/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
namespace Opm
{
template
MultisegmentWell::
MultisegmentWell(const Well* well, const int time_step, const Wells* wells,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components)
: Base(well, time_step, wells, param, rate_converter, pvtRegionIdx, num_components)
, segment_perforations_(numberOfSegments())
, segment_inlets_(numberOfSegments())
, cell_perforation_depth_diffs_(number_of_perforations_, 0.0)
, cell_perforation_pressure_diffs_(number_of_perforations_, 0.0)
, perforation_segment_depth_diffs_(number_of_perforations_, 0.0)
, segment_comp_initial_(numberOfSegments(), std::vector(num_components_, 0.0))
, segment_densities_(numberOfSegments(), 0.0)
, segment_viscosities_(numberOfSegments(), 0.0)
, segment_mass_rates_(numberOfSegments(), 0.0)
, segment_depth_diffs_(numberOfSegments(), 0.0)
{
// not handling solvent or polymer for now with multisegment well
if (has_solvent) {
OPM_THROW(std::runtime_error, "solvent is not supported by multisegment well yet");
}
if (has_polymer) {
OPM_THROW(std::runtime_error, "polymer is not supported by multisegment well yet");
}
// since we decide to use the WellSegments from the well parser. we can reuse a lot from it.
// for other facilities needed but not available from parser, we need to process them here
// initialize the segment_perforations_
const WellConnections& completion_set = well_ecl_->getConnections(current_step_);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const Connection& completion = completion_set.get(perf);
const int segment_number = completion.getSegmentNumber();
const int segment_index = segmentNumberToIndex(segment_number);
segment_perforations_[segment_index].push_back(perf);
}
// initialize the segment_inlets_
for (int seg = 0; seg < numberOfSegments(); ++seg) {
const Segment& segment = segmentSet()[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segmentNumberToIndex(segment_number);
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
segment_inlets_[outlet_segment_index].push_back(segment_index);
}
}
// callcuate the depth difference between perforations and their segments
perf_depth_.resize(number_of_perforations_, 0.);
for (int seg = 0; seg < numberOfSegments(); ++seg) {
const double segment_depth = segmentSet()[seg].depth();
for (const int perf : segment_perforations_[seg]) {
perf_depth_[perf] = completion_set.get(perf).getCenterDepth();
perforation_segment_depth_diffs_[perf] = perf_depth_[perf] - segment_depth;
}
}
// calculating the depth difference between the segment and its oulet_segments
// for the top segment, we will make its zero unless we find other purpose to use this value
for (int seg = 1; seg < numberOfSegments(); ++seg) {
const double segment_depth = segmentSet()[seg].depth();
const int outlet_segment_number = segmentSet()[seg].outletSegment();
const Segment& outlet_segment = segmentSet()[segmentNumberToIndex(outlet_segment_number)];
const double outlet_depth = outlet_segment.depth();
segment_depth_diffs_[seg] = segment_depth - outlet_depth;
}
}
template
void
MultisegmentWell::
init(const PhaseUsage* phase_usage_arg,
const std::vector& depth_arg,
const double gravity_arg,
const int num_cells)
{
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells);
// TODO: for StandardWell, we need to update the perf depth here using depth_arg.
// for MultisegmentWell, it is much more complicated.
// It can be specified directly, it can be calculated from the segment depth,
// it can also use the cell center, which is the same for StandardWell.
// For the last case, should we update the depth with the depth_arg? For the
// future, it can be a source of wrong result with Multisegment well.
// An indicator from the opm-parser should indicate what kind of depth we should use here.
// \Note: we do not update the depth here. And it looks like for now, we only have the option to use
// specified perforation depth
initMatrixAndVectors(num_cells);
// calcuate the depth difference between the perforations and the perforated grid block
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
cell_perforation_depth_diffs_[perf] = depth_arg[cell_idx] - perf_depth_[perf];
}
}
template
void
MultisegmentWell::
initMatrixAndVectors(const int num_cells) const
{
duneB_.setBuildMode( OffDiagMatWell::row_wise );
duneC_.setBuildMode( OffDiagMatWell::row_wise );
duneD_.setBuildMode( DiagMatWell::row_wise );
// set the size and patterns for all the matrices and vectors
// [A C^T [x = [ res
// B D] x_well] res_well]
// calculatiing the NNZ for duneD_
// NNZ = number_of_segments + 2 * (number_of_inlets / number_of_outlets)
{
int nnz_d = numberOfSegments();
for (const std::vector& inlets : segment_inlets_) {
nnz_d += 2 * inlets.size();
}
duneD_.setSize(numberOfSegments(), numberOfSegments(), nnz_d);
}
duneB_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
duneC_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
// we need to add the off diagonal ones
for (auto row = duneD_.createbegin(), end = duneD_.createend(); row != end; ++row) {
// the number of the row corrspnds to the segment now
const int seg = row.index();
// adding the item related to outlet relation
const Segment& segment = segmentSet()[seg];
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) { // if there is a outlet_segment
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
row.insert(outlet_segment_index);
}
// Add nonzeros for diagonal
row.insert(seg);
// insert the item related to its inlets
for (const int& inlet : segment_inlets_[seg]) {
row.insert(inlet);
}
}
// make the C matrix
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row != end; ++row) {
// the number of the row corresponds to the segment number now.
