/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { static double invalid_alq = -1e100; static double invalid_vfp = -2147483647; } //Namespace // Helper structs and functions for the implementation. namespace WellsManagerDetail { namespace ProductionControl { namespace Details { std::map init_mode_map() { std::map m; m.insert(std::make_pair("ORAT", ORAT)); m.insert(std::make_pair("WRAT", WRAT)); m.insert(std::make_pair("GRAT", GRAT)); m.insert(std::make_pair("LRAT", LRAT)); m.insert(std::make_pair("CRAT", CRAT)); m.insert(std::make_pair("RESV", RESV)); m.insert(std::make_pair("BHP" , BHP )); m.insert(std::make_pair("THP" , THP )); m.insert(std::make_pair("GRUP", GRUP)); return m; } } // namespace Details Mode mode(const std::string& control) { static std::map mode_map = Details::init_mode_map(); std::map::iterator p = mode_map.find(control); if (p != mode_map.end()) { return p->second; } else { OPM_THROW(std::runtime_error, "Unknown well control mode = " << control << " in input file"); } } Mode mode(Opm::WellProducer::ControlModeEnum controlMode) { switch( controlMode ) { case Opm::WellProducer::ORAT: return ORAT; case Opm::WellProducer::WRAT: return WRAT; case Opm::WellProducer::GRAT: return GRAT; case Opm::WellProducer::LRAT: return LRAT; case Opm::WellProducer::CRAT: return CRAT; case Opm::WellProducer::RESV: return RESV; case Opm::WellProducer::BHP: return BHP; case Opm::WellProducer::THP: return THP; case Opm::WellProducer::GRUP: return GRUP; default: throw std::invalid_argument("unhandled enum value"); } } } // namespace ProductionControl namespace InjectionControl { namespace Details { std::map init_mode_map() { std::map m; m.insert(std::make_pair("RATE", RATE)); m.insert(std::make_pair("RESV", RESV)); m.insert(std::make_pair("BHP" , BHP )); m.insert(std::make_pair("THP" , THP )); m.insert(std::make_pair("GRUP", GRUP)); return m; } } // namespace Details Mode mode(const std::string& control) { static std::map mode_map = Details::init_mode_map(); std::map::iterator p = mode_map.find(control); if (p != mode_map.end()) { return p->second; } else { OPM_THROW(std::runtime_error, "Unknown well control mode = " << control << " in input file"); } } Mode mode(Opm::WellInjector::ControlModeEnum controlMode) { switch ( controlMode ) { case Opm::WellInjector::GRUP: return GRUP; case Opm::WellInjector::RESV: return RESV; case Opm::WellInjector::RATE: return RATE; case Opm::WellInjector::THP: return THP; case Opm::WellInjector::BHP: return BHP; default: throw std::invalid_argument("unhandled enum value"); } } } // namespace InjectionControl // Compute direction permutation corresponding to completion's // direction. First two elements of return value are directions // perpendicular to completion while last element is direction // along completion. inline std::array< std::array::size_type, 3 > directionIndices(const Opm::WellCompletion::DirectionEnum direction) { typedef std::array::size_type idx_t; typedef std::array permutation; switch (direction) { case Opm::WellCompletion::DirectionEnum::X: return permutation {{ idx_t(1), idx_t(2), idx_t(0) }}; case Opm::WellCompletion::DirectionEnum::Y: return permutation {{ idx_t(2), idx_t(0), idx_t(1) }}; case Opm::WellCompletion::DirectionEnum::Z: return permutation {{ idx_t(0), idx_t(1), idx_t(2) }}; } // All enum values should be handled above. Therefore // we should never reach this one. Anyway for the sake // of reduced warnings we throw an exception. throw std::invalid_argument("unhandled enum value"); } // Permute (diagonal) permeability components according to // completion's direction. inline std::array permComponents(const Opm::WellCompletion::DirectionEnum direction, const double* perm) { const auto p = directionIndices(direction); const std::array::size_type d = 3; std::array K = {{ perm[ p[0]*(d + 1) ] , perm[ p[1]*(d + 1) ] , perm[ p[2]*(d + 1) ] }}; return K; } // Permute cell's geometric extent according to completion's // direction. Honour net-to-gross ratio. // // Note: 'extent' is intentionally accepted by modifiable value // rather than reference-to-const to support NTG manipulation. inline std::array effectiveExtent(const Opm::WellCompletion::DirectionEnum direction, const double ntg, std::array