; perf < baseif_.numPerfs(); ++perf) {
const int cell_idx = baseif_.cells()[perf];
row.insert(cell_idx);
}
}
for (int perf = 0 ; perf < baseif_.numPerfs(); ++perf) {
const int cell_idx = baseif_.cells()[perf];
// the block size is run-time determined now
this->duneB_[0][cell_idx].resize(numWellEq_, Indices::numEq);
}
// make the C^T matrix
for (auto row = this->duneC_.createbegin(), end = this->duneC_.createend(); row!=end; ++row) {
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const int cell_idx = baseif_.cells()[perf];
row.insert(cell_idx);
}
}
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
const int cell_idx = baseif_.cells()[perf];
this->duneC_[0][cell_idx].resize(numWellEq_, Indices::numEq);
}
this->resWell_.resize(1);
// the block size of resWell_ is also run-time determined now
this->resWell_[0].resize(numWellEq_);
// resize temporary class variables
this->Bx_.resize( this->duneB_.N() );
for (unsigned i = 0; i < this->duneB_.N(); ++i) {
this->Bx_[i].resize(numWellEq_);
}
this->invDrw_.resize( this->invDuneD_.N() );
for (unsigned i = 0; i < this->invDuneD_.N(); ++i) {
this->invDrw_[i].resize(numWellEq_);
}
}
#if HAVE_CUDA || HAVE_OPENCL
template
void
StandardWellEval::
addWellContribution(WellContributions& wellContribs) const
{
std::vector colIndices;
std::vector nnzValues;
colIndices.reserve(this->duneB_.nonzeroes());
nnzValues.reserve(this->duneB_.nonzeroes()*numStaticWellEq * Indices::numEq);
// duneC
for ( auto colC = this->duneC_[0].begin(), endC = this->duneC_[0].end(); colC != endC; ++colC )
{
colIndices.emplace_back(colC.index());
for (int i = 0; i < numStaticWellEq; ++i) {
for (int j = 0; j < Indices::numEq; ++j) {
nnzValues.emplace_back((*colC)[i][j]);
}
}
}
wellContribs.addMatrix(WellContributions::MatrixType::C, colIndices.data(), nnzValues.data(), this->duneC_.nonzeroes());
// invDuneD
colIndices.clear();
nnzValues.clear();
colIndices.emplace_back(0);
for (int i = 0; i < numStaticWellEq; ++i)
{
for (int j = 0; j < numStaticWellEq; ++j) {
nnzValues.emplace_back(this->invDuneD_[0][0][i][j]);
}
}
wellContribs.addMatrix(WellContributions::MatrixType::D, colIndices.data(), nnzValues.data(), 1);
// duneB
colIndices.clear();
nnzValues.clear();
for ( auto colB = this->duneB_[0].begin(), endB = this->duneB_[0].end(); colB != endB; ++colB )
{
colIndices.emplace_back(colB.index());
for (int i = 0; i < numStaticWellEq; ++i) {
for (int j = 0; j < Indices::numEq; ++j) {
nnzValues.emplace_back((*colB)[i][j]);
}
}
}
wellContribs.addMatrix(WellContributions::MatrixType::B, colIndices.data(), nnzValues.data(), this->duneB_.nonzeroes());
}
#endif
#define INSTANCE(A,...) \
template class StandardWellEval,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilDefaultIndexTraits,BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u>)
// Two phase
INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u>)
// Blackoil
INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,0u,false,false,0u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,0u,true,false,0u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,0u,false,true,0u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<1u,0u,0u,0u,false,false,0u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,1u,0u,0u,false,false,0u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,1u,0u,false,false,0u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,1u,false,false,0u>)
INSTANCE(BlackOilDefaultIndexTraits,BlackOilIndices<0u,0u,0u,1u,false,false,1u>)
// Alternative indices
INSTANCE(EclAlternativeBlackOilIndexTraits,BlackOilIndices<0u,0u,0u,0u,false,false,0u>)
}