for (const int& perf : segment_perforations_[row.index()]) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
// make the B^T matrix
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row != end; ++row) {
// the number of the row corresponds to the segment number now.
for (const int& perf : segment_perforations_[row.index()]) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
resWell_.resize( numberOfSegments() );
primary_variables_.resize(numberOfSegments());
primary_variables_evaluation_.resize(numberOfSegments());
}
template
void
MultisegmentWell::
initPrimaryVariablesEvaluation() const
{
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
primary_variables_evaluation_[seg][eq_idx] = 0.0;
primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]);
primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + numEq, 1.0);
}
}
}
template
void
MultisegmentWell::
assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells)
{
const bool use_inner_iterations = param_.use_inner_iterations_ms_wells_;
if (use_inner_iterations) {
iterateWellEquations(ebosSimulator, dt, well_state);
}
assembleWellEqWithoutIteration(ebosSimulator, dt, well_state, only_wells);
}
template
void
MultisegmentWell::
updateWellStateWithTarget(WellState& well_state) const
{
// Updating well state bas on well control
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const int current = well_state.currentControls()[index_of_well_];
const double target = well_controls_iget_target(well_controls_, current);
const double* distr = well_controls_iget_distr(well_controls_, current);
switch (well_controls_iget_type(well_controls_, current)) {
case BHP: {
well_state.bhp()[index_of_well_] = target;
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
well_state.segPress()[top_segment_index] = well_state.bhp()[index_of_well_];
// TODO: similar to the way below to handle THP
// we should not something related to thp here when there is thp constraint
break;
}
case THP: {
well_state.thp()[index_of_well_] = target;
/* const Opm::PhaseUsage& pu = phaseUsage();
std::vector rates(3, 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ];
} */
// const int table_id = well_controls_iget_vfp(well_controls_, current);
// const double& thp = well_controls_iget_target(well_controls_, current);
// const double& alq = well_controls_iget_alq(well_controls_, current);
// TODO: implement calculateBhpFromThp function
// well_state.bhp()[index_of_well_] = calculateBhpFromThp(rates, current);
// also the top segment pressure
/* const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
well_state.segPress()[top_segment_index] = well_state.bhp()[index_of_well_]; */
break;
}
case RESERVOIR_RATE: // intentional fall-through
case SURFACE_RATE:
// for the update of the rates, after we update the well rates, we can try to scale
// the segment rates and perforation rates with the same factor
// or the other way, we can use the same approach like the initialization of the well state,
// we devide the well rates to update the perforation rates, then we update the segment rates based
// on the perforation rates.
// the second way is safer, since if the well control is changed, the first way will not guarantee the consistence
// of between the segment rates and peforation rates
// checking the number of the phases under control
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
assert(numPhasesWithTargetsUnderThisControl > 0);
if (well_type_ == INJECTOR) {
// assign target value as initial guess for injectors
// only handles single phase control at the moment
assert(numPhasesWithTargetsUnderThisControl == 1);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) {
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target / distr[phase];
} else {
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = 0.;
}
}
initSegmentRatesWithWellRates(well_state);
} else if (well_type_ == PRODUCER) {
// update the rates of phases under control based on the target,
// and also update rates of phases not under control to keep the rate ratio,
// assuming the mobility ratio does not change for the production wells
double original_rates_under_phase_control = 0.0;
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
original_rates_under_phase_control += well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] * distr[phase];
}
}
if (original_rates_under_phase_control != 0.0 ) {
double scaling_factor = target / original_rates_under_phase_control;
for (int phase = 0; phase < number_of_phases_; ++phase) {
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] *= scaling_factor;
// scaling the segment rates with the same way with well rates
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
for (int seg = 0; seg < numberOfSegments(); ++seg) {
well_state.segRates()[number_of_phases_ * (seg + top_segment_index) + phase] *= scaling_factor;
}
}
} else { // scaling factor is not well defined when original_rates_under_phase_control is zero
// separating targets equally between phases under control
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target_rate_divided / distr[phase];
} else {
// this only happens for SURFACE_RATE control
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target_rate_divided;
}
}
initSegmentRatesWithWellRates(well_state);
}
}
break;
} // end of switch
updatePrimaryVariables(well_state);
}
template
void
MultisegmentWell::
initSegmentRatesWithWellRates(WellState& well_state) const
{
for (int phase = 0; phase < number_of_phases_; ++phase) {
const double perf_phaserate = well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] / number_of_perforations_;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
well_state.perfPhaseRates()[number_of_phases_ * (first_perf_ + perf) + phase] = perf_phaserate;
}
}
const std::vector perforation_rates(well_state.perfPhaseRates().begin() + number_of_phases_ * first_perf_,
well_state.perfPhaseRates().begin() +
number_of_phases_ * (first_perf_ + number_of_perforations_) );
std::vector segment_rates;
WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, number_of_phases_,
0, segment_rates);
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
std::copy(segment_rates.begin(), segment_rates.end(),
well_state.segRates().begin() + number_of_phases_ * top_segment_index );
// we need to check the top segment rates should be same with the well rates
}
template
typename MultisegmentWell::ConvergenceReport
MultisegmentWell::
getWellConvergence(const std::vector& B_avg) const
{
assert(int(B_avg.size()) == num_components_);
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
std::vector> abs_residual(numberOfSegments(), std::vector(numWellEq, 0.0));
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
abs_residual[seg][eq_idx] = std::abs(resWell_[seg][eq_idx]);
}
}
std::vector maximum_residual(numWellEq, 0.0);
ConvergenceReport report;
// TODO: the following is a little complicated, maybe can be simplified in some way?
