// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_DUNE_FEM
#include
#include
#include
#endif // HAVE_DUNE_FEM
#if HAVE_DUNE_ALUGRID
#include
#include
#include "alucartesianindexmapper.hh"
#endif // HAVE_DUNE_ALUGRID
#include
#include
#include
#include
#include
namespace {
std::vector toVector(const std::set& string_set)
{
return { string_set.begin(), string_set.end() };
}
}
namespace Opm {
// global id
class GlobalCellIndex
{
int globalId_;
int localIndex_;
bool isInterior_;
public:
GlobalCellIndex()
: globalId_(-1)
, localIndex_(-1)
, isInterior_(true)
{}
void setGhost()
{ isInterior_ = false; }
void setId(int globalId)
{ globalId_ = globalId; }
void setIndex(int localIndex)
{ localIndex_ = localIndex; }
int localIndex () const
{ return localIndex_; }
int id () const
{ return globalId_; }
bool isInterior() const
{ return isInterior_; }
};
using IndexMapType = std::vector;
using IndexMapStorageType = std::vector;
using P2PCommunicatorType = Dune::Point2PointCommunicator;
using MessageBufferType = typename P2PCommunicatorType::MessageBufferType;
class DistributeIndexMapping : public P2PCommunicatorType::DataHandleInterface
{
protected:
const std::vector& distributedGlobalIndex_;
IndexMapType& localIndexMap_;
IndexMapStorageType& indexMaps_;
std::map globalPosition_;
std::set& recv_;
std::vector& ranks_;
public:
DistributeIndexMapping(const std::vector& globalIndex,
const std::vector& distributedGlobalIndex,
IndexMapType& localIndexMap,
IndexMapStorageType& indexMaps,
std::vector& ranks,
std::set& recv,
bool isIORank)
: distributedGlobalIndex_(distributedGlobalIndex)
, localIndexMap_(localIndexMap)
, indexMaps_(indexMaps)
, globalPosition_()
, recv_(recv)
, ranks_(ranks)
{
size_t size = globalIndex.size();
// create mapping globalIndex --> localIndex
if ( isIORank ) // ioRank
for (size_t index = 0; index < size; ++index)
globalPosition_.insert(std::make_pair(globalIndex[index], index));
// we need to create a mapping from local to global
if (!indexMaps_.empty()) {
if (isIORank)
ranks_.resize(size, -1);
// for the ioRank create a localIndex to index in global state map
IndexMapType& indexMap = indexMaps_.back();
size_t localSize = localIndexMap_.size();
indexMap.resize(localSize);
for (size_t i=0; isecond;
// Using max should be backwards compatible
ranks_[entry] = std::max(ranks_[entry], rank);
}
if (rankIt != recv_.end())
++rankIt;
}
#ifndef NDEBUG
for (const auto& rank: ranks_)
assert(rank>=0);
#endif
}
}
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as execpted");
// pack all interior global cell id's
int size = localIndexMap_.size();
buffer.write(size);
for (int index = 0; index < size; ++index) {
int globalIdx = distributedGlobalIndex_[localIndexMap_[index]];
buffer.write(globalIdx);
}
}
void unpack(int link, MessageBufferType& buffer)
{
// get index map for current link
IndexMapType& indexMap = indexMaps_[link];
assert(!globalPosition_.empty());
// unpack all interior global cell id's
int numCells = 0;
buffer.read(numCells);
indexMap.resize(numCells);
