// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \copydoc Opm::NcpBoundaryRateVector */ #ifndef EWOMS_NCP_BOUNDARY_RATE_VECTOR_HH #define EWOMS_NCP_BOUNDARY_RATE_VECTOR_HH #include "ncpproperties.hh" #include #include namespace Opm { /*! * \ingroup NcpModel * * \brief Implements a boundary vector for the fully implicit * compositional multi-phase NCP model. */ template class NcpBoundaryRateVector : public GetPropType { using ParentType = GetPropType; using ExtensiveQuantities = GetPropType; using FluidSystem = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using Indices = GetPropType; enum { numEq = getPropValue() }; enum { numPhases = getPropValue() }; enum { numComponents = getPropValue() }; enum { conti0EqIdx = Indices::conti0EqIdx }; enum { enableEnergy = getPropValue() }; using EnergyModule = Opm::EnergyModule; using Toolbox = Opm::MathToolbox; public: NcpBoundaryRateVector() : ParentType() {} /*! * \copydoc * ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(Scalar) */ NcpBoundaryRateVector(const Evaluation& value) : ParentType(value) {} /*! * \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(const * ImmiscibleBoundaryRateVector&) */ NcpBoundaryRateVector(const NcpBoundaryRateVector& value) = default; NcpBoundaryRateVector& operator=(const NcpBoundaryRateVector& value) = default; /*! * \copydoc ImmiscibleBoundaryRateVector::setFreeFlow */ template void setFreeFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState) { ExtensiveQuantities extQuants; extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState); const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx); unsigned focusDofIdx = context.focusDofIndex(); unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx); //////// // advective fluxes of all components in all phases //////// (*this) = Evaluation(0.0); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { Evaluation density; if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) { if (focusDofIdx == interiorDofIdx) density = fluidState.density(phaseIdx); else density = Opm::getValue(fluidState.density(phaseIdx)); } else if (focusDofIdx == interiorDofIdx) density = insideIntQuants.fluidState().density(phaseIdx); else density = Opm::getValue(insideIntQuants.fluidState().density(phaseIdx)); for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { Evaluation molarity; if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) { if (focusDofIdx == interiorDofIdx) molarity = fluidState.molarity(phaseIdx, compIdx); else molarity = Opm::getValue(fluidState.molarity(phaseIdx, compIdx)); } else if (focusDofIdx == interiorDofIdx) molarity = insideIntQuants.fluidState().molarity(phaseIdx, compIdx); else molarity = Opm::getValue(insideIntQuants.fluidState().molarity(phaseIdx, compIdx)); // add advective flux of current component in current // phase (*this)[conti0EqIdx + compIdx] += extQuants.volumeFlux(phaseIdx)*molarity; } if (enableEnergy) { Evaluation specificEnthalpy; if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) { if (focusDofIdx == interiorDofIdx) specificEnthalpy = fluidState.enthalpy(phaseIdx); else specificEnthalpy = Opm::getValue(fluidState.enthalpy(phaseIdx)); } else if (focusDofIdx == interiorDofIdx) specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx); else specificEnthalpy = Opm::getValue(insideIntQuants.fluidState().enthalpy(phaseIdx)); Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy; EnergyModule::addToEnthalpyRate(*this, enthalpyRate); } } // thermal conduction EnergyModule::addToEnthalpyRate(*this, EnergyModule::thermalConductionRate(extQuants)); #ifndef NDEBUG for (unsigned i = 0; i < numEq; ++i) { Opm::Valgrind::CheckDefined((*this)[i]); } #endif } /*! * \copydoc ImmiscibleBoundaryRateVector::setInFlow */ template void setInFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState) { this->setFreeFlow(context, bfIdx, timeIdx, fluidState); // we only allow fluxes in the direction opposite to the outer unit normal for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) { this->operator[](eqIdx) = Toolbox::min(0.0, this->operator[](eqIdx)); } } /*! * \copydoc ImmiscibleBoundaryRateVector::setOutFlow */ template void setOutFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState) { this->setFreeFlow(context, bfIdx, timeIdx, fluidState); // we only allow fluxes in the same direction as the outer unit normal for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) { this->operator[](eqIdx) = Toolbox::max(0.0, this->operator[](eqIdx)); } } /*! * \copydoc ImmiscibleBoundaryRateVector::setNoFlow */ void setNoFlow() { (*this) = Evaluation(0.0); } }; } // namespace Opm #endif