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
if (eq_idx < num_components_) { // phase or component mass equations
const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
// TODO: the report can not handle the segment number yet.
if (std::isnan(flux_residual)) {
report.nan_residual_found = true;
const auto& compName = FluidSystem::componentName(Indices::activeToCanonicalComponentIndex(eq_idx));
const typename ConvergenceReport::ProblemWell problem_well = {name(), compName};
report.nan_residual_wells.push_back(problem_well);
} else if (flux_residual > param_.max_residual_allowed_) {
report.too_large_residual_found = true;
const auto& compName = FluidSystem::componentName(Indices::activeToCanonicalComponentIndex(eq_idx));
const typename ConvergenceReport::ProblemWell problem_well = {name(), compName};
report.nan_residual_wells.push_back(problem_well);
} else { // it is a normal residual
if (flux_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = flux_residual;
}
}
} else { // pressure equation
// TODO: we should distinguish the rate control equations, bhp control equations
// and the oridnary pressure equations
const double pressure_residal = abs_residual[seg][eq_idx];
const std::string eq_name("Pressure");
if (std::isnan(pressure_residal)) {
report.nan_residual_found = true;
const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name};
report.nan_residual_wells.push_back(problem_well);
} else if (std::isinf(pressure_residal)) {
report.too_large_residual_found = true;
const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name};
report.nan_residual_wells.push_back(problem_well);
} else { // it is a normal residual
if (pressure_residal > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = pressure_residal;
}
}
}
}
}
if ( !(report.nan_residual_found || report.too_large_residual_found) ) { // no abnormal residual value found
// check convergence for flux residuals
for ( int comp_idx = 0; comp_idx < num_components_; ++comp_idx)
{
report.converged = report.converged && (maximum_residual[comp_idx] < param_.tolerance_wells_);
}
report.converged = report.converged && (maximum_residual[SPres] < param_.tolerance_pressure_ms_wells_);
} else { // abnormal values found and no need to check the convergence
report.converged = false;
}
return report;
}
template
void
MultisegmentWell::
apply(const BVector& x, BVector& Ax) const
{
BVectorWell Bx(duneB_.N());
duneB_.mv(x, Bx);
// invDBx = duneD^-1 * Bx_
const BVectorWell invDBx = mswellhelpers::invDXDirect(duneD_, Bx);
// Ax = Ax - duneC_^T * invDBx
duneC_.mmtv(invDBx,Ax);
}
template
void
MultisegmentWell::
apply(BVector& r) const
{
// invDrw_ = duneD^-1 * resWell_
const BVectorWell invDrw = mswellhelpers::invDXDirect(duneD_, resWell_);
// r = r - duneC_^T * invDrw
duneC_.mmtv(invDrw, r);
}
template
void
MultisegmentWell::
recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state) const
{
BVectorWell xw(1);
recoverSolutionWell(x, xw);
updateWellState(xw, false, well_state);
}
template
void
MultisegmentWell::
computeWellPotentials(const Simulator& /* ebosSimulator */,
const WellState& /* well_state */,
std::vector& /* well_potentials */)
{
OPM_THROW(std::runtime_error, "well potential calculation for multisegment wells is not supported yet");
}
template
void
MultisegmentWell::
updatePrimaryVariables(const WellState& well_state) const
{
// TODO: to test using rate conversion coefficients to see if it will be better than
// this default one
// the index of the top segment in the WellState
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
const std::vector& segment_rates = well_state.segRates();
const PhaseUsage& pu = phaseUsage();
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// calculate the total rate for each segment
double total_seg_rate = 0.0;
const int seg_index = top_segment_index + seg;
// the segment pressure
primary_variables_[seg][SPres] = well_state.segPress()[seg_index];
// TODO: under what kind of circustances, the following will be wrong?