for (int index = 0; index < numCells; ++index) {
buffer.read(indexMap[index]);
}
}
};
/// \brief Communication handle to scatter the global index
template
class ElementIndexScatterHandle
{
public:
ElementIndexScatterHandle(const EquilMapper& sendMapper, const Mapper& recvMapper, std::vector& elementIndices)
: sendMapper_(sendMapper), recvMapper_(recvMapper), elementIndices_(elementIndices)
{}
using DataType = int;
bool fixedSize(int /*dim*/, int /*codim*/)
{
return true;
}
template
std::size_t size(const T&)
{
return 1;
}
template
void gather(B& buffer, const T& t)
{
buffer.write(sendMapper_.index(t));
}
template
void scatter(B& buffer, const T& t, std::size_t)
{
buffer.read(elementIndices_[recvMapper_.index(t)]);
}
bool contains(int dim, int codim)
{
return dim==3 && codim==0;
}
private:
const EquilMapper& sendMapper_;
const Mapper& recvMapper_;
std::vector& elementIndices_;
};
/// \brief Communication handle to scatter the global index
template
class ElementIndexHandle
{
public:
ElementIndexHandle(const Mapper& mapper, std::vector& elementIndices)
: mapper_(mapper), elementIndices_(elementIndices)
{}
using DataType = int;
bool fixedSize(int /*dim*/, int /*codim*/)
{
return true;
}
template
std::size_t size(const T&)
{
return 1;
}
template
void gather(B& buffer, const T& t)
{
buffer.write(elementIndices_[mapper_.index(t)]);
}
template
void scatter(B& buffer, const T& t, std::size_t)
{
buffer.read(elementIndices_[mapper_.index(t)]);
}
bool contains(int dim, int codim)
{
return dim==3 && codim==0;
}
private:
const Mapper& mapper_;
std::vector& elementIndices_;
};
class PackUnPackCellData : public P2PCommunicatorType::DataHandleInterface
{
const data::Solution& localCellData_;
data::Solution& globalCellData_;
const IndexMapType& localIndexMap_;
const IndexMapStorageType& indexMaps_;
public:
PackUnPackCellData(const data::Solution& localCellData,
data::Solution& globalCellData,
const IndexMapType& localIndexMap,
const IndexMapStorageType& indexMaps,
size_t globalSize,
bool isIORank)
: localCellData_(localCellData)
, globalCellData_(globalCellData)
, localIndexMap_(localIndexMap)
, indexMaps_(indexMaps)
{
if (isIORank) {
// add missing data to global cell data
for (const auto& pair : localCellData_) {
const std::string& key = pair.first;
std::size_t containerSize = globalSize;
[[maybe_unused]] auto ret = globalCellData_.insert(key, pair.second.dim,
std::vector(containerSize),
pair.second.target);
assert(ret.second);
}
MessageBufferType buffer;
pack(0, buffer);
// the last index map is the local one
doUnpack(indexMaps.back(), buffer);
}
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
// write all cell data registered in local state
for (const auto& pair : localCellData_) {
const auto& data = pair.second.data;
// write all data from local data to buffer
write(buffer, localIndexMap_, data);
}
}
void doUnpack(const IndexMapType& indexMap, MessageBufferType& buffer)
{
// we loop over the data as
// its order governs the order the data got received.
for (auto& pair : localCellData_) {
const std::string& key = pair.first;
auto& data = globalCellData_.data(key);
//write all data from local cell data to buffer
read(buffer, indexMap, data);
}
}
// unpack all data associated with link
void unpack(int link, MessageBufferType& buffer)
{ doUnpack(indexMaps_[link], buffer); }
protected:
template
void write(MessageBufferType& buffer,
const IndexMapType& localIndexMap,
const Vector& vector,
unsigned int offset = 0,
unsigned int stride = 1) const
{
unsigned int size = localIndexMap.size();
buffer.write(size);
assert(vector.size() >= stride * size);
for (unsigned int i=0; i
void read(MessageBufferType& buffer,
const IndexMapType& indexMap,
Vector& vector,
unsigned int offset = 0,
unsigned int stride = 1) const
{
unsigned int size = 0;
buffer.read(size);
assert(size == indexMap.size());
for (unsigned int i=0; ipack(0, buffer);
// pass a dummy_link to satisfy virtual class
const int dummyLink = -1;
this->unpack(dummyLink, buffer);
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0) {
throw std::logic_error {
"link in method pack is not 0 as expected"
};
}
// write all group and network (node/branch) data
this->localGroupAndNetworkData_.write(buffer);
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{ this->globalGroupAndNetworkData_.read(buffer); }
};
class PackUnPackBlockData : public P2PCommunicatorType::DataHandleInterface
{
const std::map, double>& localBlockData_;
std::map, double>& globalBlockValues_;
public:
PackUnPackBlockData(const std::map, double>& localBlockData,
std::map, double>& globalBlockValues,
bool isIORank)
: localBlockData_(localBlockData)
, globalBlockValues_(globalBlockValues)
{
if (isIORank) {
MessageBufferType buffer;
pack(0, buffer);
// pass a dummyLink to satisfy virtual class
int dummyLink = -1;
unpack(dummyLink, buffer);
}
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
// write all block data
unsigned int size = localBlockData_.size();
buffer.write(size);
for (const auto& map : localBlockData_) {
buffer.write(map.first.first);
buffer.write(map.first.second);
buffer.write(map.second);
}
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{
// read all block data
unsigned int size = 0;
buffer.read(size);
for (size_t i = 0; i < size; ++i) {
std::string name;
int idx;
double data;
buffer.read(name);
buffer.read(idx);
buffer.read(data);
globalBlockValues_[std::make_pair(name, idx)] = data;
}
}
};
class PackUnPackWBPData : public P2PCommunicatorType::DataHandleInterface
{
const data::WellBlockAveragePressures& localWBPData_;
data::WellBlockAveragePressures& globalWBPValues_;
public:
PackUnPackWBPData(const data::WellBlockAveragePressures& localWBPData,
data::WellBlockAveragePressures& globalWBPValues,
const bool isIORank)
: localWBPData_ (localWBPData)
, globalWBPValues_(globalWBPValues)
{
if (! isIORank) {
return;
}
MessageBufferType buffer;
pack(0, buffer);
// Pass a dummy link to satisfy base class API requirement
const int dummyLink = -1;
unpack(dummyLink, buffer);
}
// Pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// We should only get one link
if (link != 0) {
throw std::logic_error {
"link (" + std::to_string(link) +
") in method pack() is not 0 as expected"
};
}
// Write all local, per-well, WBP data
this->localWBPData_.write(buffer);
}
// Unpack all data associated with link
void unpack([[maybe_unused]] const int link,
MessageBufferType& buffer)
{
this->globalWBPValues_.read(buffer);
}
};
class PackUnPackWellTestState : public P2PCommunicatorType::DataHandleInterface
{
public:
PackUnPackWellTestState(const WellTestState& localWTestState,
WellTestState& globalWTestState,
bool isIORank)
: local_(localWTestState)
, global_(globalWTestState)
{
if (isIORank) {
MessageBufferType buffer;
pack(0, buffer);
// pass a dummyLink to satisfy virtual class
int dummyLink = -1;
unpack(dummyLink, buffer);
}
}
void pack(int link, MessageBufferType& buffer) {
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
this->local_.pack(buffer);
}
void unpack(int, MessageBufferType& buffer) {
this->global_.unpack(buffer);
}
private:
