/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace {
/**
* @brief Relaxation factor considering only one fraction value.
* @param old_value The previous value before the change.
* @param dx The solved newton update for the value.
* @param well_name The name of the well that calls this function
* @param value_name The name/meaning of the old_value.
* @param deferred_logger The deferred logger used for logging results and messages.
* @return The calculated relaxation factor.
*/
template
Scalar relaxationFactorFraction(const Scalar old_value,
const Scalar dx,
const std::string& well_name,
const std::string& value_name,
Opm::DeferredLogger& deferred_logger)
{
constexpr double epislon = std::numeric_limits::epsilon();
if (old_value < -epislon || old_value > 1.0 + epislon) {
const std::string msg = fmt::format(" illegal fraction value {} {} is found for well {}", value_name, old_value, well_name);
OPM_DEFLOG_PROBLEM(Opm::NumericalProblem, msg, deferred_logger);
}
const Scalar& safe_old_value = std::clamp(old_value, 0.0, 1.0);
Scalar relaxation_factor = 1.;
// updated values without relaxation factor
const Scalar possible_updated_value = safe_old_value - dx;
// 0.95 is an experimental value remains to be optimized
if (possible_updated_value < 0.0) {
relaxation_factor = std::abs(safe_old_value / dx) * 0.95;
} else if (possible_updated_value > 1.0) {
relaxation_factor = std::abs((1. - safe_old_value) / dx) * 0.95;
}
// if possible_updated_value is between 0. and 1.0, then relaxation_factor
// remains to be one
assert(relaxation_factor >= 0. && relaxation_factor <= 1.);
return relaxation_factor;
}
}
namespace Opm {
template
void StandardWellPrimaryVariables::
init()
{
for (int eqIdx = 0; eqIdx < numWellEq_; ++eqIdx) {
evaluation_[eqIdx] =
EvalWell::createVariable(numWellEq_ + Indices::numEq,
value_[eqIdx],
Indices::numEq + eqIdx);
}
}
template
void StandardWellPrimaryVariables::
resize(const int numWellEq)
{
value_.resize(numWellEq, 0.0);
evaluation_.resize(numWellEq, EvalWell{numWellEq + Indices::numEq, 0.0});
numWellEq_ = numWellEq;
}
template
void StandardWellPrimaryVariables::
update(const WellState& well_state,
const bool stop_or_zero_rate_target,
DeferredLogger& deferred_logger)
{
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
const int well_index = well_.indexOfWell();
const int np = well_.numPhases();
const auto& pu = well_.phaseUsage();
const auto& ws = well_state.well(well_index);
// the weighted total well rate
double total_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
total_well_rate += well_.scalingFactor(p) * ws.surface_rates[p];
}
// Not: for the moment, the first primary variable for the injectors is not G_total. The injection rate
// under surface condition is used here
if (well_.isInjector()) {
switch (well_.wellEcl().injectorType()) {
case InjectorType::WATER:
value_[WQTotal] = ws.surface_rates[pu.phase_pos[Water]];
break;
case InjectorType::GAS:
value_[WQTotal] = ws.surface_rates[pu.phase_pos[Gas]];
break;
case InjectorType::OIL:
value_[WQTotal] = ws.surface_rates[pu.phase_pos[Oil]];
break;
case InjectorType::MULTI:
// Not supported.
deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
"Multi phase injectors are not supported, requested for well " + well_.name());
break;
}
} else {
value_[WQTotal] = total_well_rate;
if (stop_or_zero_rate_target) {
value_[WQTotal] = 0.;
}
}
if (std::abs(total_well_rate) > 0.) {
if constexpr (has_wfrac_variable) {
value_[WFrac] = well_.scalingFactor(pu.phase_pos[Water]) * ws.surface_rates[pu.phase_pos[Water]] / total_well_rate;
}
if constexpr (has_gfrac_variable) {
value_[GFrac] = well_.scalingFactor(pu.phase_pos[Gas]) *
(ws.surface_rates[pu.phase_pos[Gas]] -
(Indices::enableSolvent ? ws.sum_solvent_rates() : 0.0) ) / total_well_rate ;
}
if constexpr (Indices::enableSolvent) {
value_[SFrac] = well_.scalingFactor(Indices::contiSolventEqIdx) * ws.sum_solvent_rates() / total_well_rate ;
}
} else { // total_well_rate == 0
if (well_.isInjector()) {
// only single phase injection handled
if constexpr (has_wfrac_variable) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
auto phase = well_.wellEcl().getInjectionProperties().injectorType;
if (phase == InjectorType::WATER) {
value_[WFrac] = 1.0;
} else {
value_[WFrac] = 0.0;
}
}
}
if constexpr (has_gfrac_variable) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
auto phase = well_.wellEcl().getInjectionProperties().injectorType;
if (phase == InjectorType::GAS) {
value_[GFrac] = (1.0 - well_.rsRvInj());
if constexpr (Indices::enableSolvent) {
value_[GFrac] = 1.0 - well_.rsRvInj() - well_.wsolvent();
value_[SFrac] = well_.wsolvent();
}
} else {
value_[GFrac] = 0.0;
}
}
}
// TODO: it is possible to leave injector as a oil well,
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
// this will happen.
} else if (well_.isProducer()) { // producers
// TODO: the following are not addressed for the solvent case yet
if constexpr (has_wfrac_variable) {
value_[WFrac] = 1.0 / np;
}
if constexpr (has_gfrac_variable) {
value_[GFrac] = 1.0 / np;
}
} else {
OPM_DEFLOG_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well", deferred_logger);
}
}
// BHP
value_[Bhp] = ws.bhp;
}
template
void StandardWellPrimaryVariables::
updatePolyMW(const WellState& well_state)
{
if (well_.isInjector()) {
const auto& ws = well_state.well(well_.indexOfWell());
const auto& perf_data = ws.perf_data;
const auto& water_velocity = perf_data.water_velocity;
const auto& skin_pressure = perf_data.skin_pressure;
for (int perf = 0; perf < well_.numPerfs(); ++perf) {
value_[Bhp + 1 + perf] = water_velocity[perf];
value_[Bhp + 1 + well_.numPerfs() + perf] = skin_pressure[perf];
}
}
}
template
void StandardWellPrimaryVariables::
updateNewton(const BVectorWell& dwells,
const bool stop_or_zero_rate_target,
const double dFLimit,
const double dBHPLimit,
DeferredLogger& deferred_logger)
{
// for injectors, very typical one of the fractions will be one, and it is easy to get zero value
// fractions. not sure what is the best way to handle it yet, so we just use 1.0 here
// The relaxationFactorFractionProducer code does not take into account solvent
// so we use 1.0 for cases with solvent.
[[maybe_unused]] const double relaxation_factor_fractions =
(well_.isProducer() && !Indices::enableSolvent) ? this->relaxationFactorFractionsProducer(dwells, deferred_logger)
: 1.0;
// update the second and third well variable (The flux fractions)
if constexpr (has_wfrac_variable) {
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac] * relaxation_factor_fractions), dFLimit);
value_[WFrac] = value_[WFrac] - dx2_limited;
}
if constexpr (has_gfrac_variable) {
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac] * relaxation_factor_fractions), dFLimit);
value_[GFrac] = value_[GFrac] - dx3_limited;
}
if constexpr (Indices::enableSolvent) {
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]) * relaxation_factor_fractions, dFLimit);
value_[SFrac] = value_[SFrac] - dx4_limited;
}
this->processFractions();
// updating the total rates Q_t
value_[WQTotal] -= dwells[0][WQTotal];
// here, we make sure it is zero for wells with zero rate target(including stopped wells)
if (stop_or_zero_rate_target) {
value_[WQTotal] = 0.;
} else {
// make sure that no injector produce and no producer inject
if (well_.isInjector()) {
value_[WQTotal] = std::max(value_[WQTotal], 0.0);
} else {
value_[WQTotal] = std::min(value_[WQTotal], 0.0);
}
}
// updating the bottom hole pressure
const int sign1 = dwells[0][Bhp] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][Bhp]),
std::abs(value_[Bhp]) * dBHPLimit);
// some cases might have defaulted bhp constraint of 1 bar, we use a slightly smaller value as the bhp lower limit for Newton update
// so that bhp constaint can be an active control when needed.