// the definition of g makes the gas phase is always the last phase
for (int p = 0; p < number_of_phases_; p++) {
total_seg_rate += scalingFactor(p) * segment_rates[number_of_phases_ * seg_index + p];
}
primary_variables_[seg][GTotal] = total_seg_rate;
if (std::abs(total_seg_rate) > 0.) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = pu.phase_pos[Water];
primary_variables_[seg][WFrac] = scalingFactor(water_pos) * segment_rates[number_of_phases_ * seg_index + water_pos] / total_seg_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = pu.phase_pos[Gas];
primary_variables_[seg][GFrac] = scalingFactor(gas_pos) * segment_rates[number_of_phases_ * seg_index + gas_pos] / total_seg_rate;
}
} else { // total_seg_rate == 0
if (well_type_ == INJECTOR) {
// only single phase injection handled
const double* distr = well_controls_get_current_distr(well_controls_);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (distr[pu.phase_pos[Water]] > 0.0) {
primary_variables_[seg][WFrac] = 1.0;
} else {
primary_variables_[seg][WFrac] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (distr[pu.phase_pos[Gas]] > 0.0) {
primary_variables_[seg][GFrac] = 1.0;
} else {
primary_variables_[seg][GFrac] = 0.0;
}
}
} else if (well_type_ == PRODUCER) { // producers
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
primary_variables_[seg][WFrac] = 1.0 / number_of_phases_;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
primary_variables_[seg][GFrac] = 1.0 / number_of_phases_;
}
}
}
}
}
template
void
MultisegmentWell::
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
{
BVectorWell resWell = resWell_;
// resWell = resWell - B * x
duneB_.mmv(x, resWell);
// xw = D^-1 * resWell
xw = mswellhelpers::invDXDirect(duneD_, resWell);
}
template
void
MultisegmentWell::
solveEqAndUpdateWellState(WellState& well_state)
{
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
const BVectorWell dx_well = mswellhelpers::invDXDirect(duneD_, resWell_);
updateWellState(dx_well, false, well_state);
}
template
void
MultisegmentWell::
computePerfCellPressDiffs(const Simulator& ebosSimulator)
{
for (int perf = 0; perf < number_of_perforations_; ++perf) {
std::vector kr(number_of_phases_, 0.0);
std::vector density(number_of_phases_, 0.0);
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
double sum_kr = 0.;
const PhaseUsage& pu = phaseUsage();
if (pu.phase_used[Water]) {
const int water_pos = pu.phase_pos[Water];
kr[water_pos] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value();
sum_kr += kr[water_pos];
density[water_pos] = fs.density(FluidSystem::waterPhaseIdx).value();
}
if (pu.phase_used[Oil]) {
const int oil_pos = pu.phase_pos[Oil];
kr[oil_pos] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value();
sum_kr += kr[oil_pos];
density[oil_pos] = fs.density(FluidSystem::oilPhaseIdx).value();
}
if (pu.phase_used[Gas]) {
const int gas_pos = pu.phase_pos[Gas];
kr[gas_pos] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value();
sum_kr += kr[gas_pos];
density[gas_pos] = fs.density(FluidSystem::gasPhaseIdx).value();
}
assert(sum_kr != 0.);
// calculate the average density
double average_density = 0.;
for (int p = 0; p < number_of_phases_; ++p) {
average_density += kr[p] * density[p];
}
average_density /= sum_kr;
cell_perforation_pressure_diffs_[perf] = gravity_ * average_density * cell_perforation_depth_diffs_[perf];
}
}
template
void
MultisegmentWell::
computeInitialComposition()
{
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// TODO: probably it should be numWellEq -1 more accurately,
// while by meaning it should be num_comp
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
segment_comp_initial_[seg][comp_idx] = surfaceVolumeFraction(seg, comp_idx).value();
}
}
}
template
void
MultisegmentWell::
updateWellState(const BVectorWell& dwells,
const bool inner_iteration,
WellState& well_state) const
{
const bool use_inner_iterations = param_.use_inner_iterations_ms_wells_;
const double relaxation_factor = (use_inner_iterations && inner_iteration) ? 0.2 : 1.0;
const double dFLimit = param_.dwell_fraction_max_;
const double max_pressure_change = param_.max_pressure_change_ms_wells_;
const std::vector > old_primary_variables = primary_variables_;
for (int seg = 0; seg < numberOfSegments(); ++seg) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int sign = dwells[seg][WFrac] > 0. ? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]), relaxation_factor * dFLimit);
primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int sign = dwells[seg][GFrac] > 0. ? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]), relaxation_factor * dFLimit);
primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited;
}
// handling the overshooting or undershooting of the fractions
processFractions(seg);
// update the segment pressure
{
const int sign = dwells[seg][SPres] > 0.? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]), relaxation_factor * max_pressure_change);
primary_variables_[seg][SPres] = old_primary_variables[seg][SPres] - dx_limited;
}
// update the total rate // TODO: should we have a limitation of the total rate change?
