/*
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Statoil ASA.
Copyright 2017, IRIS
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/**
* \file
* Facility for converting component rates at surface conditions to
* phase (voidage) rates at reservoir conditions.
*
* This uses the average hydrocarbon pressure to define fluid
* properties. The facility is intended to support Reservoir Voidage
* rates only ('RESV').
*/
namespace Opm {
namespace RateConverter {
/**
* Convenience tools for implementing the rate conversion
* facility.
*/
namespace Details {
namespace Select {
template
struct RegionIDParameter
{
using type =
typename std::remove_reference::type &;
};
template
struct RegionIDParameter
{
using type = RegionID;
};
} // Select
/**
* \brief Computes the temperature, pressure, and counter increment.
*
* In a parallel run only cells owned contribute to the cell average.
* \tparam is_parallel Whether this is a parallel run.
*/
template
struct AverageIncrementCalculator
{
/**
* \brief Computes the temperature, pressure, and counter increment.
* \param pressure The pressure.
* \param temperature The temperature.
* \param rs The rs.
* \param rv The rv.
* \param cell The current cell index.
* \param ownership A vector indicating whether a cell is owned
* by this process (value 1), or not (value 0).
* \param cell The cell index.
*/
std::tuple
operator()(const std::vector& pressure,
const std::vector& temperature,
const std::vector& rs,
const std::vector& rv,
const std::vector& ownership,
std::size_t cell){
if ( ownership[cell] )
{
return std::make_tuple(pressure[cell],
temperature[cell],
rs[cell],
rv[cell],
1);
}
else
{
return std::make_tuple(0, 0, 0, 0, 0);
}
}
};
template<>
struct AverageIncrementCalculator
{
std::tuple
operator()(const std::vector& pressure,
const std::vector& temperature,
const std::vector& rs,
const std::vector& rv,
const std::vector&,
std::size_t cell){
return std::make_tuple(pressure[cell],
temperature[cell],
rs[cell],
rv[cell],
1);
}
};
/**
* Provide mapping from Region IDs to user-specified collection
* of per-region attributes.
*
* \tparam RegionId Region identifier type. Must be hashable by
* \code std::hash<> \endcode. Typically a built-in integer
* type--e.g., \c int.
*
* \tparam Attributes User-defined type that represents
* collection of attributes that have meaning in a per-region
* aggregate sense. Must be copy-constructible.
*/
template
class RegionAttributes
{
public:
/**
* Expose \c RegionId as a vocabulary type for use in query
* methods.
*/
using RegionID =
typename Select::RegionIDParameter
::value>::type;
/**
* Constructor.
*
* \tparam RMap Class type that implements the RegionMapping
* protocol. Typically an instantiation of \code
* Opm::RegionMapping<> \endcode.
*
* \param[in] rmap Specific region mapping that provides
* reverse lookup from regions to cells.
*
* \param[in] attr Pre-constructed initialiser for \c
* Attributes.
*/
template
RegionAttributes(const RMap& rmap,
const Attributes& attr)
{
using VT = typename AttributeMap::value_type;
for (const auto& r : rmap.activeRegions()) {
auto v = std::make_unique(attr);
const auto stat = attr_.insert(VT(r, std::move(v)));
if (stat.second) {
// New value inserted.
const auto& cells = rmap.cells(r);
assert (! cells.empty());
// Region's representative cell.
stat.first->second->cell_ = cells[0];
}
}
}
/**
* Retrieve representative cell in region.
*
* \param[in] reg Specific region.
*
* \return Representative cell in region \p reg.
*/
int cell(const RegionID reg) const
{
return this->find(reg).cell_;
}
/**
* Request read-only access to region's attributes.
*
* \param[in] reg Specific region.
*
* \return Read-only access to region \p reg's per-region
* attributes.
*/
const Attributes& attributes(const RegionID reg) const
{
return this->find(reg).attr_;
}
/**
* Request modifiable access to region's attributes.
*
* \param[in] reg Specific region.
*
* \return Read-write access to region \p reg's per-region
* attributes.
*/
Attributes& attributes(const RegionID reg)
{
return this->find(reg).attr_;
}
private:
/**
* Aggregate per-region attributes along with region's
* representative cell.
*/
struct Value {
Value(const Attributes& attr)
: attr_(attr)
, cell_(-1)
{}
Attributes attr_;
int cell_;
};
using ID =
typename std::remove_reference::type;
using AttributeMap =
std::unordered_map>;
AttributeMap attr_;
/**
* Read-only access to region's properties.
*/
const Value& find(const RegionID reg) const
{
const auto& i = attr_.find(reg);
if (i == attr_.end()) {
throw std::invalid_argument("Unknown region ID");
}
return *i->second;
}
/**
* Read-write access to region's properties.