constexpr double bhp_lower_limit = 1. * unit::barsa - 1. * unit::Pascal;
value_[Bhp] = std::max(value_[Bhp] - dx1_limited, bhp_lower_limit);
}
template
void StandardWellPrimaryVariables::
updateNewtonPolyMW(const BVectorWell& dwells)
{
if (well_.isInjector()) {
for (int perf = 0; perf < well_.numPerfs(); ++perf) {
const int wat_vel_index = Bhp + 1 + perf;
const int pskin_index = Bhp + 1 + well_.numPerfs() + perf;
const double relaxation_factor = 0.9;
const double dx_wat_vel = dwells[0][wat_vel_index];
value_[wat_vel_index] -= relaxation_factor * dx_wat_vel;
const double dx_pskin = dwells[0][pskin_index];
value_[pskin_index] -= relaxation_factor * dx_pskin;
}
}
}
template
void StandardWellPrimaryVariables::
copyToWellState(WellState& well_state,
DeferredLogger& deferred_logger) const
{
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
const PhaseUsage& pu = well_.phaseUsage();
std::vector F(well_.numPhases(), 0.0);
[[maybe_unused]] double F_solvent = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const int oil_pos = pu.phase_pos[Oil];
F[oil_pos] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = pu.phase_pos[Water];
F[water_pos] = value_[WFrac];
F[oil_pos] -= F[water_pos];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = value_[GFrac];
F[oil_pos] -= F[gas_pos];
}
if constexpr (Indices::enableSolvent) {
F_solvent = value_[SFrac];
F[oil_pos] -= F_solvent;
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = pu.phase_pos[Water];
F[water_pos] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = value_[GFrac];
F[water_pos] -= F[gas_pos];
}
if constexpr (Indices::enableSolvent) {
F_solvent = value_[SFrac];
F[water_pos] -= F_solvent;
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = pu.phase_pos[Gas];
F[gas_pos] = 1.0;
}
// convert the fractions to be Q_p / G_total to calculate the phase rates
for (int p = 0; p < well_.numPhases(); ++p) {
const double scal = well_.scalingFactor(p);
// for injection wells, there should only one non-zero scaling factor
if (scal > 0) {
F[p] /= scal ;
} else {
// this should only happens to injection wells
F[p] = 0.;
}
}
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
// More testing is needed to make sure this is correct for well groups and THP.
if constexpr (Indices::enableSolvent) {
F_solvent /= well_.scalingFactor(Indices::contiSolventEqIdx);
F[pu.phase_pos[Gas]] += F_solvent;
}
auto& ws = well_state.well(well_.indexOfWell());
ws.bhp = value_[Bhp];
// calculate the phase rates based on the primary variables
// for producers, this is not a problem, while not sure for injectors here
if (well_.isProducer()) {
const double g_total = value_[WQTotal];
for (int p = 0; p < well_.numPhases(); ++p) {
ws.surface_rates[p] = g_total * F[p];
}
} else { // injectors
for (int p = 0; p < well_.numPhases(); ++p) {
ws.surface_rates[p] = 0.0;
}
switch (well_.wellEcl().injectorType()) {
case InjectorType::WATER:
ws.surface_rates[pu.phase_pos[Water]] = value_[WQTotal];
break;
case InjectorType::GAS:
ws.surface_rates[pu.phase_pos[Gas]] = value_[WQTotal];
break;
case InjectorType::OIL:
ws.surface_rates[pu.phase_pos[Oil]] = value_[WQTotal];
break;
case InjectorType::MULTI:
// Not supported.
deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
"Multi phase injectors are not supported, requested for well " + well_.name());
break;
}
}
}
template
void StandardWellPrimaryVariables::
copyToWellStatePolyMW(WellState& well_state) const
{
if (well_.isInjector()) {
auto& ws = well_state.well(well_.indexOfWell());
auto& perf_data = ws.perf_data;
auto& perf_water_velocity = perf_data.water_velocity;
auto& perf_skin_pressure = perf_data.skin_pressure;
for (int perf = 0; perf < well_.numPerfs(); ++perf) {
perf_water_velocity[perf] = value_[Bhp + 1 + perf];
perf_skin_pressure[perf] = value_[Bhp + 1 + well_.numPerfs() + perf];
}
}
}
template
typename StandardWellPrimaryVariables::EvalWell
StandardWellPrimaryVariables::
volumeFraction(const unsigned compIdx) const
{
if (FluidSystem::numActivePhases() == 1) {
return EvalWell(numWellEq_ + Indices::numEq, 1.0);
}
if (has_gfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return evaluation_[GFrac];
}
if (Indices::enableSolvent && compIdx == (unsigned)Indices::contiSolventEqIdx) {
return evaluation_[SFrac];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
if (has_wfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
return evaluation_[WFrac];
}
}
// Compute the Oil fraction if oil is present
// or the WATER fraction for a gas-water case
EvalWell well_fraction(numWellEq_ + Indices::numEq, 1.0);
if (has_wfrac_variable && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
well_fraction -= evaluation_[WFrac];
}
if (has_gfrac_variable) {
well_fraction -= evaluation_[GFrac];
}
if constexpr (Indices::enableSolvent) {
well_fraction -= evaluation_[SFrac];
}
return well_fraction;
}
template
typename StandardWellPrimaryVariables::EvalWell
StandardWellPrimaryVariables::
volumeFractionScaled(const int compIdx) const
{
const int legacyCompIdx = well_.modelCompIdxToFlowCompIdx(compIdx);
const double scal = well_.scalingFactor(legacyCompIdx);
if (scal > 0)
return this->volumeFraction(compIdx) / scal;
// the scaling factor may be zero for RESV controlled wells.
return this->volumeFraction(compIdx);
}
template
typename StandardWellPrimaryVariables::EvalWell
StandardWellPrimaryVariables::
surfaceVolumeFraction(const int compIdx) const
{
EvalWell sum_volume_fraction_scaled(numWellEq_ + Indices::numEq, 0.);
for (int idx = 0; idx < well_.numComponents(); ++idx) {
sum_volume_fraction_scaled += this->volumeFractionScaled(idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return this->volumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
}
template
typename StandardWellPrimaryVariables::EvalWell
StandardWellPrimaryVariables::
getQs(const int comp_idx) const
{
// Note: currently, the WQTotal definition is still depends on Injector/Producer.
assert(comp_idx < well_.numComponents());
if (well_.isInjector()) { // only single phase injection
double inj_frac = 0.0;
switch (well_.wellEcl().injectorType()) {
case InjectorType::WATER:
if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))) {
inj_frac = 1.0;
}
break;
case InjectorType::GAS:
if (Indices::enableSolvent && comp_idx == Indices::contiSolventEqIdx) { // solvent
inj_frac = well_.wsolvent();
} else if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx))) {
inj_frac = 1.0 - well_.rsRvInj();
if constexpr (Indices::enableSolvent) {
inj_frac -= well_.wsolvent();
}
} else if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx))) {
inj_frac = well_.rsRvInj();
}
break;
case InjectorType::OIL:
if (comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx))) {
inj_frac = 1.0 - well_.rsRvInj();
} else if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && comp_idx == int(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx))) {
inj_frac = well_.rsRvInj();
}
break;
case InjectorType::MULTI:
// Not supported.