{
primary_variables_[seg][GTotal] = old_primary_variables[seg][GTotal] - relaxation_factor * dwells[seg][GTotal];
}
}
updateWellStateFromPrimaryVariables(well_state);
}
template
void
MultisegmentWell::
calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& /* well_state */)
{
computePerfCellPressDiffs(ebosSimulator);
computeInitialComposition();
}
template
const WellSegments&
MultisegmentWell::
segmentSet() const
{
return well_ecl_->getWellSegments(current_step_);
}
template
int
MultisegmentWell::
numberOfSegments() const
{
return segmentSet().size();
}
template
int
MultisegmentWell::
numberOfPerforations() const
{
return segmentSet().number_of_perforations_;
}
template
WellSegment::CompPressureDropEnum
MultisegmentWell::
compPressureDrop() const
{
return segmentSet().compPressureDrop();
}
template
WellSegment::MultiPhaseModelEnum
MultisegmentWell::
multiphaseModel() const
{
return segmentSet().multiPhaseModel();
}
template
int
MultisegmentWell::
segmentNumberToIndex(const int segment_number) const
{
return segmentSet().segmentNumberToIndex(segment_number);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
volumeFraction(const int seg, const unsigned compIdx) const
{
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
return primary_variables_evaluation_[seg][WFrac];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[seg][GFrac];
}
// Oil fraction
EvalWell oil_fraction = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
oil_fraction -= primary_variables_evaluation_[seg][WFrac];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
oil_fraction -= primary_variables_evaluation_[seg][GFrac];
}
/* if (has_solvent) {
oil_fraction -= primary_variables_evaluation_[seg][SFrac];
} */
return oil_fraction;
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
volumeFractionScaled(const int seg, const int comp_idx) const
{
// For reservoir rate control, the distr in well control is used for the
// rate conversion coefficients. For the injection well, only the distr of the injection
// phase is not zero.
const double scale = scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
if (scale > 0.) {
return volumeFraction(seg, comp_idx) / scale;
}
return volumeFraction(seg, comp_idx);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
surfaceVolumeFraction(const int seg, const int comp_idx) const
{
EvalWell sum_volume_fraction_scaled = 0.;
for (int idx = 0; idx < num_components_; ++idx) {
sum_volume_fraction_scaled += volumeFractionScaled(seg, idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled;
}
template
void
MultisegmentWell::
computePerfRate(const IntensiveQuantities& int_quants,
const std::vector& mob_perfcells,
const int seg,
const int perf,
const EvalWell& segment_pressure,
const bool& allow_cf,
std::vector& cq_s) const
{
std::vector cmix_s(num_components_, 0.0);
// the composition of the components inside wellbore
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
cmix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
}
const auto& fs = int_quants.fluidState();
const EvalWell pressure_cell = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
const EvalWell rs = extendEval(fs.Rs());
const EvalWell rv = extendEval(fs.Rv());
// not using number_of_phases_ because of solvent
std::vector b_perfcells(num_components_, 0.0);
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
b_perfcells[compIdx] = extendEval(fs.invB(phaseIdx));
}
// pressure difference between the segment and the perforation
const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf];
// pressure difference between the perforation and the grid cell
const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf];
// Pressure drawdown (also used to determine direction of flow)
// TODO: not 100% sure about the sign of the seg_perf_press_diff
const EvalWell drawdown = (pressure_cell + cell_perf_press_diff) - (segment_pressure + perf_seg_press_diff);
// producing perforations
if ( drawdown > 0.0) {
// Do nothing is crossflow is not allowed
if (!allow_cf && well_type_ == INJECTOR) {
return;
}
// compute component volumetric rates at standard conditions
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell cq_p = - well_index_[perf] * (mob_perfcells[comp_idx] * drawdown);
cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell cq_s_oil = cq_s[oilCompIdx];
const EvalWell cq_s_gas = cq_s[gasCompIdx];
cq_s[gasCompIdx] += rs * cq_s_oil;
cq_s[oilCompIdx] += rv * cq_s_gas;
}
} else { // injecting perforations
// Do nothing if crossflow is not allowed
if (!allow_cf && well_type_ == PRODUCER) {
return;
}
// for injecting perforations, we use total mobility
EvalWell total_mob = mob_perfcells[0];
for (int comp_idx = 1; comp_idx < num_components_; ++comp_idx) {
total_mob += mob_perfcells[comp_idx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - well_index_[perf] * (total_mob * drawdown);
// compute volume ratio between connection and at standard conditions
EvalWell volume_ratio = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volume_ratio += cmix_s[waterCompIdx] / b_perfcells[waterCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
// TODO: not sure we use rs rv from the perforation cells when handling injecting perforations
// basically, for injecting perforations, the wellbore is the upstreaming side.
const EvalWell d = 1.0 - rv * rs;
if (d.value() == 0.0) {
OPM_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv);
}
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
volume_ratio += tmp_oil / b_perfcells[oilCompIdx];
const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
volume_ratio += tmp_gas / b_perfcells[gasCompIdx];
} else { // not having gas and oil at the same time
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
volume_ratio += cmix_s[oilCompIdx] / b_perfcells[oilCompIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
volume_ratio += cmix_s[gasCompIdx] / b_perfcells[gasCompIdx];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i / volume_ratio;
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is;
}
} // end for injection perforations
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eq_idx = 0; eq_idx < numEq;++eq_idx) {
out.setDerivative(eq_idx, in.derivative(eq_idx));
}
return out;
}
template
void
MultisegmentWell::
computeSegmentFluidProperties(const Simulator& ebosSimulator)
{
// TODO: the concept of phases and components are rather confusing in this function.
// needs to be addressed sooner or later.