*/
Value& find(const RegionID reg)
{
const auto& i = attr_.find(reg);
if (i == attr_.end()) {
throw std::invalid_argument("Unknown region ID");
}
return *i->second;
}
};
/**
* Convenience functions for querying presence/absence of
* active phases.
*/
namespace PhaseUsed {
/**
* Active water predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not water is an active phase.
*/
inline bool
water(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Aqua ] != 0;
}
/**
* Active oil predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not oil is an active phase.
*/
inline bool
oil(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Liquid ] != 0;
}
/**
* Active gas predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not gas is an active phase.
*/
inline bool
gas(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Vapour ] != 0;
}
} // namespace PhaseUsed
/**
* Convenience functions for querying numerical IDs
* ("positions") of active phases.
*/
namespace PhasePos {
/**
* Numerical ID of active water phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of water if
* active, -1 if not.
*/
inline int
water(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::water(pu)) {
p = pu.phase_pos[ BlackoilPhases::Aqua ];
}
return p;
}
/**
* Numerical ID of active oil phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of oil if
* active, -1 if not.
*/
inline int
oil(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::oil(pu)) {
p = pu.phase_pos[ BlackoilPhases::Liquid ];
}
return p;
}
/**
* Numerical ID of active gas phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of gas if
* active, -1 if not.
*/
inline int
gas(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::gas(pu)) {
p = pu.phase_pos[ BlackoilPhases::Vapour ];
}
return p;
}
} // namespace PhasePos
} // namespace Details
/**
* Convert component rates at surface conditions to phase
* (voidage) rates at reservoir conditions.
*
* The conversion uses fluid properties evaluated at average
* hydrocarbon pressure in regions or field.
*
* \tparam FluidSystem Fluid system class. Expected to be a BlackOilFluidSystem
*
* \tparam Region Type of a forward region mapping. Expected
* to provide indexed access through \code operator[]()
* \endcode as well as inner types \c value_type, \c
* size_type, and \c const_iterator. Typically \code
* std::vector \endcode.
*/
template
class SurfaceToReservoirVoidage {
public:
/**
* Constructor.
*
* \param[in] region Forward region mapping. Often
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
* deck.
*/
SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage,
const Region& region)
: phaseUsage_(phaseUsage)
, rmap_ (region)
, attr_ (rmap_, Attributes())
{
}
/**
* Compute pore volume averaged hydrocarbon state pressure, rs and rv.
*
* Fluid properties are evaluated at average hydrocarbon
* state for purpose of conversion from surface rate to
* reservoir voidage rate.
*
*/
template
void defineState(const EbosSimulator& simulator)
{
// create map from cell to region
// and set all attributes to zero
for (const auto& reg : rmap_.activeRegions()) {
auto& ra = attr_.attributes(reg);
ra.pressure = 0.0;
ra.temperature = 0.0;
ra.rs = 0.0;
ra.rv = 0.0;
ra.pv = 0.0;
ra.saltConcentration = 0.0;
}
// quantities for pore volume average
std::unordered_map attributes_pv;
// quantities for hydrocarbon volume average
std::unordered_map attributes_hpv;
for (const auto& reg : rmap_.activeRegions()) {
attributes_pv.insert({reg, Attributes()});
attributes_hpv.insert({reg, Attributes()});
}
ElementContext elemCtx( simulator );
const auto& gridView = simulator.gridView();
const auto& comm = gridView.comm();
const auto& elemEndIt = gridView.template end*codim=*/0>();
for (auto elemIt = gridView.template begin*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
// use pore volume weighted averages.
const double pv_cell =
simulator.model().dofTotalVolume(cellIdx)
* intQuants.porosity().value();
// only count oil and gas filled parts of the domain
double hydrocarbon = 1.0;
const auto& pu = phaseUsage_;
if (Details::PhaseUsed::water(pu)) {
hydrocarbon -= fs.saturation(FluidSystem::waterPhaseIdx).value();
}
const int reg = rmap_.region(cellIdx);
assert(reg >= 0);
// sum p, rs, rv, and T.
