/* Copyright 2014 SINTEF ICT, Applied Mathematics. Copyright 2014 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #if HAVE_UMFPACK #include #else #include #endif #include namespace Opm { typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; typedef Eigen::SparseMatrix S; std::vector eliminateVariable(const std::vector& eqs, const int n) { // Check that the variable index to eliminate is within bounds. const int num_eq = eqs.size(); const int num_vars = eqs[0].derivative().size(); if (num_eq != num_vars) { OPM_THROW(std::logic_error, "eliminateVariable() requires the same number of variables and equations."); } if (n >= num_eq) { OPM_THROW(std::logic_error, "Trying to eliminate variable from too small set of equations."); } // Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C. // This is applied to all 2x2 block submatrices // The right hand side is modified accordingly. bi = bi - B * inv(D)* bn; // We do not explicitly compute inv(D) instead Du = C is solved // Extract the submatrix const std::vector& Jn = eqs[n].derivative(); // Use sparse LU to solve the block submatrices i.e compute inv(D) typedef Eigen::SparseMatrix Sp; Sp Jnn; Jn[n].toSparse(Jnn); #if HAVE_UMFPACK const Eigen::UmfPackLU solver(Jnn); #else const Eigen::SparseLU solver(Jnn); #endif Sp id(Jn[n].rows(), Jn[n].cols()); id.setIdentity(); const Sp Di = solver.solve(id); // compute inv(D)*bn for the update of the right hand side // Note: Eigen version > 3.2 requires a non-const reference to solve. ADB::V eqs_n_v = eqs[n].value(); const Eigen::VectorXd& Dibn = solver.solve(eqs_n_v.matrix()); std::vector vals(num_eq); // Number n will remain empty. std::vector> jacs(num_eq); // Number n will remain empty. for (int eq = 0; eq < num_eq; ++eq) { jacs[eq].reserve(num_eq - 1); const std::vector& Je = eqs[eq].derivative(); const M& B = Je[n]; // Update right hand side. vals[eq] = eqs[eq].value().matrix() - B * Dibn; } for (int var = 0; var < num_eq; ++var) { if (var == n) { continue; } // solve Du = C // const M u = Di * Jn[var]; // solver.solve(Jn[var]); M u; fastSparseProduct(Di, Jn[var], u); // solver.solve(Jn[var]); for (int eq = 0; eq < num_eq; ++eq) { if (eq == n) { continue; } const std::vector& Je = eqs[eq].derivative(); const M& B = Je[n]; // Create new jacobians. // Add A jacs[eq].push_back(Je[var]); M& J = jacs[eq].back(); // Subtract Bu (B*inv(D)*C) M Bu; fastSparseProduct(B, u, Bu); J = J + (Bu * -1.0); } } // Create return value. std::vector retval; retval.reserve(num_eq - 1); for (int eq = 0; eq < num_eq; ++eq) { if (eq == n) { continue; } retval.push_back(ADB::function(std::move(vals[eq]), std::move(jacs[eq]))); } return retval; } V recoverVariable(const ADB& equation, const V& partial_solution, const int n) { // The equation to solve for the unknown y (to be recovered) is // Cx + Dy = b // Dy = (b - Cx) // where D is the eliminated block, C is the jacobian of // the eliminated equation with respect to the // non-eliminated unknowms, b is the right-hand side of // the eliminated equation, and x is the partial solution // of the non-eliminated unknowns. const M& D1 = equation.derivative()[n]; // Build C. std::vector C_jacs = equation.derivative(); C_jacs.erase(C_jacs.begin() + n); V equation_value = equation.value(); ADB eq_coll = collapseJacs(ADB::function(std::move(equation_value), std::move(C_jacs))); const M& C = eq_coll.derivative()[0]; // Use sparse LU to solve the block submatrices typedef Eigen::SparseMatrix Sp; Sp D; D1.toSparse(D); #if HAVE_UMFPACK const Eigen::UmfPackLU solver(D); #else const Eigen::SparseLU solver(D); #endif // Compute value of eliminated variable. const Eigen::VectorXd b = (equation.value().matrix() - C * partial_solution.matrix()); const Eigen::VectorXd elim_var = solver.solve(b); // Find the relevant sizes to use when reconstructing the full