// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::NcpBoundaryRateVector
*/
#ifndef EWOMS_NCP_BOUNDARY_RATE_VECTOR_HH
#define EWOMS_NCP_BOUNDARY_RATE_VECTOR_HH
#include "ncpproperties.hh"
#include
#include
namespace Opm {
/*!
* \ingroup NcpModel
*
* \brief Implements a boundary vector for the fully implicit
* compositional multi-phase NCP model.
*/
template
class NcpBoundaryRateVector : public GetPropType
{
using ParentType = GetPropType;
using ExtensiveQuantities = GetPropType;
using FluidSystem = GetPropType;
using Scalar = GetPropType;
using Evaluation = GetPropType;
using Indices = GetPropType;
enum { numEq = getPropValue() };
enum { numPhases = getPropValue() };
enum { numComponents = getPropValue() };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { enableEnergy = getPropValue() };
using EnergyModule = Opm::EnergyModule;
using Toolbox = Opm::MathToolbox;
public:
NcpBoundaryRateVector() : ParentType()
{}
/*!
* \copydoc
* ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(Scalar)
*/
NcpBoundaryRateVector(const Evaluation& value) : ParentType(value)
{}
/*!
* \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(const
* ImmiscibleBoundaryRateVector&)
*/
NcpBoundaryRateVector(const NcpBoundaryRateVector& value) = default;
NcpBoundaryRateVector& operator=(const NcpBoundaryRateVector& value) = default;
/*!
* \copydoc ImmiscibleBoundaryRateVector::setFreeFlow
*/
template
void setFreeFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
ExtensiveQuantities extQuants;
extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState);
const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx);
unsigned focusDofIdx = context.focusDofIndex();
unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx);
////////
// advective fluxes of all components in all phases
////////
(*this) = Evaluation(0.0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Evaluation density;
if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
if (focusDofIdx == interiorDofIdx)
density = fluidState.density(phaseIdx);
else
density = Opm::getValue(fluidState.density(phaseIdx));
}
else if (focusDofIdx == interiorDofIdx)
density = insideIntQuants.fluidState().density(phaseIdx);
else
density = Opm::getValue(insideIntQuants.fluidState().density(phaseIdx));
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Evaluation molarity;
if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
if (focusDofIdx == interiorDofIdx)
molarity = fluidState.molarity(phaseIdx, compIdx);
else
molarity = Opm::getValue(fluidState.molarity(phaseIdx, compIdx));
}
else if (focusDofIdx == interiorDofIdx)
molarity = insideIntQuants.fluidState().molarity(phaseIdx, compIdx);
else
molarity = Opm::getValue(insideIntQuants.fluidState().molarity(phaseIdx, compIdx));
// add advective flux of current component in current
// phase
(*this)[conti0EqIdx + compIdx] += extQuants.volumeFlux(phaseIdx)*molarity;
}
if (enableEnergy) {
Evaluation specificEnthalpy;
if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
if (focusDofIdx == interiorDofIdx)
specificEnthalpy = fluidState.enthalpy(phaseIdx);
else
specificEnthalpy = Opm::getValue(fluidState.enthalpy(phaseIdx));
}
else if (focusDofIdx == interiorDofIdx)
specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx);
else
specificEnthalpy = Opm::getValue(insideIntQuants.fluidState().enthalpy(phaseIdx));
Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy;
EnergyModule::addToEnthalpyRate(*this, enthalpyRate);
}
}
// thermal conduction
EnergyModule::addToEnthalpyRate(*this, EnergyModule::thermalConductionRate(extQuants));
#ifndef NDEBUG
for (unsigned i = 0; i < numEq; ++i) {
Opm::Valgrind::CheckDefined((*this)[i]);
}
#endif
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setInFlow
*/
template
void setInFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
// we only allow fluxes in the direction opposite to the outer unit normal
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
this->operator[](eqIdx) = Toolbox::min(0.0, this->operator[](eqIdx));
}
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setOutFlow
*/
template
void setOutFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
// we only allow fluxes in the same direction as the outer unit normal
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
this->operator[](eqIdx) = Toolbox::max(0.0, this->operator[](eqIdx));
}
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setNoFlow
*/
void setNoFlow()
{ (*this) = Evaluation(0.0); }
};
} // namespace Opm
#endif