const double hydrocarbonPV = pv_cell*hydrocarbon;
if (hydrocarbonPV > 0.) {
auto& attr = attributes_hpv[reg];
attr.pv += hydrocarbonPV;
if (Details::PhaseUsed::oil(pu)) {
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
attr.rs += fs.Rs().value() * hydrocarbonPV;
attr.rv += fs.Rv().value() * hydrocarbonPV;
attr.temperature += fs.temperature(FluidSystem::oilPhaseIdx).value() * hydrocarbonPV;
}
else{
assert(Details::PhaseUsed::gas(pu));
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
attr.temperature += fs.temperature(FluidSystem::gasPhaseIdx).value() * hydrocarbonPV;
}
attr.saltConcentration += fs.saltConcentration().value() * hydrocarbonPV;
}
if (pv_cell > 0.) {
auto& attr = attributes_pv[reg];
attr.pv += pv_cell;
if (Details::PhaseUsed::oil(pu)) {
attr.pressure += fs.pressure(FluidSystem::oilPhaseIdx).value() * pv_cell;
attr.rs += fs.Rs().value() * pv_cell;
attr.rv += fs.Rv().value() * pv_cell;
attr.temperature += fs.temperature(FluidSystem::oilPhaseIdx).value() * pv_cell;
}
else{
assert(Details::PhaseUsed::gas(pu));
attr.pressure += fs.pressure(FluidSystem::gasPhaseIdx).value() * pv_cell;
attr.temperature += fs.temperature(FluidSystem::gasPhaseIdx).value() * pv_cell;
}
attr.saltConcentration += fs.saltConcentration().value() * pv_cell;
}
}
for (const auto& reg : rmap_.activeRegions()) {
auto& ra = attr_.attributes(reg);
const double hpv_sum = comm.sum(attributes_hpv[reg].pv);
// TODO: should we have some epsilon here instead of zero?
if (hpv_sum > 0.) {
const auto& attri_hpv = attributes_hpv[reg];
const double p_hpv_sum = comm.sum(attri_hpv.pressure);
const double T_hpv_sum = comm.sum(attri_hpv.temperature);
const double rs_hpv_sum = comm.sum(attri_hpv.rs);
const double rv_hpv_sum = comm.sum(attri_hpv.rv);
const double sc_hpv_sum = comm.sum(attri_hpv.saltConcentration);
ra.pressure = p_hpv_sum / hpv_sum;
ra.temperature = T_hpv_sum / hpv_sum;
ra.rs = rs_hpv_sum / hpv_sum;
ra.rv = rv_hpv_sum / hpv_sum;
ra.pv = hpv_sum;
ra.saltConcentration = sc_hpv_sum / hpv_sum;
} else {
// using the pore volume to do the averaging
const auto& attri_pv = attributes_pv[reg];
const double pv_sum = comm.sum(attri_pv.pv);
assert(pv_sum > 0.);
const double p_pv_sum = comm.sum(attri_pv.pressure);
const double T_pv_sum = comm.sum(attri_pv.temperature);
const double rs_pv_sum = comm.sum(attri_pv.rs);
const double rv_pv_sum = comm.sum(attri_pv.rv);
const double sc_pv_sum = comm.sum(attri_pv.saltConcentration);
ra.pressure = p_pv_sum / pv_sum;
ra.temperature = T_pv_sum / pv_sum;
ra.rs = rs_pv_sum / pv_sum;
ra.rv = rv_pv_sum / pv_sum;
ra.pv = pv_sum;
ra.saltConcentration = sc_pv_sum / pv_sum;
}
}
}
/**
* Region identifier.
*
* Integral type.
*/
typedef typename RegionMapping::RegionId RegionId;
/**
* Compute coefficients for surface-to-reservoir voidage
* conversion.
*
* \tparam Input Type representing contiguous collection
* of component rates at surface conditions. Must support
* direct indexing through \code operator[]()\endcode.
*
* \tparam Coeff Type representing contiguous collection
* of surface-to-reservoir conversion coefficients. Must
* support direct indexing through \code operator[]()
* \endcode.
*
*
* \param[in] r Fluid-in-place region of the well
* \param[in] pvtRegionIdx PVT region of the well
*
*
* \param[out] coeff Surface-to-reservoir conversion
* coefficients that can be used to compute total reservoir
* volumes from surface volumes with the formula
* q_{rT} = \sum_p coeff[p] q_{sp}.
* However, individual phase reservoir volumes cannot be calculated from
* these coefficients (i.e. q_{rp} is not equal to coeff[p] q_{sp})
* since they can depend on more than one surface volume rate when
* we have dissolved gas or vaporized oil.