// get the temperature for later use. It is only useful when we are not handling
// thermal related simulation
// basically, it is a single value for all the segments
EvalWell temperature;
// not sure how to handle the pvt region related to segment
// for the current approach, we use the pvt region of the first perforated cell
// although there are some text indicating using the pvt region of the lowest
// perforated cell
// TODO: later to investigate how to handle the pvt region
int pvt_region_index;
{
// using the first perforated cell
const int cell_idx = well_cells_[0];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
pvt_region_index = fs.pvtRegionIndex();
}
std::vector surf_dens(num_components_);
// Surface density.
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index );
}
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// the compostion of the components inside wellbore under surface condition
std::vector mix_s(num_components_, 0.0);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
}
std::vector b(num_components_, 0.0);
std::vector visc(num_components_, 0.0);
const EvalWell seg_pressure = getSegmentPressure(seg);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
b[waterCompIdx] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[waterCompIdx] =
FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure);
}
EvalWell rv(0.0);
// gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[oilCompIdx] > 0.0) {
if (mix_s[gasCompIdx] > 0.0) {
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
}
if (rv > rvmax) {
rv = rvmax;
}
b[gasCompIdx] =
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv);
visc[gasCompIdx] =
FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv);
} else { // no oil exists
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[gasCompIdx] =
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[gasCompIdx] =
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
}
EvalWell rs(0.0);
// oil phase
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[gasCompIdx] > 0.0) {
if (mix_s[oilCompIdx] > 0.0) {
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
}
if (rs > rsmax) {
rs = rsmax;
}
b[oilCompIdx] =
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
visc[oilCompIdx] =
FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs);
} else { // no oil exists
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[oilCompIdx] =
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[oilCompIdx] =
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
}
std::vector mix(mix_s);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (rs != 0.0) { // rs > 0.0?
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / (1. - rs * rv);
}
if (rv != 0.0) { // rv > 0.0?
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / (1. - rs * rv);
}
}
EvalWell volrat(0.0);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
volrat += mix[comp_idx] / b[comp_idx];
}
segment_viscosities_[seg] = 0.;
// calculate the average viscosity
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell comp_fraction = mix[comp_idx] / b[comp_idx] / volrat;
segment_viscosities_[seg] += visc[comp_idx] * comp_fraction;
}
EvalWell density(0.0);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
density += surf_dens[comp_idx] * mix_s[comp_idx];
}
segment_densities_[seg] = density / volrat;
// calculate the mass rates
segment_mass_rates_[seg] = 0.;
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell rate = getSegmentRate(seg, comp_idx);
segment_mass_rates_[seg] += rate * surf_dens[comp_idx];
}
}
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentPressure(const int seg) const
{
return primary_variables_evaluation_[seg][SPres];
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentRate(const int seg,
const int comp_idx) const
{
return primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg, comp_idx);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentGTotal(const int seg) const
{
return primary_variables_evaluation_[seg][GTotal];
}
template
void
MultisegmentWell::
getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector& mob) const
{
// TODO: most of this function, if not the whole function, can be moved to the base class
const int cell_idx = well_cells_[perf];
assert (int(mob.size()) == num_components_);
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
}
// if (has_solvent) {
// mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
// }
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
}
}
}
template
void
MultisegmentWell::
assembleControlEq() const
{
EvalWell control_eq(0.0);
switch (well_controls_get_current_type(well_controls_)) {
case THP: // not handling this one for now
{
OPM_THROW(std::runtime_error, "Not handling THP control for Multisegment wells for now");
}
case BHP:
{
const double target_bhp = well_controls_get_current_target(well_controls_);
control_eq = getSegmentPressure(0) - target_bhp;
break;
}
case SURFACE_RATE:
{
// finding if it is a single phase control or combined phase control
int number_phases_under_control = 0;
const double* distr = well_controls_get_current_distr(well_controls_);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
++number_phases_under_control;
}
}
assert(number_phases_under_control > 0);
const std::vector g = {1.0, 1.0, 0.01};
const double target_rate = well_controls_get_current_target(well_controls_);
// TODO: the two situations below should be able to be merged to be handled as one situation
if (number_phases_under_control == 1) { // single phase control
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) { // under the control of this phase
control_eq = getSegmentGTotal(0) * volumeFraction(0, flowPhaseToEbosCompIdx(phase)) - g[phase] * target_rate;
break;
}
}
} else { // multiphase rate control
EvalWell rate_for_control(0.0);
const EvalWell G_total = getSegmentGTotal(0);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) {
rate_for_control += G_total * volumeFractionScaled(0, flowPhaseToEbosCompIdx(phase));
}
}
// TODO: maybe the following equation can be scaled a little bit for gas phase
control_eq = rate_for_control - target_rate;
}
break;
}
case RESERVOIR_RATE:
{
EvalWell rate_for_control(0.0); // reservoir rate
const double* distr = well_controls_get_current_distr(well_controls_);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) {
rate_for_control += getSegmentGTotal(0) * volumeFraction(0, flowPhaseToEbosCompIdx(phase));
}
}
const double target_rate = well_controls_get_current_target(well_controls_);
control_eq = rate_for_control - target_rate;
break;
}
default:
OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name());
}
// using control_eq to update the matrix and residuals
resWell_[0][SPres] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + numEq);
}
}
template
void
MultisegmentWell::
assemblePressureEq(const int seg) const
{
assert(seg != 0); // not top segment
// for top segment, the well control equation will be used.