extent) { // Vertical extent affected by net-to-gross ratio. extent[2] *= ntg; const auto p = directionIndices(direction); std::array D = {{ extent[ p[0] ] , extent[ p[1] ] , extent[ p[2] ] }}; return D; } // Compute Peaceman's effective radius of single completion. inline double effectiveRadius(const std::array& K, const std::array& D) { const double K01 = K[0] / K[1]; const double K10 = K[1] / K[0]; const double D0_sq = D[0] * D[0]; const double D1_sq = D[1] * D[1]; const double num = std::sqrt((std::sqrt(K10) * D0_sq) + (std::sqrt(K01) * D1_sq)); const double den = std::pow(K01, 0.25) + std::pow(K10, 0.25); // Note: Analytic constant 0.28 derived for infintely sized // formation with repeating well placement. return 0.28 * (num / den); } // Use the Peaceman well model to compute well indices. // radius is the radius of the well. // cubical contains [dx, dy, dz] of the cell. // (Note that the well model asumes that each cell is a cuboid). // cell_permeability is the permeability tensor of the given cell. // returns the well index of the cell. double computeWellIndex(const double radius, const std::array& cubical, const double* cell_permeability, const double skin_factor, const Opm::WellCompletion::DirectionEnum direction, const double ntg) { const std::array& K = permComponents(direction, cell_permeability); const std::array& D = effectiveExtent(direction, ntg, cubical); const double r0 = effectiveRadius(K, D); const double Kh = std::sqrt(K[0] * K[1]) * D[2]; // Angle of completion exposed to flow. We assume centre // placement so there's complete exposure (= 2\pi). const double angle = 6.2831853071795864769252867665590057683943387987502116419498; double rw = radius; if (r0 < rw) { std::cerr << "Completion radius exceeds effective radius\n" << "Reset to effective\n"; rw = r0; } // NOTE: The formula is originally derived and valid for // Cartesian grids only. return (angle * Kh) / (std::log(r0 / rw) + skin_factor); } } // anonymous namespace namespace Opm { /// Default constructor. WellsManager::WellsManager() : w_(0), is_parallel_run_(false) { } /// Construct from existing wells object. WellsManager::WellsManager(struct Wells* W) : w_(clone_wells(W)), is_parallel_run_(false) { } /// Construct wells from deck. WellsManager::WellsManager(const Opm::EclipseStateConstPtr eclipseState, const size_t timeStep, const UnstructuredGrid& grid, const double* permeability) : w_(0), is_parallel_run_(false) { init(eclipseState, timeStep, UgGridHelpers::numCells(grid), UgGridHelpers::globalCell(grid), UgGridHelpers::cartDims(grid), UgGridHelpers::dimensions(grid), UgGridHelpers::cell2Faces(grid), UgGridHelpers::beginFaceCentroids(grid), permeability); } /// Destructor. WellsManager::~WellsManager() { destroy_wells(w_); } /// Does the "deck" define any wells? bool WellsManager::empty() const { return (w_ == 0) || (w_->number_of_wells == 0); } /// Access the managed Wells. /// The method is named similarly to c_str() in std::string, /// to make it clear that we are returning a C-compatible struct. const Wells* WellsManager::c_wells() const { return w_; } const WellCollection& WellsManager::wellCollection() const { return well_collection_; } bool WellsManager::conditionsMet(const std::vector& well_bhp, const std::vector& well_reservoirrates_phase, const std::vector& well_surfacerates_phase) { return well_collection_.conditionsMet(well_bhp, well_reservoirrates_phase, well_surfacerates_phase); } /// Applies explicit reinjection controls. This must be called at each timestep to be correct. /// \param[in] well_reservoirrates_phase /// A vector containing reservoir rates by phase for each well. /// Is assumed to be ordered the same way as the related Wells-struct, /// with all phase rates of a single well adjacent in the array. /// \param[in] well_surfacerates_phase /// A vector containing surface rates by phase for each well. /// Is assumed to be ordered the same way as the related Wells-struct, /// with all phase rates of a single well adjacent in the array. void WellsManager::applyExplicitReinjectionControls(const std::vector& well_reservoirrates_phase, const std::vector& well_surfacerates_phase) { well_collection_.applyExplicitReinjectionControls(well_reservoirrates_phase, well_surfacerates_phase); } void