*/
template
void
calcCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
{
const auto& pu = phaseUsage_;
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const double saltConcentration = ra.saltConcentration;
const int iw = Details::PhasePos::water(pu);
const int io = Details::PhasePos::oil (pu);
const int ig = Details::PhasePos::gas (pu);
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
if (Details::PhaseUsed::water(pu)) {
// q[w]_r = q[w]_s / bw
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, saltConcentration);
coeff[iw] = 1.0 / bw;
}
// Actual Rs and Rv:
double Rs = ra.rs;
double Rv = ra.rv;
// Determinant of 'R' matrix
const double detR = 1.0 - (Rs * Rv);
if (Details::PhaseUsed::oil(pu)) {
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
const double den = bo * detR;
coeff[io] += 1.0 / den;
if (Details::PhaseUsed::gas(pu)) {
coeff[ig] -= ra.rv / den;
}
}
if (Details::PhaseUsed::gas(pu)) {
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
const double den = bg * detR;
coeff[ig] += 1.0 / den;
if (Details::PhaseUsed::oil(pu)) {
coeff[io] -= ra.rs / den;
}
}
}
template
void
calcInjCoeff(const RegionId r, const int pvtRegionIdx, Coeff& coeff) const
{
const auto& pu = phaseUsage_;
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const double saltConcentration = ra.saltConcentration;
const int iw = Details::PhasePos::water(pu);
const int io = Details::PhasePos::oil (pu);
const int ig = Details::PhasePos::gas (pu);
std::fill(& coeff[0], & coeff[0] + phaseUsage_.num_phases, 0.0);
if (Details::PhaseUsed::water(pu)) {
// q[w]_r = q[w]_s / bw
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, saltConcentration);
coeff[iw] = 1.0 / bw;
}
if (Details::PhaseUsed::oil(pu)) {
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0);
coeff[io] += 1.0 / bo;
}
if (Details::PhaseUsed::gas(pu)) {
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, 0.0);
coeff[ig] += 1.0 / bg;
}
}
/**
* Converting surface volume rates to reservoir voidage rates
*
* \tparam Rates Type representing contiguous collection
* of surface-to-reservoir conversion coefficients. Must
* support direct indexing through \code operator[]()
* \endcode.
*
*
* \param[in] r Fluid-in-place region of the well
* \param[in] pvtRegionIdx PVT region of the well
* \param[in] surface_rates surface voluem rates for
* all active phases
*
* \param[out] voidage_rates reservoir volume rates for
* all active phases
*/
template
void
calcReservoirVoidageRates(const RegionId r, const int pvtRegionIdx, const Rates& surface_rates,
Rates& voidage_rates) const
{
assert(voidage_rates.size() == surface_rates.size());
std::fill(voidage_rates.begin(), voidage_rates.end(), 0.0);
const auto& pu = phaseUsage_;
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const double saltConcentration = ra.saltConcentration;
const int iw = Details::PhasePos::water(pu);
const int io = Details::PhasePos::oil (pu);
const int ig = Details::PhasePos::gas (pu);
if (Details::PhaseUsed::water(pu)) {
// q[w]_r = q[w]_s / bw
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, saltConcentration);
voidage_rates[iw] = surface_rates[iw] / bw;
}
// Use average Rs and Rv:
auto a = ra.rs;
auto b = a;
if (io >= 0 && ig >= 0) {
b = surface_rates[ig]/(surface_rates[io]+1.0e-15);
}
double Rs = std::min(a, b);
a = ra.rv;
b = a;
if (io >= 0 && ig >= 0) {
b = surface_rates[io]/(surface_rates[ig]+1.0e-15);
}
double Rv = std::min(a, b);
// Determinant of 'R' matrix
const double detR = 1.0 - (Rs * Rv);
if (Details::PhaseUsed::oil(pu)) {
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
const double den = bo * detR;
voidage_rates[io] = surface_rates[io];
if (Details::PhaseUsed::gas(pu)) {
voidage_rates[io] -= Rv * surface_rates[ig];
}
voidage_rates[io] /= den;
}
if (Details::PhaseUsed::gas(pu)) {
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
const double den = bg * detR;
voidage_rates[ig] = surface_rates[ig];
if (Details::PhaseUsed::oil(pu)) {
voidage_rates[ig] -= Rs * surface_rates[io];
}
voidage_rates[ig] /= den;
}
}
/**
* Compute coefficients for surface-to-reservoir voidage
* conversion for solvent.
*
*
* \param[in] r Fluid-in-place region of the well
* \param[in] pvtRegionIdx PVT region of the well
*
*
* \param[out] double Surface-to-reservoir conversion
* coefficients for solvent.
*/
template
void
calcCoeffSolvent(const RegionId r, const int pvtRegionIdx, double& coeff) const
{
const auto& ra = attr_.attributes(r);
const double p = ra.pressure;
const double T = ra.temperature;
const auto& solventPvt = SolventModule::solventPvt();
const double bs = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
coeff = 1.0 / bs;
}
private:
/**
* Fluid property object.
*/
const PhaseUsage phaseUsage_;
/**
* "Fluid-in-place" region mapping (forward and reverse).
*/
const RegionMapping rmap_;
/**
* Derived property attributes for each active region.
*/
struct Attributes {
Attributes()
: pressure (0.0)
, temperature(0.0)
, rs(0.0)
, rv(0.0)
, pv(0.0)
, saltConcentration(0.0)
{}
double pressure;
double temperature;
double rs;
double rv;
double pv;
double saltConcentration;
};
Details::RegionAttributes attr_;
};
} // namespace RateConverter
} // namespace Opm
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */