// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::GroundWaterProblem
*/
#ifndef EWOMS_GROUND_WATER_PROBLEM_HH
#define EWOMS_GROUND_WATER_PROBLEM_HH
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
template
class GroundWaterProblem;
}
namespace Opm::Properties {
namespace TTag {
struct GroundWaterBaseProblem {};
}
template
struct Fluid
{
private:
using Scalar = GetPropType;
public:
using type = Opm::LiquidPhase >;
};
// Set the grid type
template
struct Grid { using type = Dune::YaspGrid<2>; };
// struct Grid { using type = Dune::SGrid<2, 2>; };
template
struct Problem
{ using type = Opm::GroundWaterProblem; };
// Use the conjugated gradient linear solver with the default preconditioner (i.e.,
// ILU-0) from dune-istl
template
struct LinearSolverSplice { using type = TTag::ParallelIstlLinearSolver; };
template
struct LinearSolverWrapper
{ using type = Opm::Linear::SolverWrapperConjugatedGradients; };
} // namespace Opm::Properties
namespace Opm::Parameters {
template
struct LensLowerLeftX { using type = Properties::UndefinedProperty; };
template
struct LensLowerLeftY { using type = Properties::UndefinedProperty; };
template
struct LensLowerLeftZ { using type = Properties::UndefinedProperty; };
template
struct LensUpperRightX { using type = Properties::UndefinedProperty; };
template
struct LensUpperRightY { using type = Properties::UndefinedProperty; };
template
struct LensUpperRightZ { using type = Properties::UndefinedProperty; };
template
struct Permeability { using type = Properties::UndefinedProperty; };
template
struct PermeabilityLens { using type = Properties::UndefinedProperty; };
// Enable gravity
template
struct EnableGravity
{ static constexpr bool value = true; };
template
struct LensLowerLeftX
{
using type = GetPropType;
static constexpr type value = 0.25;
};
template
struct LensLowerLeftY
{
using type = GetPropType;
static constexpr type value = 0.25;
};
template
struct LensLowerLeftZ
{
using type = GetPropType;
static constexpr type value = 0.25;
};
template
struct LensUpperRightX
{
using type = GetPropType;
static constexpr type value = 0.75;
};
template
struct LensUpperRightY
{
using type = GetPropType;
static constexpr type value = 0.75;
};
template
struct LensUpperRightZ
{
using type = GetPropType;
static constexpr type value = 0.75;
};
template
struct Permeability
{
using type = GetPropType;
static constexpr type value = 1e-10;
};
template
struct PermeabilityLens
{
using type = GetPropType;
static constexpr type value = 1e-12;
};
} // namespace Opm::Parameters
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Test for the immisicible VCVF discretization with only a single phase
*
* This problem is inspired by groundwater flow. Don't expect it to be
* realistic, though: For two dimensions, the domain size is 1m times
* 1m. On the left and right of the domain, no-flow boundaries are
* used, while at the top and bottom free flow boundaries with a
* pressure of 2 bar and 1 bar are used. The center of the domain is
* occupied by a rectangular lens of lower permeability.
*/
template
class GroundWaterProblem : public GetPropType
{
using ParentType = GetPropType;
using GridView = GetPropType;
using Scalar = GetPropType;
using FluidSystem = GetPropType;
// copy some indices for convenience
using Indices = GetPropType;
enum {
numPhases = FluidSystem::numPhases,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
// indices of the primary variables
pressure0Idx = Indices::pressure0Idx
};
using Simulator = GetPropType;
using EqVector = GetPropType;
using RateVector = GetPropType;
using BoundaryRateVector = GetPropType;
using PrimaryVariables = GetPropType;
using Model = GetPropType;
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector;
using DimMatrix = Dune::FieldMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
GroundWaterProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 1.0e-3;
lensLowerLeft_[0] = Parameters::get();
if (dim > 1)
lensLowerLeft_[1] = Parameters::get();
if (dim > 2)
lensLowerLeft_[2] = Parameters::get();
lensUpperRight_[0] = Parameters::get();
if (dim > 1)
lensUpperRight_[1] = Parameters::get();
if (dim > 2)
lensUpperRight_[2] = Parameters::get();
intrinsicPerm_ = this->toDimMatrix_(Parameters::get());
intrinsicPermLens_ = this->toDimMatrix_(Parameters::get());
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
Parameters::registerParam
("The x-coordinate of the lens' lower-left corner [m].");
Parameters::registerParam
("The x-coordinate of the lens' upper-right corner [m].");
if (dimWorld > 1) {
Parameters::registerParam
("The y-coordinate of the lens' lower-left corner [m].");
Parameters::registerParam
("The y-coordinate of the lens' upper-right corner [m].");
}
if (dimWorld > 2) {
Parameters::registerParam
("The z-coordinate of the lens' lower-left corner [m].");
Parameters::registerParam
("The z-coordinate of the lens' upper-right corner [m].");
}
Parameters::registerParam
("The intrinsic permeability [m^2] of the ambient material.");
Parameters::registerParam
("The intrinsic permeability [m^2] of the lens.");
Parameters::SetDefault("./data/groundwater_2d.dgf");
Parameters::SetDefault>(1.0);
Parameters::SetDefault>(1.0);
}
/*!
* \name Problem parameters
*/
// \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "groundwater_" << Model::name();
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return 273.15 + 10; } // 10C
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template
Scalar porosity(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template
const DimMatrix& intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
if (isInLens_(context.pos(spaceIdx, timeIdx)))
return intrinsicPermLens_;
else
return intrinsicPerm_;
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
if (onLowerBoundary_(globalPos) || onUpperBoundary_(globalPos)) {
Scalar pressure;
Scalar T = temperature(context, spaceIdx, timeIdx);
if (onLowerBoundary_(globalPos))
pressure = 2e5;
else // on upper boundary
pressure = 1e5;
Opm::ImmiscibleFluidState fs;
fs.setSaturation(/*phaseIdx=*/0, 1.0);
fs.setPressure(/*phaseIdx=*/0, pressure);
fs.setTemperature(T);
typename FluidSystem::template ParameterCache paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
}
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else {
// no flow boundary
values.setNoFlow();
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template
void initial(PrimaryVariables& values,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{
// const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
values[pressure0Idx] = 1.0e+5; // + 9.81*1.23*(20-globalPos[dim-1]);
}
/*!
* \copydoc FvBaseProblem::source
*/
template
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[dim - 1] < eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[dim - 1] > this->boundingBoxMax()[dim - 1] - eps_; }
bool isInLens_(const GlobalPosition& pos) const
{
return lensLowerLeft_[0] <= pos[0] && pos[0] <= lensUpperRight_[0]
&& lensLowerLeft_[1] <= pos[1] && pos[1] <= lensUpperRight_[1];
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix intrinsicPerm_;
DimMatrix intrinsicPermLens_;
Scalar eps_;
};
} // namespace Opm
#endif