const WellTestState& local_;
WellTestState& global_;
};
class PackUnPackAquiferData : public P2PCommunicatorType::DataHandleInterface
{
const data::Aquifers& localAquiferData_;
data::Aquifers& globalAquiferData_;
public:
PackUnPackAquiferData(const data::Aquifers& localAquiferData,
data::Aquifers& globalAquiferData,
bool isIORank)
: localAquiferData_(localAquiferData)
, globalAquiferData_(globalAquiferData)
{
if (isIORank) {
MessageBufferType buffer;
pack(0, buffer);
// pass a dummyLink to satisfy virtual class
int dummyLink = -1;
unpack(dummyLink, buffer);
}
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
int size = localAquiferData_.size();
buffer.write(size);
for (const auto& [key, data] : localAquiferData_) {
buffer.write(key);
data.write(buffer);
}
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{
int size;
buffer.read(size);
for (int i = 0; i < size; ++i) {
int key;
buffer.read(key);
data::AquiferData data;
data.read(buffer);
auto& aq = this->globalAquiferData_[key];
this->unpackCommon(data, aq);
if (auto const* aquFet = data.typeData.get();
aquFet != nullptr)
{
this->unpackAquFet(*aquFet, aq);
}
else if (auto const* aquCT = data.typeData.get();
aquCT != nullptr)
{
this->unpackCarterTracy(*aquCT, aq);
}
else if (auto const* aquNum = data.typeData.get();
aquNum != nullptr)
{
this->unpackNumericAquifer(*aquNum, aq);
}
}
}
private:
void unpackCommon(const data::AquiferData& data, data::AquiferData& aq)
{
aq.aquiferID = std::max(aq.aquiferID, data.aquiferID);
aq.pressure = std::max(aq.pressure, data.pressure);
aq.initPressure = std::max(aq.initPressure, data.initPressure);
aq.datumDepth = std::max(aq.datumDepth, data.datumDepth);
aq.fluxRate += data.fluxRate;
aq.volume += data.volume;
}
void unpackAquFet(const data::FetkovichData& aquFet, data::AquiferData& aq)
{
if (! aq.typeData.is()) {
auto* tData = aq.typeData.create();
*tData = aquFet;
}
else {
const auto& src = aquFet;
auto& dst = *aq.typeData.getMutable();
dst.initVolume = std::max(dst.initVolume , src.initVolume);
dst.prodIndex = std::max(dst.prodIndex , src.prodIndex);
dst.timeConstant = std::max(dst.timeConstant, src.timeConstant);
}
}
void unpackCarterTracy(const data::CarterTracyData& aquCT, data::AquiferData& aq)
{
if (! aq.typeData.is()) {
auto* tData = aq.typeData.create();
*tData = aquCT;
}
else {
const auto& src = aquCT;
auto& dst = *aq.typeData.getMutable();
dst.timeConstant = std::max(dst.timeConstant , src.timeConstant);
dst.influxConstant = std::max(dst.influxConstant, src.influxConstant);
dst.waterDensity = std::max(dst.waterDensity , src.waterDensity);
dst.waterViscosity = std::max(dst.waterViscosity, src.waterViscosity);
dst.dimensionless_time = std::max(dst.dimensionless_time , src.dimensionless_time);
dst.dimensionless_pressure = std::max(dst.dimensionless_pressure, src.dimensionless_pressure);
}
}
void unpackNumericAquifer(const data::NumericAquiferData& aquNum, data::AquiferData& aq)
{
if (! aq.typeData.is()) {
auto* tData = aq.typeData.create();
*tData = aquNum;
}
else {
const auto& src = aquNum;
auto& dst = *aq.typeData.getMutable();
std::transform(src.initPressure.begin(),
src.initPressure.end(),
dst.initPressure.begin(),
dst.initPressure.begin(),
[](const double p0_1, const double p0_2)
{
return std::max(p0_1, p0_2);
});
}
}
};
class PackUnpackInterRegFlows : public P2PCommunicatorType::DataHandleInterface
{
const EclInterRegFlowMap& localInterRegFlows_;
EclInterRegFlowMap& globalInterRegFlows_;
public:
PackUnpackInterRegFlows(const EclInterRegFlowMap& localInterRegFlows,
EclInterRegFlowMap& globalInterRegFlows,
const bool isIORank)
: localInterRegFlows_(localInterRegFlows)
, globalInterRegFlows_(globalInterRegFlows)
{
if (! isIORank) { return; }
MessageBufferType buffer;
this->pack(0, buffer);
// pass a dummy_link to satisfy virtual class
const int dummyLink = -1;
this->unpack(dummyLink, buffer);
}
// pack all data associated with link
void pack(int link, MessageBufferType& buffer)
{
// we should only get one link
if (link != 0) {
throw std::logic_error {
"link in method pack is not 0 as expected"
};
}
// write all inter-region flow data
