/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include "config.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "**********************************************************************\n";
std::cout << "* *\n";
std::cout << "* This is Flow (version 2015.04) *\n";
std::cout << "* *\n";
std::cout << "* Flow is a simulator for fully implicit three-phase black-oil flow, *\n";
std::cout << "* and is part of OPM. For more information see: *\n";
std::cout << "* http://opm-project.org *\n";
std::cout << "* *\n";
std::cout << "**********************************************************************\n\n";
// Read parameters, see if a deck was specified on the command line.
std::cout << "--------------- Reading parameters ---------------" << std::endl;
parameter::ParameterGroup param(argc, argv, false);
if (!param.unhandledArguments().empty()) {
if (param.unhandledArguments().size() != 1) {
std::cerr << "You can only specify a single input deck on the command line.\n";
return EXIT_FAILURE;
} else {
param.insertParameter("deck_filename", param.unhandledArguments()[0]);
}
}
// We must have an input deck. Grid and props will be read from that.
if (!param.has("deck_filename")) {
std::cerr << "This program must be run with an input deck.\n"
"Specify the deck filename either\n"
" a) as a command line argument by itself\n"
" b) as a command line parameter with the syntax deck_filename=, or\n"
" c) as a parameter in a parameter file (.param or .xml) passed to the program.\n";
return EXIT_FAILURE;
}
std::shared_ptr grid;
std::shared_ptr props;
std::shared_ptr new_props;
std::shared_ptr rock_comp;
BlackoilState state;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
std::string deck_filename = param.get("deck_filename");
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::string output_dir;
if (output) {
// Create output directory if needed.
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
std::cerr << "Creating directories failed: " << fpath << std::endl;
return EXIT_FAILURE;
}
// Write simulation parameters.
param.writeParam(output_dir + "/simulation.param");
}
std::string logFile = output_dir + "/LOGFILE.txt";
Opm::ParserPtr parser(new Opm::Parser());
{
std::shared_ptr streamLog = std::make_shared(logFile , Opm::Log::DefaultMessageTypes);
std::shared_ptr counterLog = std::make_shared(Opm::Log::DefaultMessageTypes);
Opm::OpmLog::addBackend( "STREAM" , streamLog );
Opm::OpmLog::addBackend( "COUNTER" , counterLog );
}
Opm::DeckConstPtr deck;
std::shared_ptr eclipseState;
try {
deck = parser->parseFile(deck_filename);
Opm::checkDeck(deck);
eclipseState.reset(new Opm::EclipseState(deck));
}
catch (const std::invalid_argument& e) {
std::cerr << "Failed to create valid ECLIPSESTATE object. See logfile: " << logFile << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
return EXIT_FAILURE;
}
// Grid init
std::vector porv = eclipseState->getDoubleGridProperty("PORV")->getData();
grid.reset(new GridManager(eclipseState->getEclipseGrid(), porv));
auto &cGrid = *grid->c_grid();
const PhaseUsage pu = Opm::phaseUsageFromDeck(deck);
// Possibly override IOConfig setting (from deck) for how often RESTART files should get written to disk (every N report step)
if (param.has("output_interval")) {
int output_interval = param.get("output_interval");
IOConfigPtr ioConfig = eclipseState->getIOConfig();
ioConfig->overrideRestartWriteInterval((size_t)output_interval);
}
Opm::BlackoilOutputWriter outputWriter(cGrid,
param,
eclipseState,
pu );
// Rock and fluid init
props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, *grid->c_grid(), param));
new_props.reset(new BlackoilPropsAdFromDeck(deck, eclipseState, *grid->c_grid()));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Rock compressibility.
rock_comp.reset(new RockCompressibility(deck, eclipseState));
// Gravity.
gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
initBlackoilSurfvol(*grid->c_grid(), *props, state);
enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour };
if (pu.phase_used[Oil] && pu.phase_used[Gas]) {
const int np = props->numPhases();
const int nc = grid->c_grid()->number_of_cells;
for (int c = 0; c < nc; ++c) {
state.gasoilratio()[c] = state.surfacevol()[c*np + pu.phase_pos[Gas]]
/ state.surfacevol()[c*np + pu.phase_pos[Oil]];
}
}
} else if (deck->hasKeyword("EQUIL") && props->numPhases() == 3) {
state.init(*grid->c_grid(), props->numPhases());
const double grav = param.getDefault("gravity", unit::gravity);
initStateEquil(*grid->c_grid(), *props, deck, eclipseState, grav, state);
state.faceflux().resize(grid->c_grid()->number_of_faces, 0.0);
} else {
initBlackoilStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state);
}
// The capillary pressure is scaled in new_props to match the scaled capillary pressure in props.
if (deck->hasKeyword("SWATINIT")) {
const int nc = grid->c_grid()->number_of_cells;
std::vector cells(nc);
for (int c = 0; c < nc; ++c) { cells[c] = c; }
std::vector pc = state.saturation();
props->capPress(nc, state.saturation().data(), cells.data(), pc.data(),NULL);
new_props->setSwatInitScaling(state.saturation(),pc);
}
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
const double *grav = use_gravity ? &gravity[0] : 0;
// Solver for Newton iterations.
std::unique_ptr fis_solver;
if (param.getDefault("use_interleaved", false)) {
fis_solver.reset(new NewtonIterationBlackoilInterleaved(param));
} else if (param.getDefault("use_cpr", true)) {
fis_solver.reset(new NewtonIterationBlackoilCPR(param));
} else {
fis_solver.reset(new NewtonIterationBlackoilSimple(param));
}
Opm::ScheduleConstPtr schedule = eclipseState->getSchedule();
Opm::TimeMapConstPtr timeMap(schedule->getTimeMap());
SimulatorTimer simtimer;
// initialize variables
simtimer.init(timeMap);
bool use_local_perm = param.getDefault("use_local_perm", true);
Opm::DerivedGeology geology(*grid->c_grid(), *new_props, eclipseState, use_local_perm, grav);
std::vector threshold_pressures = thresholdPressures(eclipseState, *grid->c_grid());
SimulatorFullyImplicitBlackoil simulator(param,
*grid->c_grid(),
geology,
*new_props,
rock_comp->isActive() ? rock_comp.get() : 0,
*fis_solver,
grav,
deck->hasKeyword("DISGAS"),
deck->hasKeyword("VAPOIL"),
eclipseState,
outputWriter,
threshold_pressures);
if (!schedule->initOnly()){
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< std::flush;
SimulatorReport fullReport = simulator.run(simtimer, state);
std::cout << "\n\n================ End of simulation ===============\n\n";
fullReport.reportFullyImplicit(std::cout);
if (output) {
std::string filename = output_dir + "/walltime.txt";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
fullReport.reportParam(tot_os);
warnIfUnusedParams(param);
}
} else {
outputWriter.writeInit( simtimer );
std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush;
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
return EXIT_FAILURE;
}