EvalWell pressure_equation = getSegmentPressure(seg);
// we need to handle the pressure difference between the two segments
// we only consider the hydrostatic pressure loss first
pressure_equation -= getHydroPressureLoss(seg);
if (frictionalPressureLossConsidered()) {
pressure_equation -= getFrictionPressureLoss(seg);
}
resWell_[seg][SPres] = pressure_equation.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][seg][SPres][pv_idx] = pressure_equation.derivative(pv_idx + numEq);
}
// contribution from the outlet segment
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
resWell_[seg][SPres] -= outlet_pressure.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
}
if (accelerationalPressureLossConsidered()) {
handleAccelerationPressureLoss(seg);
}
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getHydroPressureLoss(const int seg) const
{
return segment_densities_[seg] * gravity_ * segment_depth_diffs_[seg];
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getFrictionPressureLoss(const int seg) const
{
const EvalWell mass_rate = segment_mass_rates_[seg];
const EvalWell density = segment_densities_[seg];
const EvalWell visc = segment_viscosities_[seg];
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
const double length = segmentSet()[seg].totalLength() - segmentSet()[outlet_segment_index].totalLength();
assert(length > 0.);
const double roughness = segmentSet()[seg].roughness();
const double area = segmentSet()[seg].crossArea();
const double diameter = segmentSet()[seg].internalDiameter();
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc);
}
template
void
MultisegmentWell::
handleAccelerationPressureLoss(const int seg) const
{
// TODO: this pressure loss is not significant enough to be well tested yet.
// handle the out velcocity head
const double area = segmentSet()[seg].crossArea();
const EvalWell mass_rate = segment_mass_rates_[seg];
const EvalWell density = segment_densities_[seg];
const EvalWell out_velocity_head = mswellhelpers::velocityHead(area, mass_rate, density);
resWell_[seg][SPres] -= out_velocity_head.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][seg][SPres][pv_idx] -= out_velocity_head.derivative(pv_idx + numEq);
}
// calcuate the maximum cross-area among the segment and its inlet segments
double max_area = area;
for (const int inlet : segment_inlets_[seg]) {
const double inlet_area = segmentSet()[inlet].crossArea();
if (inlet_area > max_area) {
max_area = inlet_area;
}
}
// handling the velocity head of intlet segments
for (const int inlet : segment_inlets_[seg]) {
const EvalWell density = segment_densities_[inlet];
const EvalWell mass_rate = segment_mass_rates_[inlet];
const EvalWell inlet_velocity_head = mswellhelpers::velocityHead(area, mass_rate, density);
resWell_[seg][SPres] += inlet_velocity_head.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][inlet][SPres][pv_idx] += inlet_velocity_head.derivative(pv_idx + numEq);
}
}
}
template
void
MultisegmentWell::
processFractions(const int seg) const
{
const PhaseUsage& pu = phaseUsage();
std::vector fractions(number_of_phases_, 0.0);
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
const int oil_pos = pu.phase_pos[Oil];
fractions[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
fractions[water_pos] = primary_variables_[seg][WFrac];
fractions[oil_pos] -= fractions[water_pos];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
fractions[gas_pos] = primary_variables_[seg][GFrac];
fractions[oil_pos] -= fractions[gas_pos];
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = pu.phase_pos[Water];
if (fractions[water_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[water_pos]);
}
fractions[oil_pos] /= (1.0 - fractions[water_pos]);
fractions[water_pos] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = pu.phase_pos[Gas];
if (fractions[gas_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[gas_pos]);
}
fractions[oil_pos] /= (1.0 - fractions[gas_pos]);
fractions[gas_pos] = 0.0;
}
}
if (fractions[oil_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[oil_pos]);
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[oil_pos]);
}
fractions[oil_pos] = 0.0;
}
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
primary_variables_[seg][WFrac] = fractions[pu.phase_pos[Water]];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
primary_variables_[seg][GFrac] = fractions[pu.phase_pos[Gas]];
}
}
template
void
MultisegmentWell::
updateWellStateFromPrimaryVariables(WellState& well_state) const
{
const PhaseUsage& pu = phaseUsage();
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
const int oil_pos = pu.phase_pos[Oil];
for (int seg = 0; seg < numberOfSegments(); ++seg) {
std::vector fractions(number_of_phases_, 0.0);
fractions[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
fractions[water_pos] = primary_variables_[seg][WFrac];
fractions[oil_pos] -= fractions[water_pos];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
fractions[gas_pos] = primary_variables_[seg][GFrac];
fractions[oil_pos] -= fractions[gas_pos];
}
// convert the fractions to be Q_p / G_total to calculate the phase rates
for (int p = 0; p < number_of_phases_; ++p) {
const double scale = scalingFactor(p);
// for injection wells, there should only one non-zero scaling factor
if (scale > 0.) {
fractions[p] /= scale;
} else {
// this should only happens to injection wells
fractions[p] = 0.;
}
}
// calculate the phase rates based on the primary variables
const double g_total = primary_variables_[seg][GTotal];
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
for (int p = 0; p < number_of_phases_; ++p) {
const double phase_rate = g_total * fractions[p];
well_state.segRates()[(seg + top_segment_index) * number_of_phases_ + p] = phase_rate;
if (seg == 0) { // top segment
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = phase_rate;
}
}
// update the segment pressure
well_state.segPress()[seg + top_segment_index] = primary_variables_[seg][SPres];
if (seg == 0) { // top segment
well_state.bhp()[index_of_well_] = well_state.segPress()[seg + top_segment_index];
}
}
}
template
bool
MultisegmentWell::
frictionalPressureLossConsidered() const
{
// HF- and HFA needs to consider frictional pressure loss
return (segmentSet().compPressureDrop() != WellSegment::H__);
}
template
bool
MultisegmentWell::
accelerationalPressureLossConsidered() const
{
return (segmentSet().compPressureDrop() == WellSegment::HFA);
}
template
void
MultisegmentWell::
iterateWellEquations(Simulator& ebosSimulator,
const double dt,
WellState& well_state)
{
// basically, it only iterate through the equations.
// we update the primary variables
// if converged, we can update the well_state.
// the function updateWellState() should have a flag to show
// if we will update the well state.
const int max_iter_number = param_.max_inner_iter_ms_wells_;
int it = 0;
for (; it < max_iter_number; ++it) {
assembleWellEqWithoutIteration(ebosSimulator, dt, well_state, true);
const BVectorWell dx_well = mswellhelpers::invDXDirect(duneD_, resWell_);
// TODO: use these small values for now, not intend to reach the convergence
// in this stage, but, should we?
// We should try to avoid hard-code values in the code.
// If we want to use the real one, we need to find a way to get them.
// const std::vector B {0.8, 0.8, 0.008};
const std::vector B {0.5, 0.5, 0.005};
const ConvergenceReport report = getWellConvergence(B);
if (report.converged) {
break;
}
updateWellState(dx_well, true, well_state);
initPrimaryVariablesEvaluation();
}
// TODO: maybe we should not use these values if they are not converged.
}
template
void
MultisegmentWell::
assembleWellEqWithoutIteration(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells)
{
// calculate the fluid properties needed.
computeSegmentFluidProperties(ebosSimulator);
// clear all entries
if (!only_wells) {
duneB_ = 0.0;
duneC_ = 0.0;
}
duneD_ = 0.0;
resWell_ = 0.0;
// for the black oil cases, there will be four equations,
// the first three of them are the mass balance equations, the last one is the pressure equations.
//
// but for the top segment, the pressure equation will be the well control equation, and the other three will be the same.
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
const bool allow_cf = getAllowCrossFlow();
const int nseg = numberOfSegments();
for (int seg = 0; seg < nseg; ++seg) {
// calculating the accumulation term // TODO: without considering the efficiencty factor for now
// volume of the segment
{
const double volume = segmentSet()[seg].volume();
// for each component
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
EvalWell accumulation_term = volume / dt * (surfaceVolumeFraction(seg, comp_idx) - segment_comp_initial_[seg][comp_idx])
+ getSegmentRate(seg, comp_idx);
resWell_[seg][comp_idx] += accumulation_term.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + numEq);
}
}
}
// considering the contributions from the inlet segments
{
for (const int inlet : segment_inlets_[seg]) {
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
const EvalWell inlet_rate = getSegmentRate(inlet, comp_idx);
resWell_[seg][comp_idx] -= inlet_rate.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][inlet][comp_idx][pv_idx] -= inlet_rate.derivative(pv_idx + numEq);
}
}
}
}
// calculating the perforation rate for each perforation that belongs to this segment
const EvalWell seg_pressure = getSegmentPressure(seg);
for (const int perf : segment_perforations_[seg]) {
const int cell_idx = well_cells_[perf];
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector mob(num_components_, 0.0);
getMobility(ebosSimulator, perf, mob);
std::vector cq_s(num_components_, 0.0);
computePerfRate(int_quants, mob, seg, perf, seg_pressure, allow_cf, cq_s);
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[comp_idx] * well_efficiency_factor_;
if (!only_wells) {
// subtract sum of component fluxes in the reservoir equation.
// need to consider the efficiency factor
ebosResid[cell_idx][comp_idx] -= cq_s_effective.value();
}
// subtract sum of phase fluxes in the well equations.
resWell_[seg][comp_idx] -= cq_s_effective.value();
// assemble the jacobians
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + numEq); // intput in transformed matrix
}
// the index name for the D should be eq_idx / pv_idx
duneD_[seg][seg][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx + numEq);
}
for (int pv_idx = 0; pv_idx < numEq; ++pv_idx) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cell_idx][cell_idx][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx);
duneB_[seg][cell_idx][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx);
}
}
}
// TODO: we should save the perforation pressure and preforation rates?
// we do not use it in the simulation for now, while we might need them if
// we handle the pressure in SEG mode.
}
// the fourth dequation, the pressure drop equation
if (seg == 0) { // top segment, pressure equation is the control equation
assembleControlEq();
} else {
assemblePressureEq(seg);
}
}
}
}