this->localInterRegFlows_.write(buffer);
}
// unpack all data associated with link
void unpack(int /*link*/, MessageBufferType& buffer)
{ this->globalInterRegFlows_.read(buffer); }
};
class PackUnpackFlows : public P2PCommunicatorType::DataHandleInterface
{
const std::array, std::vector>>, 3>& localFlows_;
std::array, std::vector>>, 3>& globalFlows_;
public:
PackUnpackFlows(const std::array, std::vector>>, 3> & localFlows,
std::array, std::vector>>, 3>& globalFlows,
const bool isIORank)
: localFlows_(localFlows)
, globalFlows_(globalFlows)
{
if (! isIORank) { return; }
MessageBufferType buffer;
this->pack(0, buffer);
// pass a dummy_link to satisfy virtual class
const int dummyLink = -1;
this->unpack(dummyLink, buffer);
}
void pack(int link, MessageBufferType& buffer)
{
if (link != 0)
throw std::logic_error("link in method pack is not 0 as expected");
for (int i = 0; i < 3; ++i) {
const auto& name = localFlows_[i].first;
buffer.write(name);
unsigned int size = localFlows_[i].second.first.size();
buffer.write(size);
for (unsigned int j = 0; j < size; ++j) {
const auto& nncIdx = localFlows_[i].second.first[j];
buffer.write(nncIdx);
const auto& flows = localFlows_[i].second.second[j];
buffer.write(flows);
}
}
}
void unpack(int /*link*/, MessageBufferType& buffer)
{
for (int i = 0; i < 3; ++i) {
std::string name;
buffer.read(name);
globalFlows_[i].first = name;
unsigned int size = 0;
buffer.read(size);
for (unsigned int j = 0; j < size; ++j) {
int nncIdx;
double data;
buffer.read(nncIdx);
buffer.read(data);
if (nncIdx < 0)
continue;
// This array is initialized in the collect(...) method below
globalFlows_[i].second.second[nncIdx] = data;
}
}
}
};
template
CollectDataToIORank::
CollectDataToIORank(const Grid& grid, const EquilGrid* equilGrid,
const GridView& localGridView,
const Dune::CartesianIndexMapper& cartMapper,
const Dune::CartesianIndexMapper* equilCartMapper,
const std::set& fipRegionsInterregFlow)
: toIORankComm_(grid.comm())
, globalInterRegFlows_(EclInterRegFlowMap::createMapFromNames(toVector(fipRegionsInterregFlow)))
{
// index maps only have to be build when reordering is needed
if (!needsReordering && !isParallel())
return;
const CollectiveCommunication& comm = grid.comm();
{
std::set send, recv;
using EquilGridView = typename EquilGrid::LeafGridView;
typename std::is_same::type isSameGrid;
typedef Dune::MultipleCodimMultipleGeomTypeMapper ElementMapper;
ElementMapper elemMapper(localGridView, Dune::mcmgElementLayout());
sortedCartesianIdx_.reserve(localGridView.size(0));
for (const auto& elem : elements(localGridView))
{
auto idx = elemMapper.index(elem);
sortedCartesianIdx_.push_back(cartMapper.cartesianIndex(idx));
}
std::sort(sortedCartesianIdx_.begin(), sortedCartesianIdx_.end());
localIdxToGlobalIdx_.resize(localGridView.size(0), -1);
// the I/O rank receives from all other ranks
if (isIORank()) {
// We need a mapping from local to global grid, here we
// use equilGrid which represents a view on the global grid
// reserve memory
const size_t globalSize = equilGrid->leafGridView().size(0);
globalCartesianIndex_.resize(globalSize, -1);
const EquilGridView equilGridView = equilGrid->leafGridView();
using EquilElementMapper = Dune::MultipleCodimMultipleGeomTypeMapper;
EquilElementMapper equilElemMapper(equilGridView, Dune::mcmgElementLayout());
// Scatter the global index to local index for lookup during restart
if constexpr (isSameGrid) {
ElementIndexScatterHandle handle(equilElemMapper, elemMapper, localIdxToGlobalIdx_);
grid.scatterData(handle);
}
// loop over all elements (global grid) and store Cartesian index
for (const auto& elem : elements(equilGrid->leafGridView())) {
int elemIdx = equilElemMapper.index(elem);
int cartElemIdx = equilCartMapper->cartesianIndex(elemIdx);
globalCartesianIndex_[elemIdx] = cartElemIdx;
}
for (int i = 0; i < comm.size(); ++i) {
if (i != ioRank)
recv.insert(i);
}
}
else
{
// all other simply send to the I/O rank
send.insert(ioRank);
// Scatter the global index to local index for lookup during restart
// This is a bit hacky since the type differs from the iorank.
// But should work since we only receive, i.e. use the second parameter.
if constexpr (isSameGrid) {
ElementIndexScatterHandle handle(elemMapper, elemMapper, localIdxToGlobalIdx_);
grid.scatterData(handle);
}
}
// Sync the global element indices
if constexpr (isSameGrid) {
ElementIndexHandle handle(elemMapper, localIdxToGlobalIdx_);
grid.communicate(handle, Dune::InteriorBorder_All_Interface,
Dune::ForwardCommunication);
}
localIndexMap_.clear();
const size_t gridSize = grid.size(0);
localIndexMap_.reserve(gridSize);
// store the local Cartesian index
IndexMapType distributedCartesianIndex;
distributedCartesianIndex.resize(gridSize, -1);
// A mapping for the whole grid (including the ghosts) is needed for restarts
for (const auto& elem : elements(localGridView)) {
int elemIdx = elemMapper.index(elem);
distributedCartesianIndex[elemIdx] = cartMapper.cartesianIndex(elemIdx);
// only store interior element for collection
//assert(element.partitionType() == Dune::InteriorEntity);
localIndexMap_.push_back(elemIdx);
}
// insert send and recv linkage to communicator
toIORankComm_.insertRequest(send, recv);
// need an index map for each rank
indexMaps_.clear();
indexMaps_.resize(comm.size());
// distribute global id's to io rank for later association of dof's
DistributeIndexMapping distIndexMapping(globalCartesianIndex_,
distributedCartesianIndex,
localIndexMap_,
indexMaps_,
globalRanks_,
recv,
isIORank());
toIORankComm_.exchange(distIndexMapping);
}
}
template
void CollectDataToIORank::
collect(const data::Solution& localCellData,
const std::map, double>& localBlockData,
const data::Wells& localWellData,
const data::WellBlockAveragePressures& localWBPData,
const data::GroupAndNetworkValues& localGroupAndNetworkData,
const data::Aquifers& localAquiferData,
const WellTestState& localWellTestState,
const EclInterRegFlowMap& localInterRegFlows,
const std::array, std::vector>>, 3>& localFlowsn,
const std::array, std::vector>>, 3>& localFloresn)
{
globalCellData_ = {};
globalBlockData_.clear();
globalWellData_.clear();
globalWBPData_.values.clear();
globalGroupAndNetworkData_.clear();
globalAquiferData_.clear();
globalWellTestState_.clear();
this->globalInterRegFlows_.clear();
globalFlowsn_ = {};
globalFloresn_ = {};
// index maps only have to be build when reordering is needed
if(!needsReordering && !isParallel())
return;
// this also linearises the local buffers on ioRank
PackUnPackCellData packUnpackCellData {
localCellData,
this->globalCellData_,
this->localIndexMap_,
this->indexMaps_,
this->numCells(),
this->isIORank()
};
if (! isParallel()) {
// no need to collect anything.
return;
}
// Set the right sizes for Flowsn and Floresn
for (int i = 0; i < 3; ++i) {
unsigned int sizeFlr = localFloresn[i].second.first.size();
globalFloresn_[i].second.first.resize(sizeFlr, 0);
globalFloresn_[i].second.second.resize(sizeFlr, 0.0);
unsigned int sizeFlo = localFlowsn[i].second.first.size();
globalFlowsn_[i].second.first.resize(sizeFlo, 0);
globalFlowsn_[i].second.second.resize(sizeFlo, 0.0);
}
PackUnPackWellData packUnpackWellData {
localWellData,
this->globalWellData_,
this->isIORank()
};
PackUnPackGroupAndNetworkValues packUnpackGroupAndNetworkData {
localGroupAndNetworkData,
this->globalGroupAndNetworkData_,
this->isIORank()
};
PackUnPackBlockData packUnpackBlockData {
localBlockData,
this->globalBlockData_,
this->isIORank()
};
PackUnPackWBPData packUnpackWBPData {
localWBPData,
this->globalWBPData_,
this->isIORank()
};
PackUnPackAquiferData packUnpackAquiferData {
localAquiferData,
this->globalAquiferData_,
this->isIORank()
};
PackUnPackWellTestState packUnpackWellTestState {
localWellTestState,
this->globalWellTestState_,
this->isIORank()
};
PackUnpackInterRegFlows packUnpackInterRegFlows {
localInterRegFlows,
this->globalInterRegFlows_,
this->isIORank()
};
PackUnpackFlows packUnpackFlowsn {
localFlowsn,
this->globalFlowsn_,
this->isIORank()
};
PackUnpackFlows packUnpackFloresn {
localFloresn,
this->globalFloresn_,
this->isIORank()
};
toIORankComm_.exchange(packUnpackCellData);
toIORankComm_.exchange(packUnpackWellData);
toIORankComm_.exchange(packUnpackGroupAndNetworkData);
toIORankComm_.exchange(packUnpackBlockData);
toIORankComm_.exchange(packUnpackWBPData);
toIORankComm_.exchange(packUnpackAquiferData);
toIORankComm_.exchange(packUnpackWellTestState);
toIORankComm_.exchange(packUnpackInterRegFlows);
toIORankComm_.exchange(packUnpackFlowsn);
toIORankComm_.exchange(packUnpackFloresn);
#ifndef NDEBUG
// make sure every process is on the same page
toIORankComm_.barrier();
#endif
}
template
int CollectDataToIORank::
localIdxToGlobalIdx(unsigned localIdx) const
{
if (!isParallel()) {
return localIdx;
}
if (this->localIdxToGlobalIdx_.empty()) {
throw std::logic_error("index map is not created on this rank");
}
if (localIdx > this->localIdxToGlobalIdx_.size()) {
throw std::logic_error("local index is outside map range");
}
return this->localIdxToGlobalIdx_[localIdx];
}
template
bool CollectDataToIORank::
isCartIdxOnThisRank(int cartIdx) const
{
if (! this->isParallel()) {
return true;
}
assert (! needsReordering);
auto candidate = std::lower_bound(this->sortedCartesianIdx_.begin(),
this->sortedCartesianIdx_.end(),
cartIdx);
return (candidate != sortedCartesianIdx_.end())
&& (*candidate == cartIdx);
}
#if HAVE_DUNE_FEM
template class CollectDataToIORank>>>;
template class CollectDataToIORank > >;
#ifdef HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class CollectDataToIORank>>>;
template class CollectDataToIORank>>;
#endif //HAVE_DUNE_ALUGRID
#else // ! HAVE_DUNE_FEM
template class CollectDataToIORank>>;
#ifdef HAVE_DUNE_ALUGRID
#if HAVE_MPI
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
template class CollectDataToIORank>>;
#endif //HAVE_DUNE_ALUGRID
#endif // ! HAVE_DUNE_FEM
template class CollectDataToIORank,
Dune::PolyhedralGrid<3,3,double>,
Dune::GridView>>;
} // end namespace Opm