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
// "Multi phase injectors are not supported, requested for well " + name());
break;
}
return inj_frac * evaluation_[WQTotal];
} else { // producers
return evaluation_[WQTotal] * this->volumeFractionScaled(comp_idx);
}
}
template
void StandardWellPrimaryVariables::
processFractions()
{
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
const auto pu = well_.phaseUsage();
std::vector F(well_.numPhases(), 0.0);
[[maybe_unused]] double F_solvent = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] = value_[WFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Water]];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = value_[GFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Gas]];
}
if constexpr (Indices::enableSolvent) {
F_solvent = value_[SFrac];
F[pu.phase_pos[Oil]] -= F_solvent;
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = value_[GFrac];
F[pu.phase_pos[Water]] -= F[pu.phase_pos[Gas]];
}
if constexpr (Indices::enableSolvent) {
F_solvent = value_[SFrac];
F[pu.phase_pos[Water]] -= F_solvent;
}
}
else if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] = 1.0;
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
if (F[pu.phase_pos[Water]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Water]]);
}
if constexpr (Indices::enableSolvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Water]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Water]]);
}
F[pu.phase_pos[Water]] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if (F[pu.phase_pos[Gas]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Gas]]);
}
if constexpr (Indices::enableSolvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Gas]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Gas]]);
}
F[pu.phase_pos[Gas]] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
if (F[pu.phase_pos[Oil]] < 0.0) {
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if constexpr (Indices::enableSolvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Oil]]);
}
F[pu.phase_pos[Oil]] = 0.0;
}
}
if constexpr (has_wfrac_variable) {
value_[WFrac] = F[pu.phase_pos[Water]];
}
if constexpr (has_gfrac_variable) {
value_[GFrac] = F[pu.phase_pos[Gas]];
}
if constexpr (Indices::enableSolvent) {
value_[SFrac] = F_solvent;
}
}
template
double StandardWellPrimaryVariables::
relaxationFactorFractionsProducer(const BVectorWell& dwells, DeferredLogger& deferred_logger) const
{
// TODO: not considering solvent yet
// 0.95 is a experimental value, which remains to be optimized
double relaxation_factor = 1.0;
if (FluidSystem::numActivePhases() > 1) {
if constexpr (has_wfrac_variable) {
const double relaxation_factor_w = relaxationFactorFraction(value_[WFrac],
dwells[0][WFrac],
this->well_.name(),
"WFrac",
deferred_logger);
relaxation_factor = std::min(relaxation_factor, relaxation_factor_w);
}
if constexpr (has_gfrac_variable) {
const double relaxation_factor_g = relaxationFactorFraction(value_[GFrac],
dwells[0][GFrac],
this->well_.name(),
"GFrac",
deferred_logger);
relaxation_factor = std::min(relaxation_factor, relaxation_factor_g);
}
if constexpr (has_wfrac_variable && has_gfrac_variable) {
// We need to make sure the even with the relaxation_factor, the sum of F_w and F_g is below one, so there will
// not be negative oil fraction later
const double original_sum = value_[WFrac] + value_[GFrac];
const double relaxed_update = (dwells[0][WFrac] + dwells[0][GFrac]) * relaxation_factor;
const double possible_updated_sum = original_sum - relaxed_update;
// We only relax if fraction is above 1.
// The newton solver should handle the rest
constexpr double epsilon = 0.001;
if (possible_updated_sum > 1.0 + epsilon) {
// since the orignal sum <= 1.0 the epsilon asserts that
// the relaxed_update is non trivial.
assert(relaxed_update != 0.);
const double further_relaxation_factor = std::abs((1. - original_sum) / relaxed_update) * 0.95;
relaxation_factor *= further_relaxation_factor;
}
}
if (relaxation_factor < 0.0 || relaxation_factor > 1.0) {
const std::string msg = fmt::format(" illegal relaxation factor {} is obtained for well {}", relaxation_factor, this->well_.name());
OPM_DEFLOG_PROBLEM(NumericalProblem, msg, deferred_logger);
}
}
return relaxation_factor;
}
template
void StandardWellPrimaryVariables::
checkFinite(DeferredLogger& deferred_logger) const
{
for (const Scalar v : value_) {
if (!isfinite(v))
OPM_DEFLOG_PROBLEM(NumericalProblem,
"Infinite primary variable after update from wellState, well: " + well_.name(),
deferred_logger);
}
}
#define INSTANCE(...) \
template class StandardWellPrimaryVariables,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<1u,0u,0u,0u,false,false,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,true,false,0u,0u>)
}