/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_AQUIFETP_HEADER_INCLUDED
#define OPM_AQUIFETP_HEADER_INCLUDED
#include
#include
#include
#include
namespace Opm
{
template
class AquiferFetkovich : public AquiferInterface
{
public:
typedef AquiferInterface Base;
using typename Base::BlackoilIndices;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using typename Base::ElementMapper;
using Base::waterCompIdx;
using Base::waterPhaseIdx;
AquiferFetkovich(const std::vector& connections,
const Simulator& ebosSimulator,
const Aquifetp::AQUFETP_data& aqufetp_data)
: Base(aqufetp_data.aquiferID, connections, ebosSimulator)
, aqufetp_data_(aqufetp_data)
{
}
void endTimeStep() override
{
for (const auto& q : this->Qai_) {
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
aquifer_pressure_ = aquiferPressure();
}
}
Opm::data::AquiferData aquiferData() const
{
// TODO: how to unify the two functions?
data::AquiferData data;
data.aquiferID = this->aquiferID;
data.pressure = this->aquifer_pressure_;
data.fluxRate = 0.;
for (const auto& q : this->Qai_) {
data.fluxRate += q.value();
}
data.volume = this->W_flux_.value();
data.initPressure = this->pa0_;
data.type = Opm::data::AquiferType::Fetkovich;
// Not handling std::shared_ptr aquFet for now,
// because we do not need it yet
return data;
}
protected:
// Aquifer Fetkovich Specific Variables
// TODO: using const reference here will cause segmentation fault, which is very strange
const Aquifetp::AQUFETP_data aqufetp_data_;
Scalar aquifer_pressure_; // aquifer
inline void initializeConnections() override
{
this->cell_depth_.resize(this->size(), this->aquiferDepth());
this->alphai_.resize(this->size(), 1.0);
this->faceArea_connected_.resize(this->size(), 0.0);
// Translate the C face tag into the enum used by opm-parser's TransMult class
Opm::FaceDir::DirEnum faceDirection;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < this->size(); ++idx) {
const auto global_index = this->connections_[idx].global_index;
const int cell_index = this->ebos_simulator_.vanguard().compressedIndex(global_index);
if (cell_index < 0) //the global_index is not part of this grid
continue;
this->cellToConnectionIdx_[cell_index] = idx;
this->cell_depth_.at(idx) = this->ebos_simulator_.vanguard().cellCenterDepth(cell_index);
}
// get areas for all connections
const auto& gridView = this->ebos_simulator_.vanguard().gridView();
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
auto elemIt = gridView.template begin*codim=*/ 0>();
const auto& elemEndIt = gridView.template end*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
unsigned cell_index = elemMapper.index(elem);
int idx = this->cellToConnectionIdx_[cell_index];
// only deal with connections given by the aquifer
if( idx < 0)
continue;
if (!this->connections_[idx].influx_coeff.first) { // influx_coeff is defaulted
auto isIt = gridView.ibegin(elem);
const auto& isEndIt = gridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
// only deal with grid boundaries
if (!intersection.boundary())
continue;
int insideFaceIdx = intersection.indexInInside();
switch (insideFaceIdx) {
case 0:
faceDirection = Opm::FaceDir::XMinus;
break;
case 1:
faceDirection = Opm::FaceDir::XPlus;
break;
case 2:
faceDirection = Opm::FaceDir::YMinus;
break;
case 3:
faceDirection = Opm::FaceDir::YPlus;
break;
case 4:
faceDirection = Opm::FaceDir::ZMinus;
break;
case 5:
faceDirection = Opm::FaceDir::ZPlus;
break;
default:
OPM_THROW(Opm::NumericalIssue,
"Initialization of Aquifer Fetkovich problem. Make sure faceTag is correctly defined"); }
if (faceDirection == this->connections_[idx].face_dir) {
this->faceArea_connected_[idx] = this->getFaceArea(intersection, idx);
break;
}
}
} else {
this->faceArea_connected_.at(idx) = this->connections_[idx].influx_coeff.second;
}
denom_face_areas += (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx));
}
const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon());
for (size_t idx = 0; idx < this->size(); ++idx) {
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
? // Prevent no connection NaNs due to division by zero
0.
: (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx)) / denom_face_areas;
}
}
void assignRestartData(const data::AquiferData& xaq) override
{
if (xaq.type != data::AquiferType::Fetkovich) {
throw std::invalid_argument {"Analytic aquifer data for unexpected aquifer type "
"passed to Fetkovich aquifer"};
}
this->aquifer_pressure_ = xaq.pressure;
}
inline Eval dpai(int idx)
{
const Eval dp = aquifer_pressure_ - this->pressure_current_.at(idx)
+ this->rhow_[idx] * this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
return dp;
}
// This function implements Eq 5.12 of the EclipseTechnicalDescription
inline Scalar aquiferPressure()
{
Scalar Flux = this->W_flux_.value();
Scalar pa_ = this->pa0_ - Flux / (aqufetp_data_.C_t * aqufetp_data_.V0);
return pa_;
}
inline void calculateAquiferConstants() override
{
this->Tc_ = (aqufetp_data_.C_t * aqufetp_data_.V0) / aqufetp_data_.J;
}
// This function implements Eq 5.14 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
const Scalar td_Tc_ = simulator.timeStepSize() / this->Tc_;
const Scalar coef = (1 - exp(-td_Tc_)) / td_Tc_;
this->Qai_.at(idx) = this->alphai_[idx] * aqufetp_data_.J * dpai(idx) * coef;
}
inline void calculateAquiferCondition() override
{
this->rhow_.resize(this->size(), 0.);
if (this->solution_set_from_restart_) {
return;
}
if (!aqufetp_data_.p0.first) {
this->pa0_ = this->calculateReservoirEquilibrium();
} else {
this->pa0_ = aqufetp_data_.p0.second;
}
aquifer_pressure_ = this->pa0_;
}
virtual Scalar aquiferDepth() const override
{
return aqufetp_data_.d0;
}
}; // Class AquiferFetkovich
} // namespace Opm
#endif