solution. const int nelim = equation.size(); const int npart = partial_solution.size(); assert(C.cols() == npart); const int full_size = nelim + npart; int start = 0; for (int i = 0; i < n; ++i) { start += equation.derivative()[i].cols(); } assert(start < full_size); // Reconstruct complete solution vector. V sol(full_size); std::copy_n(partial_solution.data(), start, sol.data()); std::copy_n(elim_var.data(), nelim, sol.data() + start); std::copy_n(partial_solution.data() + start, npart - start, sol.data() + start + nelim); return sol; } /// Form an elliptic system of equations. /// \param[in] num_phases the number of fluid phases /// \param[in] eqs the equations /// \param[out] A the resulting full system matrix /// \param[out] b the right hand side /// This function will deal with the first num_phases /// equations in eqs, and return a matrix A for the full /// system that has a elliptic upper left corner, if possible. void formEllipticSystem(const int num_phases, const std::vector& eqs_in, Eigen::SparseMatrix& A, V& b) { if (num_phases != 3) { OPM_THROW(std::logic_error, "formEllipticSystem() requires 3 phases."); } // A concession to MRST, to obtain more similar behaviour: // swap the first two equations, so that oil is first, then water. auto eqs = eqs_in; eqs[0].swap(eqs[1]); // Characterize the material balance equations. const int n = eqs[0].size(); const double ratio_limit = 0.01; typedef Eigen::Array Block; // The l1 block indicates if the equation for a given cell and phase is // sufficiently strong on the diagonal. Block l1 = Block::Zero(n, num_phases); { S J; for (int phase = 0; phase < num_phases; ++phase) { eqs[phase].derivative()[0].toSparse(J); V dj = J.diagonal().cwiseAbs(); V sod = V::Zero(n); for (int elem = 0; elem < n; ++elem) { sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem); } l1.col(phase) = (dj/sod > ratio_limit).cast(); } } // By default, replace first equation with sum of all phase equations. // Build helper vectors. V l21 = V::Zero(n); V l22 = V::Ones(n); V l31 = V::Zero(n); V l33 = V::Ones(n); // If the first phase diagonal is not strong enough, we need further treatment. // Then the first equation will be the sum of the remaining equations, // and we swap the first equation into one of their slots. for (int elem = 0; elem < n; ++elem) { if (!l1(elem, 0)) { const double l12x = l1(elem, 1); const double l13x = l1(elem, 2); const bool allzero = (l12x + l13x == 0); if (allzero) { l1(elem, 0) = 1; } else { if (l12x >= l13x) { l21(elem) = 1; l22(elem) = 0; } else { l31(elem) = 1; l33(elem) = 0; } } } } // Construct the sparse matrix L that does the swaps and sums. Span i1(n, 1, 0); Span i2(n, 1, n); Span i3(n, 1, 2*n); std::vector< Eigen::Triplet > t; t.reserve(7*n); for (int ii = 0; ii < n; ++ii) { t.emplace_back(i1[ii], i1[ii], l1(ii)); t.emplace_back(i1[ii], i2[ii], l1(ii+n)); t.emplace_back(i1[ii], i3[ii], l1(ii+2*n)); t.emplace_back(i2[ii], i1[ii], l21(ii)); t.emplace_back(i2[ii], i2[ii], l22(ii)); t.emplace_back(i3[ii], i1[ii], l31(ii)); t.emplace_back(i3[ii], i3[ii], l33(ii)); } S L(3*n, 3*n); L.setFromTriplets(t.begin(), t.end()); // Combine in single block. ADB total_residual = vertcatCollapseJacs(eqs); S derivative; total_residual.derivative()[0].toSparse(derivative); // Create output as product of L with equations. A = L * derivative; b = L * total_residual.value().matrix(); } /// Return true if this is a serial run, or rank zero on an MPI run. bool isIORank(const boost::any& parallel_info) { #if HAVE_MPI if (parallel_info.type() == typeid(ParallelISTLInformation)) { const ParallelISTLInformation& info = boost::any_cast(parallel_info); return info.communicator().rank() == 0; } else { return true; } #else static_cast(parallel_info); // Suppress unused argument warning. return true; #endif } } // namespace Opm