WellsManager::setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map& cartesian_to_compressed ) { // global_cell is a map from compressed cells to Cartesian grid cells. // We must make the inverse lookup. if (global_cell) { for (int i = 0; i < number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(global_cell[i], i)); } } else { for (int i = 0; i < number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(i, i)); } } } void WellsManager::setupWellControls(std::vector& wells, size_t timeStep, std::vector& well_names, const PhaseUsage& phaseUsage, const std::vector& wells_on_proc) { int well_index = 0; auto well_on_proc = wells_on_proc.begin(); for (auto wellIter= wells.begin(); wellIter != wells.end(); ++wellIter, ++well_on_proc) { if( ! *well_on_proc ) { // Wells not stored on the process are not in the list continue; } WellConstPtr well = (*wellIter); if (well->getStatus(timeStep) == WellCommon::STOP) { // STOPed wells are kept in the well list but marked as stopped. well_controls_stop_well(w_->ctrls[well_index]); } if (well->getStatus(timeStep) == WellCommon::SHUT) { //SHUT wells are not added to the well list continue; } if (well->isInjector(timeStep)) { const WellInjectionProperties& injectionProperties = well->getInjectionProperties(timeStep); int ok = 1; int control_pos[5] = { -1, -1, -1, -1, -1 }; clear_well_controls(well_index, w_); if (injectionProperties.hasInjectionControl(WellInjector::RATE)) { control_pos[WellsManagerDetail::InjectionControl::RATE] = well_controls_get_num(w_->ctrls[well_index]); double distr[3] = { 0.0, 0.0, 0.0 }; WellInjector::TypeEnum injectorType = injectionProperties.injectorType; if (injectorType == WellInjector::TypeEnum::WATER) { distr[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0; } else if (injectorType == WellInjector::TypeEnum::OIL) { distr[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0; } else if (injectorType == WellInjector::TypeEnum::GAS) { distr[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0; } ok = append_well_controls(SURFACE_RATE, injectionProperties.surfaceInjectionRate, invalid_alq, invalid_vfp, distr, well_index, w_); } if (ok && injectionProperties.hasInjectionControl(WellInjector::RESV)) { control_pos[WellsManagerDetail::InjectionControl::RESV] = well_controls_get_num(w_->ctrls[well_index]); double distr[3] = { 0.0, 0.0, 0.0 }; WellInjector::TypeEnum injectorType = injectionProperties.injectorType; if (injectorType == WellInjector::TypeEnum::WATER) { distr[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0; } else if (injectorType == WellInjector::TypeEnum::OIL) { distr[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0; } else if (injectorType == WellInjector::TypeEnum::GAS) { distr[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0; } ok = append_well_controls(RESERVOIR_RATE, injectionProperties.reservoirInjectionRate, invalid_alq, invalid_vfp, distr, well_index, w_); } if (ok && injectionProperties.hasInjectionControl(WellInjector::BHP)) { control_pos[WellsManagerDetail::InjectionControl::BHP] = well_controls_get_num(w_->ctrls[well_index]); ok = append_well_controls(BHP, injectionProperties.BHPLimit, invalid_alq, invalid_vfp, NULL, well_index, w_); } if (ok && injectionProperties.hasInjectionControl(WellInjector::THP)) { control_pos[WellsManagerDetail::InjectionControl::THP] = well_controls_get_num(w_->ctrls[well_index]); const double thp_limit = injectionProperties.THPLimit; const int vfp_number = injectionProperties.VFPTableNumber; ok = append_well_controls(THP, thp_limit, invalid_alq, vfp_number, NULL, well_index, w_); } if (!ok) { OPM_THROW(std::runtime_error, "Failure occured appending controls for well " << well_names[well_index]); } if (injectionProperties.controlMode != WellInjector::CMODE_UNDEFINED) { WellsManagerDetail::InjectionControl::Mode mode = WellsManagerDetail::InjectionControl::mode( injectionProperties.controlMode ); int cpos = control_pos[mode]; if (cpos == -1 && mode != WellsManagerDetail::InjectionControl::GRUP) { OPM_THROW(std::runtime_error, "Control not specified in well " << well_names[well_index]); } set_current_control(well_index, cpos, w_); } // Set well component fraction. double cf[3] = { 0.0, 0.0, 0.0 }; { WellInjector::TypeEnum injectorType = injectionProperties.injectorType; if (injectorType == WellInjector::WATER) { if (!phaseUsage.phase_used[BlackoilPhases::Aqua]) { OPM_THROW(std::runtime_error, "Water phase not used, yet found water-injecting well."); } cf[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0; } else if (injectorType == WellInjector::OIL) { if (!phaseUsage.phase_used[BlackoilPhases::Liquid]) { OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil-injecting well."); } cf[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0; } else if (injectorType == WellInjector::GAS) { if (!phaseUsage.phase_used[BlackoilPhases::Vapour]) { OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas-injecting well."); } cf[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0; } std::copy(cf, cf + phaseUsage.num_phases, w_->comp_frac + well_index*phaseUsage.num_phases); } } if (well->isProducer(timeStep)) { // Add all controls that are present in well. // First we must clear existing controls, in case the // current WCONPROD line is modifying earlier controls. const WellProductionProperties& productionProperties = well->getProductionProperties(timeStep); int control_pos[9] = { -1, -1, -1, -1, -1, -1, -1, -1, -1 }; int ok = 1; clear_well_controls(well_index, w_); if (ok && productionProperties.hasProductionControl(WellProducer::ORAT)) { if (!phaseUsage.phase_used[BlackoilPhases::Liquid]) { OPM_THROW(std::runtime_error, "Oil phase not active and ORAT control specified."); } control_pos[WellsManagerDetail::ProductionControl::ORAT] = well_controls_get_num(w_->ctrls[well_index]); double distr[3] = { 0.0, 0.0, 0.0 }; distr[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0; ok = append_well_controls(SURFACE_RATE, -productionProperties.OilRate, invalid_alq, invalid_vfp, distr, well_index, w_); } if (ok && productionProperties.hasProductionControl(WellProducer::WRAT)) { if (!phaseUsage.phase_used[BlackoilPhases::Aqua]) { OPM_THROW(std::runtime_error, "Water phase not active and WRAT control specified."); } control_pos[WellsManagerDetail::ProductionControl::WRAT] = well_controls_get_num(w_->ctrls[well_index]); double distr[3] = { 0.0, 0.0, 0.0 }; distr[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0; ok = append_well_controls(SURFACE_RATE, -productionProperties.WaterRate, invalid_alq, invalid_vfp, distr, well_index, w_); } if (ok && productionProperties.hasProductionControl(WellProducer::GRAT)) { if (!phaseUsage.phase_used[BlackoilPhases::Vapour]) { OPM_THROW(std::runtime_error, "Gas phase not active and GRAT control specified."); } control_pos[WellsManagerDetail::ProductionControl::GRAT] = well_controls_get_num(w_->ctrls[well_index]); double distr[3] = { 0.0, 0.0, 0.0 }; distr[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0; ok = append_well_controls(SURFACE_RATE, -productionProperties.GasRate, invalid_alq, invalid_vfp, distr, well_index, w_); } if (ok && productionProperties.hasProductionControl(WellProducer::LRAT)) { if (!phaseUsage.phase_used[BlackoilPhases::Aqua]) { OPM_THROW(std::runtime_error, "Water phase not active and LRAT control specified."); } if (!phaseUsage.phase_used[BlackoilPhases::Liquid]) { OPM_THROW(std::runtime_error, "Oil phase not active and LRAT control specified."); } control_pos[WellsManagerDetail::ProductionControl::LRAT] = well_controls_get_num(w_->ctrls[well_index]); double distr[3] = { 0.0, 0.0, 0.0 }; distr[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0; distr[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0; ok = append_well_controls(SURFACE_RATE, -productionProperties.LiquidRate, invalid_alq, invalid_vfp, distr, well_index, w_); } if (ok && productionProperties.hasProductionControl(WellProducer::RESV)) { control_pos[WellsManagerDetail::ProductionControl::RESV] = well_controls_get_num(w_->ctrls[well_index]); double distr[3] = { 1.0, 1.0, 1.0 }; ok = append_well_controls(RESERVOIR_RATE, -productionProperties.ResVRate, invalid_alq, invalid_vfp, distr, well_index, w_); } if (ok && productionProperties.hasProductionControl(WellProducer::THP)) { const double thp_limit = productionProperties.THPLimit; const double alq_value = productionProperties.ALQValue; const int vfp_number = productionProperties.VFPTableNumber; control_pos[WellsManagerDetail::ProductionControl::THP] = well_controls_get_num(w_->ctrls[well_index]); ok = append_well_controls(THP, thp_limit, alq_value, vfp_number, NULL, well_index, w_); } if (ok) { // Always append a BHP control. // If no explicit BHP control given, use a 1 atm control. const bool has_explicit_limit = productionProperties.hasProductionControl(WellProducer::BHP); const double bhp_limit = has_explicit_limit ? productionProperties.BHPLimit : unit::convert::from(1.0, unit::atm); control_pos[WellsManagerDetail::ProductionControl::BHP] = well_controls_get_num(w_->ctrls[well_index]); ok = append_well_controls(BHP, bhp_limit, invalid_alq, invalid_vfp, NULL, well_index, w_); } if (!ok) { OPM_THROW(std::runtime_error, "Failure occured appending controls for well " << well_names[well_index]); } if (productionProperties.controlMode != WellProducer::CMODE_UNDEFINED) { WellsManagerDetail::ProductionControl::Mode mode = WellsManagerDetail::ProductionControl::mode(productionProperties.controlMode); int cpos = control_pos[mode]; if (cpos == -1 && mode != WellsManagerDetail::ProductionControl::GRUP) { OPM_THROW(std::runtime_error, "Control mode type " << mode << " not present in well " << well_names[well_index]); } else { set_current_control(well_index, cpos, w_); } } // Set well component fraction to match preferred phase for the well. double cf[3] = { 0.0, 0.0, 0.0 }; { switch (well->getPreferredPhase()) { case Phase::WATER: if (!phaseUsage.phase_used[BlackoilPhases::Aqua]) { OPM_THROW(std::runtime_error, "Water phase not used, yet found water-preferring well."); } cf[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0; break; case Phase::OIL: if (!phaseUsage.phase_used[BlackoilPhases::Liquid]) { OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil-preferring well."); } cf[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0; break; case Phase::GAS: if (!phaseUsage.phase_used[BlackoilPhases::Vapour]) { OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas-preferring well."); } cf[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0; break; default: OPM_THROW(std::logic_error, "Unknown preferred phase: " << well->getPreferredPhase()); } std::copy(cf, cf + phaseUsage.num_phases, w_->comp_frac + well_index*phaseUsage.num_phases); } } well_index++; } } void WellsManager::addChildGroups(GroupTreeNodeConstPtr parentNode, ScheduleConstPtr schedule, size_t timeStep, const PhaseUsage& phaseUsage) { for (auto childIter = parentNode->begin(); childIter != parentNode->end(); ++childIter) { GroupTreeNodeConstPtr childNode = (*childIter).second; well_collection_.addGroup(schedule->getGroup(childNode->name()), parentNode->name(), timeStep, phaseUsage); addChildGroups(childNode, schedule, timeStep, phaseUsage); } } void WellsManager::setupGuideRates(std::vector& wells, const size_t timeStep, std::vector& well_data, std::map& well_names_to_index) { for (auto wellIter = wells.begin(); wellIter != wells.end(); ++wellIter ) { WellConstPtr well = *wellIter; const int wix = well_names_to_index[well->name()]; WellNode& wellnode = *well_collection_.getLeafNodes()[wix]; if (well->getGuideRatePhase(timeStep) != GuideRate::UNDEFINED) { if (well_data[wix].type == PRODUCER) { wellnode.prodSpec().guide_rate_ = well->getGuideRate(timeStep); if (well->getGuideRatePhase(timeStep) == GuideRate::OIL) { wellnode.prodSpec().guide_rate_type_ = ProductionSpecification::OIL; } else { OPM_THROW(std::runtime_error, "Guide rate type " << GuideRate::GuideRatePhaseEnum2String(well->getGuideRatePhase(timeStep)) << " specified for producer " << well->name() << " in WGRUPCON, cannot handle."); } } else if (well_data[wix].type == INJECTOR) { wellnode.injSpec().guide_rate_ = well->getGuideRate(timeStep); if (well->getGuideRatePhase(timeStep) == GuideRate::RAT) { wellnode.injSpec().guide_rate_type_ = InjectionSpecification::RAT; } else { OPM_THROW(std::runtime_error, "Guide rate type " << GuideRate::GuideRatePhaseEnum2String(well->getGuideRatePhase(timeStep)) << " specified for injector " << well->name() << " in WGRUPCON, cannot handle."); } } else { OPM_THROW(std::runtime_error, "Unknown well type " << well_data[wix].type << " for well " << well->name()); } } } } } // namespace Opm